1
|
Cazalé-Debat L, Scheunemann L, Day M, Fernandez-D V Alquicira T, Dimtsi A, Zhang Y, Blackburn LA, Ballardini C, Greenin-Whitehead K, Reynolds E, Lin AC, Owald D, Rezaval C. Mating proximity blinds threat perception. Nature 2024; 634:635-643. [PMID: 39198656 PMCID: PMC11485238 DOI: 10.1038/s41586-024-07890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Romantic engagement can bias sensory perception. This 'love blindness' reflects a common behavioural principle across organisms: favouring pursuit of a coveted reward over potential risks1. In the case of animal courtship, such sensory biases may support reproductive success but can also expose individuals to danger, such as predation2,3. However, how neural networks balance the trade-off between risk and reward is unknown. Here we discover a dopamine-governed filter mechanism in male Drosophila that reduces threat perception as courtship progresses. We show that during early courtship stages, threat-activated visual neurons inhibit central courtship nodes via specific serotonergic neurons. This serotonergic inhibition prompts flies to abort courtship when they see imminent danger. However, as flies advance in the courtship process, the dopaminergic filter system reduces visual threat responses, shifting the balance from survival to mating. By recording neural activity from males as they approach mating, we demonstrate that progress in courtship is registered as dopaminergic activity levels ramping up. This dopamine signalling inhibits the visual threat detection pathway via Dop2R receptors, allowing male flies to focus on courtship when they are close to copulation. Thus, dopamine signalling biases sensory perception based on perceived goal proximity, to prioritize between competing behaviours.
Collapse
Affiliation(s)
- Laurie Cazalé-Debat
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Lisa Scheunemann
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Megan Day
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Tania Fernandez-D V Alquicira
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Dimtsi
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Youchong Zhang
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Lauren A Blackburn
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- School of Science and the Environment, University of Worcester, Worcester, UK
| | - Charles Ballardini
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Katie Greenin-Whitehead
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Eric Reynolds
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - David Owald
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carolina Rezaval
- School of Biosciences, University of Birmingham, Birmingham, UK.
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Ra K, A C, B T, Ac K, Je K, Er D. Evolution of a central dopamine circuit underlies adaptation of light-evoked sensorimotor response in the blind cavefish, Astyanax mexicanus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605141. [PMID: 39091880 PMCID: PMC11291158 DOI: 10.1101/2024.07.25.605141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Adaptive behaviors emerge in novel environments through functional changes in neural circuits. While relationships between circuit function and behavior have been well studied, how evolution shapes those circuits and leads to behavioral adpation is poorly understood. The Mexican cavefish, Astyanax mexicanus, provides a unique genetically amendable model system, equipped with above ground eyed surface fish and multiple evolutionarily divergent populations of blind cavefish that have evolved in complete darkness. These differences in environment and vision provide an opprotunity to examine how a neural circuit is functionally influenced by the presence of light. Here, we examine differences in the detection, and behavioral response induced by non visual light reception. Both populations exhibit photokinetic behavior, with surface fish becoming hyperactive following sudden darkness and cavefish becoming hyperactive following sudden illumination. To define these photokinetic neural circuits, we integrated whole brain functional imaging with our Astyanax brain atlas for surface and cavefish responding to light changes. We identified the caudal posterior tuberculum as the central modulator for both light or dark stimulated photokinesis. To unconver how spatiotemporal neuronal activity differed between surface fish and cavefish, we used stable pan-neuronal GCaMP Astyanax transgenics to show that a subpopulation of darkness sensitve neurons in surface fish are now light senstive in cavefish. Further functional analysis revealed that this integrative switch is dependent on dopmane signaling, suggesting a key role for dopamine and a highly conserved dopamine circuit in modulating the evolution of a circuit driving an essential behavior. Together, these data shed light into how neural circuits evolved to adapte to novel settings, and reveal the power of Astyanax as a model to elucidate mechanistic ingiths underlying sensory adaptation.
Collapse
Affiliation(s)
- Kozol Ra
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL
| | - Canavan A
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL
| | - Tolentino B
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL
| | - Keene Ac
- Department of Biology, Texas A&M University, College Station, TX
| | - Kowalko Je
- Department of Biological Sciences, Lehigh University, Bethlehem, PA
| | - Duboué Er
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL
| |
Collapse
|
3
|
Suárez-Grimalt R, Grunwald Kadow IC, Scheunemann L. An integrative sensor of body states: how the mushroom body modulates behavior depending on physiological context. Learn Mem 2024; 31:a053918. [PMID: 38876486 PMCID: PMC11199956 DOI: 10.1101/lm.053918.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/08/2024] [Indexed: 06/16/2024]
Abstract
The brain constantly compares past and present experiences to predict the future, thereby enabling instantaneous and future behavioral adjustments. Integration of external information with the animal's current internal needs and behavioral state represents a key challenge of the nervous system. Recent advancements in dissecting the function of the Drosophila mushroom body (MB) at the single-cell level have uncovered its three-layered logic and parallel systems conveying positive and negative values during associative learning. This review explores a lesser-known role of the MB in detecting and integrating body states such as hunger, thirst, and sleep, ultimately modulating motivation and sensory-driven decisions based on the physiological state of the fly. State-dependent signals predominantly affect the activity of modulatory MB input neurons (dopaminergic, serotoninergic, and octopaminergic), but also induce plastic changes directly at the level of the MB intrinsic and output neurons. Thus, the MB emerges as a tightly regulated relay station in the insect brain, orchestrating neuroadaptations due to current internal and behavioral states leading to short- but also long-lasting changes in behavior. While these adaptations are crucial to ensure fitness and survival, recent findings also underscore how circuit motifs in the MB may reflect fundamental design principles that contribute to maladaptive behaviors such as addiction or depression-like symptoms.
Collapse
Affiliation(s)
- Raquel Suárez-Grimalt
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Lisa Scheunemann
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
4
|
Parnas M, Manoim JE, Lin AC. Sensory encoding and memory in the mushroom body: signals, noise, and variability. Learn Mem 2024; 31:a053825. [PMID: 38862174 PMCID: PMC11199953 DOI: 10.1101/lm.053825.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/21/2023] [Indexed: 06/13/2024]
Abstract
To survive in changing environments, animals need to learn to associate specific sensory stimuli with positive or negative valence. How do they form stimulus-specific memories to distinguish between positively/negatively associated stimuli and other irrelevant stimuli? Solving this task is one of the functions of the mushroom body, the associative memory center in insect brains. Here we summarize recent work on sensory encoding and memory in the Drosophila mushroom body, highlighting general principles such as pattern separation, sparse coding, noise and variability, coincidence detection, and spatially localized neuromodulation, and placing the mushroom body in comparative perspective with mammalian memory systems.
Collapse
Affiliation(s)
- Moshe Parnas
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Julia E Manoim
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
5
|
Thiem J, Viskadourou M, Gaitanidis A, Stravopodis DJ, Strauß R, Duch C, Consoulas C. Biological aging of two innate behaviors of Drosophila melanogaster: Escape climbing versus courtship learning and memory. PLoS One 2024; 19:e0293252. [PMID: 38593121 PMCID: PMC11003613 DOI: 10.1371/journal.pone.0293252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Motor and cognitive aging can severely affect life quality of elderly people and burden health care systems. In search for diagnostic behavioral biomarkers, it has been suggested that walking speed can predict forms of cognitive decline, but in humans, it remains challenging to separate the effects of biological aging and lifestyle. We examined a possible association of motor and cognitive decline in Drosophila, a genetic model organism of healthy aging. Long term courtship memory is present in young male flies but absent already during mid life (4-8 weeks). By contrast, courtship learning index and short term memory (STM) are surprisingly robust and remain stable through mid (4-8 weeks) and healthy late life (>8 weeks), until courtship performance collapses suddenly at ~4.5 days prior to death. By contrast, climbing speed declines gradually during late life (>8 weeks). The collapse of courtship performance and short term memory close to the end of life occur later and progress with a different time course than the gradual late life decline in climbing speed. Thus, during healthy aging in male Drosophila, climbing and courtship motor behaviors decline differentially. Moreover, cognitive and motor performances decline at different time courses. Differential behavioral decline during aging may indicate different underlying causes, or alternatively, a common cause but different thresholds for defects in different behaviors.
Collapse
Affiliation(s)
- Jessica Thiem
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Maria Viskadourou
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alexandros Gaitanidis
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Roland Strauß
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Christos Consoulas
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
6
|
Aster HC, Waltmann M, Busch A, Romanos M, Gamer M, Maria van Noort B, Beck A, Kappel V, Deserno L. Impaired flexible reward learning in ADHD patients is associated with blunted reinforcement sensitivity and neural signals in ventral striatum and parietal cortex. Neuroimage Clin 2024; 42:103588. [PMID: 38471434 PMCID: PMC10943992 DOI: 10.1016/j.nicl.2024.103588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Reward-based learning and decision-making are prime candidates to understand symptoms of attention deficit hyperactivity disorder (ADHD). However, only limited evidence is available regarding the neurocomputational underpinnings of the alterations seen in ADHD. This concerns flexible behavioral adaption in dynamically changing environments, which is challenging for individuals with ADHD. One previous study points to elevated choice switching in adolescent ADHD, which was accompanied by disrupted learning signals in medial prefrontal cortex. Here, we investigated young adults with ADHD (n = 17) as compared to age- and sex-matched controls (n = 17) using a probabilistic reversal learning experiment during functional magnetic resonance imaging (fMRI). The task requires continuous learning to guide flexible behavioral adaptation to changing reward contingencies. To disentangle the neurocomputational underpinnings of the behavioral data, we used reinforcement learning (RL) models, which informed the analysis of fMRI data. ADHD patients performed worse than controls particularly in trials before reversals, i.e., when reward contingencies were stable. This pattern resulted from 'noisy' choice switching regardless of previous feedback. RL modelling showed decreased reinforcement sensitivity and enhanced learning rates for negative feedback in ADHD patients. At the neural level, this was reflected in a diminished representation of choice probability in the left posterior parietal cortex in ADHD. Moreover, modelling showed a marginal reduction of learning about the unchosen option, which was paralleled by a marginal reduction in learning signals incorporating the unchosen option in the left ventral striatum. Taken together, we show that impaired flexible behavior in ADHD is due to excessive choice switching ('hyper-flexibility'), which can be detrimental or beneficial depending on the learning environment. Computationally, this resulted from blunted sensitivity to reinforcement of which we detected neural correlates in the attention-control network, specifically in the parietal cortex. These neurocomputational findings remain preliminary due to the relatively small sample size.
Collapse
Affiliation(s)
- Hans-Christoph Aster
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital Würzburg, Würzburg, Germany.
| | - Maria Waltmann
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital Würzburg, Würzburg, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anika Busch
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital Würzburg, Würzburg, Germany
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Gamer
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Betteke Maria van Noort
- Department of Child and Adolescent Psychiatry, Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany; MSB Medical School Berlin, Department of Psychology, Germany
| | - Anne Beck
- Department of Psychiatry and Neurosciences, Charité University Medicine, Berlin, Germany; Department of Psychology, Faculty of Health, Health and Medical University, Potsdam, Germany
| | - Viola Kappel
- Department of Child and Adolescent Psychiatry, Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital Würzburg, Würzburg, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Ohta H, Mitsumasu K, Asaoka K. Involvement of a silkworm D2-like dopamine receptor in the promotion of feeding and related behaviors. Behav Brain Res 2024; 456:114696. [PMID: 37793438 DOI: 10.1016/j.bbr.2023.114696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The biogenic amine dopamine (DA) regulates various physiological and behavioral processes in insects through binding with specific receptors. Three types of typical receptors are known to date. Previously, we achieved functional and pharmacological characterization of the three DA receptors in the silkworm Bombyx mori (BmDopR1-3). BmDopR1 and BmDopR2 are functionally classified as D1-like DA receptors, and BmDopR3 as D2-like. The present pharmacological data and our previous studies suggested that bromocriptine (Bro), which acts as an agonist on the DA D2 receptors and also interacts with various serotonin and adrenergic receptors in vertebrates, is an agonist that also acts specifically on BmDopR3, with little effect on BmDopR1 and BmDopR2 in silkworms. Exploiting this subtype specificity of Bro, to offer clues on the involvement of DA and its receptors in silkworm feeding behavior, Bro was injected into fifth instar larvae and subsequent feeding and related behaviors (feeding amount, excretion amount, mandibular movement, and feeding behavior observation) were quantitatively evaluated. Bro injection increased feeding and excretion amounts but did not affect mandibular chewing speed. Visual observation of feeding behavior for 1 h revealed the prolongation of feeding and related moving time in Bro-injected larvae. Collectively, these results suggest that Bro directly acted on BmDopR3 as an agonist and promoted feeding and related behaviors in silkworm larvae.
Collapse
Affiliation(s)
- Hiroto Ohta
- Department of Applied Microbial Engineering, Faculty of Life Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Kanako Mitsumasu
- Department of Nutritional Science, Faculty of Human Life Science, Shokei University, 2-6-78 Kuhonji, Chuo-ku, Kumamoto 862-8678, Japan
| | - Kiyoshi Asaoka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
8
|
Zhou F, Tichy AM, Imambocus BN, Sakharwade S, Rodriguez Jimenez FJ, González Martínez M, Jahan I, Habib M, Wilhelmy N, Burre V, Lömker T, Sauter K, Helfrich-Förster C, Pielage J, Grunwald Kadow IC, Janovjak H, Soba P. Optimized design and in vivo application of optogenetically functionalized Drosophila dopamine receptors. Nat Commun 2023; 14:8434. [PMID: 38114457 PMCID: PMC10730509 DOI: 10.1038/s41467-023-43970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023] Open
Abstract
Neuromodulatory signaling via G protein-coupled receptors (GPCRs) plays a pivotal role in regulating neural network function and animal behavior. The recent development of optogenetic tools to induce G protein-mediated signaling provides the promise of acute and cell type-specific manipulation of neuromodulatory signals. However, designing and deploying optogenetically functionalized GPCRs (optoXRs) with accurate specificity and activity to mimic endogenous signaling in vivo remains challenging. Here we optimize the design of optoXRs by considering evolutionary conserved GPCR-G protein interactions and demonstrate the feasibility of this approach using two Drosophila Dopamine receptors (optoDopRs). These optoDopRs exhibit high signaling specificity and light sensitivity in vitro. In vivo, we show receptor and cell type-specific effects of dopaminergic signaling in various behaviors, including the ability of optoDopRs to rescue the loss of the endogenous receptors. This work demonstrates that optoXRs can enable optical control of neuromodulatory receptor-specific signaling in functional and behavioral studies.
Collapse
Affiliation(s)
- Fangmin Zhou
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Alexandra-Madelaine Tichy
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, 3800, Clayton, Victoria, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, 3800, Clayton, Victoria, Australia
| | - Bibi Nusreen Imambocus
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Shreyas Sakharwade
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Francisco J Rodriguez Jimenez
- Institute of Physiology II, University Clinic Bonn (UKB), University of Bonn, 53115, Bonn, Germany
- ZIEL-Institute of Life and Health, Technical University of Munich, School of Life Sciences, 85354, Freising, Germany
| | - Marco González Martínez
- Institute of Physiology II, University Clinic Bonn (UKB), University of Bonn, 53115, Bonn, Germany
| | - Ishrat Jahan
- Institute of Physiology II, University Clinic Bonn (UKB), University of Bonn, 53115, Bonn, Germany
| | - Margarita Habib
- Neurobiology and Genetics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Nina Wilhelmy
- Division of Neurobiology and Zoology, RPTU University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Vanessa Burre
- Division of Neurobiology and Zoology, RPTU University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Tatjana Lömker
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Kathrin Sauter
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | | | - Jan Pielage
- Division of Neurobiology and Zoology, RPTU University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Ilona C Grunwald Kadow
- Institute of Physiology II, University Clinic Bonn (UKB), University of Bonn, 53115, Bonn, Germany
- ZIEL-Institute of Life and Health, Technical University of Munich, School of Life Sciences, 85354, Freising, Germany
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, 3800, Clayton, Victoria, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, 3800, Clayton, Victoria, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, 5042, Bedford Park, South Australia, Australia
| | - Peter Soba
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany.
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
9
|
Chiang MH, Lin YC, Chen SF, Lee PS, Fu TF, Wu T, Wu CL. Independent insulin signaling modulators govern hot avoidance under different feeding states. PLoS Biol 2023; 21:e3002332. [PMID: 37847673 PMCID: PMC10581474 DOI: 10.1371/journal.pbio.3002332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Thermosensation is critical for the survival of animals. However, mechanisms through which nutritional status modulates thermosensation remain unclear. Herein, we showed that hungry Drosophila exhibit a strong hot avoidance behavior (HAB) compared to food-sated flies. We identified that hot stimulus increases the activity of α'β' mushroom body neurons (MBns), with weak activity in the sated state and strong activity in the hungry state. Furthermore, we showed that α'β' MBn receives the same level of hot input from the mALT projection neurons via cholinergic transmission in sated and hungry states. Differences in α'β' MBn activity between food-sated and hungry flies following heat stimuli are regulated by distinct Drosophila insulin-like peptides (Dilps). Dilp2 is secreted by insulin-producing cells (IPCs) and regulates HAB during satiety, whereas Dilp6 is secreted by the fat body and regulates HAB during the hungry state. We observed that Dilp2 induces PI3K/AKT signaling, whereas Dilp6 induces Ras/ERK signaling in α'β' MBn to regulate HAB in different feeding conditions. Finally, we showed that the 2 α'β'-related MB output neurons (MBONs), MBON-α'3 and MBON-β'1, are necessary for the output of integrated hot avoidance information from α'β' MBn. Our results demonstrate the presence of dual insulin modulation pathways in α'β' MBn, which are important for suitable behavioral responses in Drosophila during thermoregulation under different feeding states.
Collapse
Affiliation(s)
- Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Fu Chen
- NHRI Institute of Biomedical Engineering & Nanomedicine, Miaoli, Taiwan
| | - Peng-Shiuan Lee
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
10
|
Perisse E, Miranda M, Trouche S. Modulation of aversive value coding in the vertebrate and invertebrate brain. Curr Opin Neurobiol 2023; 79:102696. [PMID: 36871400 DOI: 10.1016/j.conb.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
Avoiding potentially dangerous situations is key for the survival of any organism. Throughout life, animals learn to avoid environments, stimuli or actions that can lead to bodily harm. While the neural bases for appetitive learning, evaluation and value-based decision-making have received much attention, recent studies have revealed more complex computations for aversive signals during learning and decision-making than previously thought. Furthermore, previous experience, internal state and systems level appetitive-aversive interactions seem crucial for learning specific aversive value signals and making appropriate choices. The emergence of novel methodologies (computation analysis coupled with large-scale neuronal recordings, neuronal manipulations at unprecedented resolution offered by genetics, viral strategies and connectomics) has helped to provide novel circuit-based models for aversive (and appetitive) valuation. In this review, we focus on recent vertebrate and invertebrate studies yielding strong evidence that aversive value information can be computed by a multitude of interacting brain regions, and that past experience can modulate future aversive learning and therefore influence value-based decisions.
Collapse
Affiliation(s)
- Emmanuel Perisse
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| | - Magdalena Miranda
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | - Stéphanie Trouche
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| |
Collapse
|
11
|
Marquis M, Wilson RI. Locomotor and olfactory responses in dopamine neurons of the Drosophila superior-lateral brain. Curr Biol 2022; 32:5406-5414.e5. [PMID: 36450284 DOI: 10.1016/j.cub.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022]
Abstract
The Drosophila brain contains about 50 distinct morphological types of dopamine neurons.1,2,3,4 Physiological studies of Drosophila dopamine neurons have been largely limited to one brain region, the mushroom body,5,6,7,8,9,10,11,12,13 where they are implicated in learning.14,15,16,17,18 By comparison, we know little about the physiology of other Drosophila dopamine neurons. Interestingly, a recent whole-brain imaging study found that dopamine neuron activity in several fly brain regions is correlated with locomotion.19 This is notable because many dopamine neurons in the rodent brain are also correlated with locomotion or other movements20,21,22,23,24,25,26,27,28,29,30; however, most rodent studies have focused on learned and rewarded behaviors, and few have investigated dopamine neuron activity during spontaneous (self-timed) movements. In this study, we monitored dopamine neurons in the Drosophila brain during self-timed locomotor movements, focusing on several previously uncharacterized cell types that arborize in the superior-lateral brain, specifically the lateral horn and superior-lateral protocerebrum. We found that activity of all of these dopamine neurons correlated with spontaneous fluctuations in walking speed, with different cell types showing different speed correlations. Some dopamine neurons also responded to odors, but these responses were suppressed by repeated odor encounters. Finally, we found that the same identifiable dopamine neuron can encode different combinations of locomotion and odor in different individuals. If these dopamine neurons promote synaptic plasticity-like the dopamine neurons of the mushroom body-then, their tuning profiles would imply that plasticity depends on a flexible integration of sensory signals, motor signals, and recent experience.
Collapse
Affiliation(s)
- Michael Marquis
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Boehm AC, Friedrich AB, Hunt S, Bandow P, Siju KP, De Backer JF, Claussen J, Link MH, Hofmann TF, Dawid C, Grunwald Kadow IC. A dopamine-gated learning circuit underpins reproductive state-dependent odor preference in Drosophila females. eLife 2022; 11:e77643. [PMID: 36129174 PMCID: PMC9536836 DOI: 10.7554/elife.77643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Motherhood induces a drastic, sometimes long-lasting, change in internal state and behavior in many female animals. How a change in reproductive state or the discrete event of mating modulates specific female behaviors is still incompletely understood. Using calcium imaging of the whole brain of Drosophila females, we find that mating does not induce a global change in brain activity. Instead, mating modulates the pheromone response of dopaminergic neurons innervating the fly's learning and memory center, the mushroom body (MB). Using the mating-induced increased attraction to the odor of important nutrients, polyamines, we show that disruption of the female fly's ability to smell, for instance the pheromone cVA, during mating leads to a reduction in polyamine preference for days later indicating that the odor environment at mating lastingly influences female perception and choice behavior. Moreover, dopaminergic neurons including innervation of the β'1 compartment are sufficient to induce the lasting behavioral increase in polyamine preference. We further show that MB output neurons (MBON) of the β'1 compartment are activated by pheromone odor and their activity during mating bidirectionally modulates preference behavior in mated and virgin females. Their activity is not required, however, for the expression of polyamine attraction. Instead, inhibition of another type of MBON innervating the β'2 compartment enables expression of high odor attraction. In addition, the response of a lateral horn (LH) neuron, AD1b2, which output is required for the expression of polyamine attraction, shows a modulated polyamine response after mating. Taken together, our data in the fly suggests that mating-related sensory experience regulates female odor perception and expression of choice behavior through a dopamine-gated learning circuit.
Collapse
Affiliation(s)
- Ariane C Boehm
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
| | - Anja B Friedrich
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Sydney Hunt
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Paul Bandow
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
| | - KP Siju
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Jean Francois De Backer
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Julia Claussen
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Marie Helen Link
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Thomas F Hofmann
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- Technical University Munich, School of Life Sciences, Chair of Food Chemistry and Molecular Sensory ScienceFreisingGermany
| | - Corinna Dawid
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- Technical University Munich, School of Life Sciences, Chair of Food Chemistry and Molecular Sensory ScienceFreisingGermany
| | - Ilona C Grunwald Kadow
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- University of Bonn, Faculty of Medicine, Institute of Physiology IIBonnGermany
| |
Collapse
|
13
|
Nässel DR, Zandawala M. Endocrine cybernetics: neuropeptides as molecular switches in behavioural decisions. Open Biol 2022; 12:220174. [PMID: 35892199 PMCID: PMC9326288 DOI: 10.1098/rsob.220174] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plasticity in animal behaviour relies on the ability to integrate external and internal cues from the changing environment and hence modulate activity in synaptic circuits of the brain. This context-dependent neuromodulation is largely based on non-synaptic signalling with neuropeptides. Here, we describe select peptidergic systems in the Drosophila brain that act at different levels of a hierarchy to modulate behaviour and associated physiology. These systems modulate circuits in brain regions, such as the central complex and the mushroom bodies, which supervise specific behaviours. At the top level of the hierarchy there are small numbers of large peptidergic neurons that arborize widely in multiple areas of the brain to orchestrate or modulate global activity in a state and context-dependent manner. At the bottom level local peptidergic neurons provide executive neuromodulation of sensory gain and intrinsically in restricted parts of specific neuronal circuits. The orchestrating neurons receive interoceptive signals that mediate energy and sleep homeostasis, metabolic state and circadian timing, as well as external cues that affect food search, aggression or mating. Some of these cues can be triggers of conflicting behaviours such as mating versus aggression, or sleep versus feeding, and peptidergic neurons participate in circuits, enabling behaviour choices and switches.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland Würzburg 97074, Germany
| |
Collapse
|
14
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
15
|
Harzsch S, Krieger J. Genealogical relationships of mushroom bodies, hemiellipsoid bodies, and their afferent pathways in the brains of Pancrustacea: Recent progress and open questions. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 65:101100. [PMID: 34488068 DOI: 10.1016/j.asd.2021.101100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
According to all latest phylogenetic analyses, the taxon Pancrustacea embraces the crustaceans in the traditional sense and the hexapods. Members of the Pancrustacea for a long time have been known to display distinct similarities in the architecture of their brains. Here, we review recent progress and open questions concerning structural and functional communalities of selected higher integrative neuropils in the lateral protocerebrum of pancrustaceans, the mushroom bodies and hemiellipsoid bodies. We also discuss the projection neuron pathway which provides a distinct input channel to both mushroom and hemiellipsoid bodies from the primary chemosensory centers in the deutocerebrum. Neuronal characters are mapped on a current pancrustacean phylogeny in order to extract those characters that are part of the pancrustacean ground pattern. Furthermore, we summarize recent insights into the evolutionary transformation of mushroom body morphology across the Pancrustacea.
Collapse
Affiliation(s)
- S Harzsch
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany.
| | - J Krieger
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| |
Collapse
|
16
|
Kaldun JC, Lone SR, Humbert Camps AM, Fritsch C, Widmer YF, Stein JV, Tomchik SM, Sprecher SG. Dopamine, sleep, and neuronal excitability modulate amyloid-β-mediated forgetting in Drosophila. PLoS Biol 2021; 19:e3001412. [PMID: 34613972 PMCID: PMC8523056 DOI: 10.1371/journal.pbio.3001412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/18/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer disease (AD) is one of the main causes of age-related dementia and neurodegeneration. However, the onset of the disease and the mechanisms causing cognitive defects are not well understood. Aggregation of amyloidogenic peptides is a pathological hallmark of AD and is assumed to be a central component of the molecular disease pathways. Pan-neuronal expression of Aβ42Arctic peptides in Drosophila melanogaster results in learning and memory defects. Surprisingly, targeted expression to the mushroom bodies, a center for olfactory memories in the fly brain, does not interfere with learning but accelerates forgetting. We show here that reducing neuronal excitability either by feeding Levetiracetam or silencing of neurons in the involved circuitry ameliorates the phenotype. Furthermore, inhibition of the Rac-regulated forgetting pathway could rescue the Aβ42Arctic-mediated accelerated forgetting phenotype. Similar effects are achieved by increasing sleep, a critical regulator of neuronal homeostasis. Our results provide a functional framework connecting forgetting signaling and sleep, which are critical for regulating neuronal excitability and homeostasis and are therefore a promising mechanism to modulate forgetting caused by toxic Aβ peptides.
Collapse
Affiliation(s)
- Jenifer C. Kaldun
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Shahnaz R. Lone
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | | | - Cornelia Fritsch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Yves F. Widmer
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jens V. Stein
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Seth M. Tomchik
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Simon G. Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Wissink M, Nehring V. Appetitive olfactory learning suffers in ants when octopamine or dopamine receptors are blocked. J Exp Biol 2021; 224:271209. [PMID: 34357377 DOI: 10.1242/jeb.242732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/14/2021] [Indexed: 01/24/2023]
Abstract
Associative learning relies on the detection of coincidence between a stimulus and a reward or punishment. In the insect brain, this process is carried out in the mushroom bodies under the control of octopaminergic and dopaminergic neurons. It was assumed that appetitive learning is governed by octopaminergic neurons, while dopamine is required for aversive learning. This view has recently been challenged: both neurotransmitters are involved in both types of learning in bees and flies. Here, we tested which neurotransmitters are required for appetitive learning in ants. We trained Lasius niger workers to discriminate two mixtures of linear hydrocarbons and to associate one of them with a sucrose reward. We analysed the walking paths of the ants using machine learning and found that the ants spent more time near the rewarded odour than near the other, a preference that was stable for at least 24 h. We then treated the ants before learning with either epinastine, an octopamine receptor blocker, or flupentixol, a dopamine receptor blocker. Ants with blocked octopamine receptors did not prefer the rewarded odour. Octopamine signalling is thus necessary for appetitive learning of olfactory cues, probably because it signals information about odours or reward to the mushroom body. In contrast, ants with blocked dopamine receptors initially learned the rewarded odour but failed to retrieve this memory 24 h later. Dopamine is thus probably required for long-term memory consolidation, independent of short-term memory formation. Our results show that appetitive olfactory learning depends on both octopamine and dopamine signalling in ants.
Collapse
Affiliation(s)
- Maarten Wissink
- Evolutionary Biology & Ecology, Institute for Biology I (Zoology), University of Freiburg, D-79104 Freiburg, Germany
| | - Volker Nehring
- Evolutionary Biology & Ecology, Institute for Biology I (Zoology), University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
18
|
Timm J, Scherner M, Matschke J, Kern M, Homberg U. Tyrosine hydroxylase immunostaining in the central complex of dicondylian insects. J Comp Neurol 2021; 529:3131-3154. [PMID: 33825188 DOI: 10.1002/cne.25151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022]
Abstract
Dopamine acts as a neurohormone and neurotransmitter in the insect nervous system and controls a variety of physiological processes. Dopaminergic neurons also innervate the central complex (CX), a multisensory center of the insect brain involved in sky compass navigation, goal-directed locomotion and sleep control. To infer a possible influence of evolutionary history and lifestyle on the neurochemical architecture of the CX, we have studied the distribution of neurons immunoreactive to tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis. Analysis of representatives from 12 insect orders ranging from firebrats to flies revealed high conservation of immunolabeled neurons. One type of TH-immunoreactive neuron was found in all species studied. The neurons have somata in the pars intercerebralis, arborizations in the lateral accessory lobes, and axonal ramifications in the central body and noduli. In all pterygote species, a second type of tangential neuron of the upper division of the central body was TH-immunoreactive. The neurons have cell bodies near the calyces and arborizations in the superior protocerebrum. Both types of neuron showed species-specific variations in cell number and in the innervated areas outside and inside the CX. Additional neurons were found in only two taxa: one type of columnar neuron showed TH immunostaining in the water strider Gerris lacustris, but not in other Heteroptera, and a tritocerebral neuron innervating the protocerebral bridge was immunolabeled in Diptera. The data show largely taxon-specific variations of a common ground pattern of putatively dopaminergic neurons that may be commonly involved in state-dependent modulation of CX function.
Collapse
Affiliation(s)
- Josephine Timm
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Mara Scherner
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Jannik Matschke
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Martina Kern
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
19
|
Affiliation(s)
- Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|