1
|
Chen BN, Humenick A, Yew WP, Peterson RA, Wiklendt L, Dinning PG, Spencer NJ, Wattchow DA, Costa M, Brookes SJH. Types of Neurons in the Human Colonic Myenteric Plexus Identified by Multilayer Immunohistochemical Coding. Cell Mol Gastroenterol Hepatol 2023; 16:573-605. [PMID: 37355216 PMCID: PMC10469081 DOI: 10.1016/j.jcmgh.2023.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND AIMS Gut functions including motility, secretion, and blood flow are largely controlled by the enteric nervous system. Characterizing the different classes of enteric neurons in the human gut is an important step to understand how its circuitry is organized and how it is affected by disease. METHODS Using multiplexed immunohistochemistry, 12 discriminating antisera were applied to distinguish different classes of myenteric neurons in the human colon (2596 neurons, 12 patients) according to their chemical coding. All antisera were applied to every neuron, in multiple layers, separated by elutions. RESULTS A total of 164 combinations of immunohistochemical markers were present among the 2596 neurons, which could be divided into 20 classes, with statistical validation. Putative functions were ascribed for 4 classes of putative excitatory motor neurons (EMN1-4), 4 inhibitory motor neurons (IMN1-4), 3 ascending interneurons (AIN1-3), 6 descending interneurons (DIN1-6), 2 classes of multiaxonal sensory neurons (SN1-2), and a small, miscellaneous group (1.8% of total). Soma-dendritic morphology was analyzed, revealing 5 common shapes distributed differentially between the 20 classes. Distinctive baskets of axonal varicosities surrounded 45% of myenteric nerve cell bodies and were associated with close appositions, suggesting possible connectivity. Baskets of cholinergic terminals and several other types of baskets selectively targeted ascending interneurons and excitatory motor neurons but were significantly sparser around inhibitory motor neurons. CONCLUSIONS Using a simple immunohistochemical method, human myenteric neurons were shown to comprise multiple classes based on chemical coding and morphology and dense clusters of axonal varicosities were selectively associated with some classes.
Collapse
Affiliation(s)
- Bao Nan Chen
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Adam Humenick
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Wai Ping Yew
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Rochelle A Peterson
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lukasz Wiklendt
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Phil G Dinning
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia; Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Nick J Spencer
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - David A Wattchow
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Marcello Costa
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Simon J H Brookes
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
2
|
Humenick A, Chen BN, Wattchow DA, Zagorodnyuk VP, Dinning PG, Spencer NJ, Costa M, Brookes SJH. Characterization of putative interneurons in the myenteric plexus of human colon. Neurogastroenterol Motil 2021; 33:e13964. [PMID: 32839997 PMCID: PMC7772282 DOI: 10.1111/nmo.13964] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The enteric nervous system contains multiple classes of neurons, distinguishable by morphology, immunohistochemical markers, and projections; however, specific combinations differ between species. Here, types of enteric neurons in human colon were characterized immunohistochemically, using retrograde tracing combined with multiple labeling immunohistochemistry, focussing on non-motor neurons. METHODS The fluorescent carbocyanine tracer, DiI, was applied to the myenteric plexus in ex vivo preparations, filling neurons projecting within the plexus. Limits of projection lengths of motor neurons were established, allowing them to be excluded from the analysis. Long ascending and descending interneurons were then distinguished by labeling for discriminating immunohistochemical markers: calbindin, calretinin, enkephalin, 5-hydroxytryptamine, nitric oxide synthase, and substance P. These results were combined with a previous published study in which nitric oxide synthase and choline acetyltransferase immunoreactivities were established. KEY RESULTS Long ascending neurons (with projections longer than 8 mm, which excludes more than 95% motor neurons) formed four types, in descending order of abundance, defined by immunoreactivity for: (a) ChAT+/ENK+, (b) ChAT+/ENK+/SP+, (c) ChAT+/Calb+, and (d) ChAT+/ENK+/Calb+. Long descending neurons, up to 70 mm long also formed at least four types, distinguished by immunoreactivity for (a) NOS + cells (without ChAT), (b) ChAT+/NOS+, (c) ChAT+/Calret+, and (d) ChAT+/5HT + cells (with or without NOS). CONCLUSIONS AND INFERENCES Long interneurons, which do not innervate muscularis externa, are likely to coordinate neural activity over distances of many centimeters along the colon. Characterizing their neurochemical coding provides a basis for understanding their roles, investigating their connectivity, and building a comprehensive account of human colonic enteric neurons.
Collapse
Affiliation(s)
- Adam Humenick
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - Bao Nan Chen
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Human, South Australia 5042
| | | | - Phil G Dinning
- Department of Surgery, Flinders Medical Centre, Human, South Australia 5042
| | - Nick J Spencer
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - Marcello Costa
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - Simon JH Brookes
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| |
Collapse
|
3
|
Greig CJ, Zhang L, Cowles RA. Potentiated serotonin signaling in serotonin re-uptake transporter knockout mice increases enterocyte mass and small intestinal absorptive function. Physiol Rep 2020; 7:e14278. [PMID: 31724827 PMCID: PMC6854605 DOI: 10.14814/phy2.14278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic knockout of the serotonin reuptake transporter (SERT) potentiates serotonin signaling and increases crypt‐cell proliferation, neuroplasticity, and mucosal surface area. However, it remains unknown whether these changes occur throughout the small intestine and whether they increase nutrient absorption. We hypothesized that serotonin‐mediated mucosal growth would occur throughout the intestine and would increase enterocyte mass and absorptive function. Following institutional approval, intestinal segments spanning the bowel were harvested from 10 to 12 week‐old SERT knockout (SERTKO) and wild‐type (WT) C57Bl/6 mice. Histologic sections were used to measure villus height (VH), crypt depth (CD), and crypt proliferation index (CPI). Plasma citrulline was measured colorimetrically. Glucose and peptide absorption in isolated segments of small bowel were calculated using a previously described method for quantification after luminal instillation of substrate. At baseline, morphometric (VH/CD) and proliferative (CPI) parameters varied from jejunum to ileum. Enhanced 5‐HT signaling significantly increased plasma citrulline levels and morphometric/proliferative parameters in all regions analyzed. Glucose absorption in WT mice varied throughout the small intestine, and SERTKO mice demonstrated significant increases in the middle and distal bowel. WT peptide absorption was similar throughout the small bowel, and SERTKO mice had significant increases in the proximal and distal bowel. Enhanced serotonin signaling results in increased morphometric and proliferative parameters throughout the small intestine, and results in increased enterocyte mass and intestinal absorptive function. These data further advance the concept that the serotonin system is an attractive therapeutic target for increasing functional intestinal mucosa.
Collapse
Affiliation(s)
- Chasen J Greig
- Section of Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Lucy Zhang
- Section of Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Robert A Cowles
- Section of Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
4
|
Smith TK, Park KJ, Hennig GW. Colonic migrating motor complexes, high amplitude propagating contractions, neural reflexes and the importance of neuronal and mucosal serotonin. J Neurogastroenterol Motil 2014; 20:423-46. [PMID: 25273115 PMCID: PMC4204412 DOI: 10.5056/jnm14092] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/15/2022] Open
Abstract
The colonic migrating motor complex (CMMC) is a critical neurally mediated rhythmic propulsive contraction observed in the large intestine of many mammals. It seems to be equivalent to the high amplitude propagating contractions (HAPCs) in humans. This review focuses on the probable neural mechanisms involved in producing the CMMC or HAPC, their likely dependence on mucosal and neuronal serotonin and pacemaker insterstitial cells of Cajal networks and how intrinsic neural reflexes affect them. Discussed is the possibility that myenteric 5-hydroxytryptamine (5-HT) neurons are not only involved in tonic inhibition of the colon, but are also involved in generating the CMMC and modulation of the entire enteric nervous system, including coupling motility to secretion and blood flow. Mucosal 5-HT appears to be important for the initiation and effective propagation of CMMCs, although this mechanism is a longstanding controversy since the 1950s, which we will address. We argue that the slow apparent propagation of the CMMC/HAPC down the colon is unlikely to result from a slowly conducting wave front of neural activity, but more likely because of an interaction between ascending excitatory and descending (serotonergic) inhibitory neural pathways interacting both within the myenteric plexus and at the level of the muscle. That is, CMMC/HAPC propagation appears to be similar to esophageal peristalsis. The suppression of inhibitory (neuronal nitric oxide synthase) motor neurons and mucosal 5-HT release by an upregulation of prostaglandins has important implications in a number of gastrointestinal disorders, especially slow transit constipation.
Collapse
Affiliation(s)
- Terence K Smith
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Kyu Joo Park
- Department of Surgery, School of Medicine, Seoul National University, Seoul Korea
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
5
|
Central serotonergic neuron deficiency in a mouse model of Zellweger syndrome. Neuroscience 2014; 274:229-41. [PMID: 24881576 DOI: 10.1016/j.neuroscience.2014.05.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 11/21/2022]
Abstract
Zellweger syndrome (ZS) is a severe peroxisomal disorder caused by mutations in peroxisome biogenesis, or PEX, genes. A central hallmark of ZS is abnormal neuronal migration and neurodegeneration, which manifests as widespread neurological dysfunction. The molecular basis of ZS neuropathology is not well understood. Here we present findings using a mouse model of ZS neuropathology with conditional brain inactivation of the PEX13 gene. We demonstrate that PEX13 brain mutants display changes that reflect an abnormal serotonergic system - decreased levels of tryptophan hydroxylase-2, the rate-limiting enzyme of serotonin (5-hydroxytryptamine, 5-HT) synthesis, dysmorphic 5-HT-positive neurons, abnormal distribution of 5-HT neurons, and dystrophic serotonergic axons. The raphe nuclei region of PEX13 brain mutants also display increased levels of apoptotic cells and reactive, inflammatory gliosis. Given the role of the serotonergic system in brain development and motor control, dysfunction of this system would account in part for the observed neurological changes of PEX13 brain mutants.
Collapse
|
6
|
Okamoto T, Barton MJ, Hennig GW, Birch GC, Grainger N, Corrigan RD, Koh SD, Sanders KM, Smith TK. Extensive projections of myenteric serotonergic neurons suggest they comprise the central processing unit in the colon. Neurogastroenterol Motil 2014; 26:556-70. [PMID: 24460867 DOI: 10.1111/nmo.12302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/12/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND 5-Hydroxytryptamine (5-HT, serotonin) is an important regulator of colonic motility and secretion; yet the role of serotonergic neurons in the colon is controversial. METHODS We used immunohistochemical techniques to examine their projections throughout the enteric nervous system and interstitial cells of Cajal (ICC) networks in the murine proximal to mid colon. KEY RESULTS Serotonergic neurons, which were mainly calbindin positive, occurred only in myenteric ganglia (1 per 3 ganglia). They were larger than nNOS neurons but similar in size to Dogiel Type II (AH) neurons. 5-HT neurons, appeared to make numerous varicose contacts with each other, most nNOS neurons, Dogiel Type II/AH neurons and glial cells. 5-HT, calbindin and nNOS nerve fibers also formed a thin perimuscular nerve plexus that was associated with ganglia, which contained both nNOS positive and negative neurons, which lay directly upon the submucosal pacemaker ICC network. Neurons in perimuscular ganglia were surrounded by 5-HT varicosities. Submucous ganglia contained nNOS positive and negative neurons, and calbindin positive neurons, which also appeared richly supplied by serotonergic nerve varicosities. Serotonergic nerve fibers ran along submucosal arterioles, but not veins. Varicosities of serotonergic nerve fibers were closely associated with pacemaker ICC networks and with intramuscular ICC (ICC-IM). 5-HT2B receptors were found on a subpopulation of non-5-HT containing myenteric neurons and their varicosities, pacemaker ICC-MY and ICC-IM. CONCLUSIONS & INFERENCES Myenteric serotonergic neurons, whose axons exhibit considerable divergence, regulate the entire enteric nervous system and are important in coordinating motility with secretion. They are not just interneurons, as regularly assumed, but possibly also motor neurons to ICC and blood vessels, and some may even be sensory neurons.
Collapse
Affiliation(s)
- T Okamoto
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Takaki M, Goto K, Kawahara I. The 5-hydroxytryptamine 4 Receptor Agonist-induced Actions and Enteric Neurogenesis in the Gut. J Neurogastroenterol Motil 2014; 20:17-30. [PMID: 24466442 PMCID: PMC3895605 DOI: 10.5056/jnm.2014.20.1.17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/15/2013] [Accepted: 10/19/2013] [Indexed: 12/13/2022] Open
Abstract
We explored a novel effect of 5-hydroxytryptamine 4 receptor (5-HT4R) agonists in vivo to reconstruct the enteric neural circuitry that mediates a fundamental distal gut reflex. The neural circuit insult was performed in guinea pigs and rats by rectal transection and anastomosis. A 5-HT4R-agonist, mosapride citrate (MOS) applied orally and locally at the anastomotic site for 2 weeks promoted the regeneration of the impaired neural circuit or the recovery of the distal gut reflex. MOS generated neurofilament-, 5-HT4R- and 5-bromo-2'-deoxyuridine-positive cells and formed neural network in the granulation tissue at the anastomosis. Possible neural stem cell markers increased during the same time period. These novel actions by MOS were inhibited by specific 5-HT4R-antagonist such as GR113808 (GR) or SB-207266. The activation of enteric neural 5-HT4R promotes reconstruction of an enteric neural circuit that involves possibly neural stem cells. We also succeeded in forming dense enteric neural networks by MOS in a gut differentiated from mouse embryonic stem cells. GR abolished the formation of enteric neural networks. MOS up-regulated the expression of mRNA of 5-HT4R, and GR abolished this upregulation, suggesting MOS differentiated enteric neural networks, mediated via activation of 5-HT4R. In the small intestine in H-line: Thy1 promoter green fluorescent protein (GFP) mice, we obtained clear 3-dimensional imaging of enteric neurons that were newly generated by oral application of MOS after gut transection and anastomosis. All findings indicate that treatment with 5-HT4R-agonists could be a novel therapy for generating new enteric neurons to rescue aganglionic disorders in the whole gut.
Collapse
Affiliation(s)
- Miyako Takaki
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| |
Collapse
|
8
|
Keating DJ, Peiris H, Kyloh M, Brookes SJH, Spencer NJ. The presence of 5-HT in myenteric varicosities is not due to uptake of 5-HT released from the mucosa during dissection: use of a novel method for quantifying 5-HT immunoreactivity in myenteric ganglia. Neurogastroenterol Motil 2013; 25:849-53. [PMID: 23901879 DOI: 10.1111/nmo.12189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 06/23/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Quantifying the relative abundance of different neurotransmitters in the myenteric plexus has proved challenging using conventional immunocytochemical approaches. Here, we present a new method of quantifying neurotransmitter content of an important enteric signalling molecule, serotonin (5-HT), in the myenteric plexus of guinea pig colon under different experimental conditions. METHODS Sections of guinea pig distal colon were exposed to different conditions including changes in temperature, dissection protocol, stimulation with faecal pellet distension and exogenous 5-HT. Sections were fixed and immuno-labelled for 5-HT. 5-HT staining density was quantified within myenteric plexus ganglia using defined settings and an analysis approach that uses threshold settings allowing for variances in background and tissue staining intensities and which calculates the area of tissue containing 5-HT above these thresholds. KEY RESULTS No differences were found in 5-HT immunoreactivity in the myenteric plexus when compared between tissues that were freshly fixed, undissected, or with mucosa and submucous plexus dissected away at either 4 or 37 °C. Increased myenteric plexus 5-HT density was observed in preparations repeatedly stimulated using faecal pellet stimulation prior to fixation. Furthermore, exogenous 5-HT also increased 5-HT density. CONCLUSIONS & INFERENCES We demonstrate that quantitative differences in 5-HT immunoreactivity can be characterized using immunohistochemistry. This approach may be applied to measuring other neurotransmitter(s) within the enteric nervous system. While 5-HT is present in the guinea-pig enteric ganglia, this is not due to accumulation via in vitro handling and release from the mucosa, and furthermore, repeated colonic stimulation via distension increases 5-HT in the myenteric plexus.
Collapse
Affiliation(s)
- D J Keating
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
9
|
Gross ER, Gershon MD, Margolis KG, Gertsberg ZV, Cowles RA, Cowles RA. Neuronal serotonin regulates growth of the intestinal mucosa in mice. Gastroenterology 2012; 143:408-17.e2. [PMID: 22609381 PMCID: PMC3687781 DOI: 10.1053/j.gastro.2012.05.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 04/13/2012] [Accepted: 05/01/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS The enteric abundance of serotonin (5-HT), its ability to promote proliferation of neural precursors, and reports that 5-HT antagonists affect crypt epithelial proliferation led us to investigate whether 5-HT affects growth and maintenance of the intestinal mucosa in mice. METHODS cMice that lack the serotonin re-uptake transporter (SERTKO mice) and wild-type mice were given injections of selective serotonin re-uptake inhibitors (gain-of-function models). We also analyzed mice that lack tryptophan hydroxylase-1 (TPH1KO mice, which lack mucosal but not neuronal 5-HT) and mice deficient in tryptophan hydroxylase-2 (TPH2KO mice, which lack neuronal but not mucosal 5-HT) (loss-of-function models). Wild-type and SERTKO mice were given ketanserin (an antagonist of the 5-HT receptor, 5-HT(2A)) or scopolamine (an antagonist of the muscarinic receptor). 5-HT(2A) receptors and choline acetyltransferase were localized by immunocytochemical analysis. RESULTS Growth of the mucosa and proliferation of mucosal cells were significantly greater in SERTKO mice and in mice given selective serotonin re-uptake inhibitors than in wild-type mice, but were diminished in TPH2KO (but not in TPH1KO) mice. Ketanserin and scopolamine each prevented the ability of SERT knockout or inhibition to increase mucosal growth and proliferation. Cholinergic submucosal neurons reacted with antibodies against 5-HT(2A). CONCLUSIONS 5-HT promotes growth and turnover of the intestinal mucosal epithelium. Surprisingly, these processes appear to be mediated by neuronal, rather than mucosal, 5-HT. The 5-HT(2A) receptor activates cholinergic neurons, which provide a muscarinic innervation to epithelial effectors.
Collapse
Affiliation(s)
- Erica R. Gross
- Division of Pediatric Surgery, College of Physicians and Surgeons,
Columbia University and New York-Presbyterian Hospital, New York, New York
| | - Michael D. Gershon
- Department of Pathology and Cell Biology, Columbia University,
New York, New York
| | - Kara G. Margolis
- Department of Pediatric Gastroenterology, College of Physicians
and Surgeons, Columbia University and New York-Presbyterian Hospital, New York, New York
| | - Zoya V. Gertsberg
- Division of Pediatric Surgery, College of Physicians and Surgeons,
Columbia University and New York-Presbyterian Hospital, New York, New York
| | - Robert A. Cowles
- Division of Pediatric Surgery, College of Physicians and Surgeons,
Columbia University and New York-Presbyterian Hospital, New York, New York
| | | |
Collapse
|
10
|
Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J Neurosci 2011; 31:8998-9009. [PMID: 21677183 DOI: 10.1523/jneurosci.6684-10.2011] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The gut contains a large 5-HT pool in enterochromaffin (EC) cells and a smaller 5-HT pool in the enteric nervous system (ENS). During development, enteric neurons are generated asynchronously. We tested hypotheses that serotonergic neurons, which arise early, affect development/survival of later-born dopaminergic, GABAergic, nitrergic, and calcitonin gene-related peptide-expressing neurons and are essential for gastrointestinal motility. 5-HT biosynthesis depends on tryptophan hydroxylase 1 (TPH1) in EC cells and on TPH2 in neurons; therefore, mice lacking TPH1 and/or TPH2 distinguish EC-derived from neuronal 5-HT. Deletion of TPH2, but not TPH1, decreased myenteric neuronal density and proportions of dopaminergic and GABAergic neurons but did not affect the extrinsic sympathetic innervation of the gut; intestinal transit slowed in mice lacking TPH2 mice, but gastric emptying accelerated. Isolated enteric crest-derived cells (ENCDCs) expressed the serotonin reuptake transporter (SERT) and 15 subtypes of 5-HT receptor. Addition of 5-HT to cultures of isolated ENCDCs promoted total and dopaminergic neuronal development. Rings of SERT-immunoreactive terminal axons surrounded myenteric dopaminergic neurons and SERT knock-out increased intestinal levels of dopamine metabolites, implying that enteric dopaminergic neurons receive a serotonergic innervation. Observations suggest that constitutive gastrointestinal motility depends more on neuronal than EC cell serotonin; moreover, serotonergic neurons promote development/survival of some classes of late-born enteric neurons, including dopaminergic neurons, which appear to innervate and activate in the adult ENS.
Collapse
|
11
|
Foong JPP, Parry LJ, Gwynne RM, Bornstein JC. 5-HT(1A), SST(1), and SST(2) receptors mediate inhibitory postsynaptic potentials in the submucous plexus of the guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 2010; 298:G384-94. [PMID: 20007849 PMCID: PMC2838515 DOI: 10.1152/ajpgi.00438.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vasoactive intestinal peptide (VIP) immunoreactive neurons are important secretomotor neurons in the submucous plexus. They are the only submucosal neurons to receive inhibitory inputs and exhibit both noradrenergic and nonadrenergic inhibitory synaptic potentials (IPSPs). The former are mediated by alpha(2)-adrenoceptors, but the receptors mediating the latter have not been identified. We used standard intracellular recording, RT-PCR, and confocal microscopy to test whether 5-HT(1A), SST(1), and/or SST(2) receptors mediate nonadrenergic IPSPs in VIP submucosal neurons in guinea pig ileum in vitro. The specific 5-HT(1A) receptor antagonist WAY 100135 (1 microM) reduced the amplitude of IPSPs, an effect that persisted in the presence of the alpha(2)-adrenoceptor antagonist idazoxan (2 microM), suggesting that 5-HT might mediate a component of the IPSPs. Confocal microscopy revealed that there were many 5-HT-immunoreactive varicosities in close contact with VIP neurons. The specific SSTR(2) antagonist CYN 154806 (100 nM) and a specific SSTR(1) antagonist SRA 880 (3 microM) each reduced the amplitude of nonadrenergic IPSPs and hyperpolarizations evoked by somatostatin. In contrast with the other antagonists, CYN 154806 also reduced the durations of nonadrenergic IPSPs. Effects of WAY 100135 and CYN 154806 were additive. RT-PCR revealed gene transcripts for 5-HT(1A), SST(1), and SST(2) receptors in stripped submucous plexus preparations consistent with the pharmacological data. Although the involvement of other neurotransmitters or receptors cannot be excluded, we conclude that 5-HT(1A), SST(1), and SST(2) receptors mediate nonadrenergic IPSPs in the noncholinergic (VIP) secretomotor neurons. This study thus provides the tools to identify functions of enteric neural pathways that inhibit secretomotor reflexes.
Collapse
Affiliation(s)
| | - Laura J. Parry
- 2Zoology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
12
|
Reed DE, Vanner S. Mucosal stimulation activates secretomotor neurons via long myenteric pathways in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 2007; 292:G608-14. [PMID: 17008553 DOI: 10.1152/ajpgi.00364.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study examined whether mucosal stimulation activates long secretomotor neural reflexes and, if so, how they are organized. The submucosa of in vitro full thickness guinea pig ileal preparations was exposed in the distal portion and intracellular recordings were obtained from electrophysiologically identified secretomotor neurons. Axons in the intact mucosa of the oral segment were stimulated by a large bipolar stimulating electrode. In control preparations, a single stimulus pulse evoked a fast excitatory postsynaptic potential (EPSP) in 86% of neurons located 0.7-1.0 cm anal to the stimulus site. A stimulus train evoked multiple fast EPSPs, but slow EPSPs were not observed. To examine whether mucosal stimulation specifically activated mucosal sensory nerve terminals, the mucosa/submucosa was severed from the underlying layers and repositioned. In these preparations, fast EPSPs could not be elicited in 89% of cells. Superfusion with phorbol dibutyrate enhanced excitability of sensory neurons and pressure-pulse application of serotonin to the mucosa increased the fast EPSPs evoked by mucosal stimulation, providing further evidence that sensory neurons were involved. To determine whether these reflexes projected through the myenteric plexus, this plexus was surgically lesioned between the stimulus site and the impaled neuron. No fast EPSPs were recorded in these preparations following mucosal stimulation whereas lesioning the submucosal plexus had no effect. These results demonstrate that mucosal stimulation triggers a long myenteric pathway that activates submucosal secretomotor neurons. This pathway projects in parallel with motor and vasodilator reflexes, and this common pathway may enable coordination of intestinal secretion, blood flow, and motility.
Collapse
Affiliation(s)
- David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
13
|
Tonini M, Vicini R, Cervio E, De Ponti F, De Giorgio R, Barbara G, Stanghellini V, Dellabianca A, Sternini C. 5-HT7 receptors modulate peristalsis and accommodation in the guinea pig ileum. Gastroenterology 2005; 129:1557-66. [PMID: 16285955 DOI: 10.1053/j.gastro.2005.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 07/27/2005] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The 5-hydroxytryptamine 7 (5-HT7) receptors mediate intestinal smooth muscle relaxation. In this study, we evaluated the expression of 5-HT7 receptors in the guinea pig ileum and their role in peristalsis and accommodation of the circular muscle. METHODS We used immunohistochemistry and confocal microscopy with whole tissue and cultured myenteric neurons. Peristalsis was induced by delivering a solution into the oral end of an isolated ileal segment. The effect of the selective 5-HT7 receptor antagonist SB-269970 (100 nmol/L) on peristaltic activity was evaluated at 30, 60, and 90 minutes and compared with control. RESULTS 5-HT7 receptor immunoreactivity was localized to numerous myenteric neurons, a few submucosal neurons, and a few smooth muscle cells of the ileum. In enteric cultured neurons, 5-HT7 receptor immunoreactivity was observed in subpopulations of after hyperpolarizing neurons and descending neurons as identified by neuron-specific nuclear protein or calbindin and neuronal nitric oxide synthase or vasoactive intestinal peptide antibodies, respectively. SB-269970 significantly increased the threshold pressure by 33.3% +/- 2.2% (P < .001) and by 27.2% +/- 1.6% (P < .05) at 60 and 90 minutes, respectively, without modifying the threshold volume. The accommodation significantly decreased by 27.5% both at 60 and 90 minutes (P < .05). CONCLUSIONS Our results indicate that endogenous 5-HT is involved in the modulation of circular muscle accommodation during the preparatory phase of peristalsis via the activation of 5-HT7 receptors expressed by neurons in addition to smooth muscle cells. Overstimulation of these receptors leading to an exaggerated accommodation of circular muscle might contribute to abdominal symptoms in functional bowel disorders.
Collapse
Affiliation(s)
- Marcello Tonini
- Department of Physiological and Pharmacological Sciences, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bian XC, Heffer LF, Gwynne RM, Bornstein JC, Bertrand PP. Synaptic transmission in simple motility reflex pathways excited by distension in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2004; 287:G1017-27. [PMID: 15256359 DOI: 10.1152/ajpgi.00039.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined specific receptor/transmitter combinations used at functionally identified synapses in ascending and descending reflex pathways of guinea pig distal colon. Excitatory (EJPs) or inhibitory junction potentials (IJPs) were recorded intracellularly from nicardipine-paralyzed circular smooth muscle in either the oral or anal recording chamber of a three-chambered organ bath, respectively. Blockade of synaptic transmission in the central chamber with a 0.25 mM Ca2+/12 mM Mg2+ solution abolished EJPs evoked by distension applied either in the central or the far (anal) chamber. IJPs evoked by distension in the central or the far (oral) chamber were depressed to approximately 50% of control. Hexamethonium (nicotinic receptor antagonist, 200 microM) in the central chamber reduced IJPs evoked by far or central distension to 50%, whereas EJPs evoked by far distension were abolished and EJPs evoked by central distension were reduced to 70% of control. Hexamethonium in the recording chambers reduced both IJPs and EJPs evoked by central distension to approximately 50%. EJPs in the ascending pathway were unaffected by blockade of muscarinic receptors in the central chamber or blockade of neurokinin 3 tachykinin receptors in this or the recording chamber. In the descending pathway, blockade of P2 receptors in the same chambers had only a minor effect on distension-evoked IJPs. Thus some intrinsic sensory neurons of guinea pig colon have long descending projections (>30 mm), but ascending projections of <15 mm. In contrast to the ileum, transmission between ascending or descending interneurons and from sensory neurons to descending interneurons is predominantly via nicotinic receptors; but transmission to inhibitory or excitatory motoneurons and from sensory neurons to ascending interneurons involves nicotinic and other unidentified receptors.
Collapse
Affiliation(s)
- X-C Bian
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
15
|
Meedeniya ACB, Schloithe AC, Toouli J, Saccone GTP. Characterization of the intrinsic and extrinsic innervation of the gall bladder epithelium in the Australian Brush-tailed possum (Trichosurus vulpecula). Neurogastroenterol Motil 2003; 15:383-92. [PMID: 12846726 DOI: 10.1046/j.1365-2982.2003.00417.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsic neurones of the gall bladder modulate its function. Nitric oxide synthase (NOS) and vasoactive intestinal polypeptide (VIP) are present in gall bladder neurones and nitric oxide and VIP modulate its epithelial functions. As an extensive extrinsic innervation of the gall bladder is also present, the source of the epithelial innervation is unclear. In this study the source of the gall bladder epithelial innervation is defined. Immunoreactivity for VIP, NOS, substance P (SP), calcitonin gene related peptide (CGRP) and tyrosine hydroxylase (TH) in organotypic cultured and freshly fixed gall bladder were compared. Retrograde tracing in vitro from the epithelium was used to identify putative intrinsic secretomotor neurones, which were then characterized by immunohistochemistry. Abundant spinal afferent and sympathetic innervation of the gall bladder epithelium was demonstrated by CGRP/SP and TH immunohistochemistry, respectively. The intrinsic secretomotor innervation of the epithelium is derived exclusively from neurones of the subepithelial plexus. A majority of these neurones were immunoreactive for NOS. Some of the NOS-immunoreactive neurones of the subepithelial plexus also contained VIP and/or SP. Gall bladder subepithelial plexus neurones, containing NOS and/or VIP/SP, innervate the epithelium, as do extrinsic neurones.
Collapse
Affiliation(s)
- A C B Meedeniya
- Department of General and Digestive Surgery, Centre for Neuroscience, Flinders University, Flinders Medical Centre, Australia
| | | | | | | |
Collapse
|
16
|
Anlauf M, Schäfer MKH, Eiden L, Weihe E. Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 2003; 459:90-111. [PMID: 12629668 DOI: 10.1002/cne.10599] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this investigation was to identify the proportional neurochemical codes of enteric neurons and to determine the specific terminal fields of chemically defined nerve fibers in all parts of the human gastrointestinal (GI) tract. For this purpose, antibodies against the vesicular monoamine transporters (VMAT1/2), the vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), serotonin (5-HT), vasoactive intestinal peptide (VIP), and protein gene product 9.5 (PGP 9.5) were used. For in situ hybridization (35)S-labeled VMAT1, VMAT2, and VAChT riboprobes were used. In all regions of the human GI tract, 50-70% of the neurons were cholinergic, as judged by staining for VAChT. The human gut unlike the rodent gut exhibits a cholinergic innervation, which is characterized by an extensive overlap with VIPergic innervation. Neurons containing VMAT2 constituted 14-20% of all intrinsic neurons in the upper GI tract, and there was an equal number of TH-positive neurons. In contrast, DBH was absent from intrinsic neurons. Cholinergic and monoaminergic phenotypes proved to be completely distinct phenotypes. In conclusion, the chemical coding of human enteric neurons reveals some similarities with that of other mammalian species, but also significant differences. VIP is a cholinergic cotransmitter in the intrinsic innervation of the human gut. The substantial overlap between VMAT2 and TH in enteric neurons indicates that the intrinsic catecholaminergic innervation is a stable component of the human GI tract throughout life. The absence of DBH from intrinsic catecholaminergic neurons indicates that these neurons have a dopaminergic phenotype.
Collapse
Affiliation(s)
- Martin Anlauf
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University, Marburg, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
17
|
Dénes V, Lázár Z, Barthó L, Gábriel R. Serotonin in the rabbit ileum: localization, uptake, and effect on motility. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 271:368-76. [PMID: 12629679 DOI: 10.1002/ar.a.10042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Repeated experiments to localise serotonin in the myenteric plexus of rabbit ileum failed. After preincubation in serotonin (10(-5) M), an extensive varicose fibre system was detected by immunocytochemical methods. Stained fibres left the myenteric plexus and ran to the muscle layers. Labelled cell bodies could not be found, even after pretreatment with colchicine or pargyline. Application of reserpine (10(-5) M) and fluoxetine (10(-5) M) prevented serotonin uptake. Antisera against tryptophan hydroxylase revealed a rich fibre system, including those processes that entered the tertiary plexus. These fibres were able to accumulate serotonin, but again the cell bodies could not be detected. Serotonin caused concentration-dependent contraction in the longitudinal muscle layer of the rabbit ileum. Pretreatment with tetrodotoxin strongly reduced the effect of serotonin. Preapplication of atropine caused a slight decrease of response evoked by serotonin. Combined administration of tetrodotoxin and atropine significantly reduced the responses to serotonin, but did not abolish them. At the same time, agonists of 5-HT(2) and 5-HT(4) receptors caused concentration-dependent contractions. Our studies show that: 1). Without pretreatment, serotonin cannot be detected in the myenteric plexus of rabbit ileum. 2). An extensive uptake system works in this plexus. If released from myenteric nerve fibres, serotonin may evoke contractions in indirect and direct ways. 3). There may be an extrinsic serotoninergic innervation from the mesenteric ganglia. 4). Serotonin exerts its effect through 5-HT(2) and 5-HT(4) receptors on smooth muscle cells and nerve elements.
Collapse
Affiliation(s)
- Viktória Dénes
- Department of General Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | | | | | | |
Collapse
|
18
|
Abstract
There are many cell surface receptors expressed by neurones in the enteric nervous system (ENS). These receptors respond to synaptically released neurotransmitters, circulating hormones and locally released substances. Cell surface receptors are also targets for many therapeutically used drugs. This review will focus on ligand-gated ion channels, i.e. receptors in which the ligand binding site and the ion channel are parts of a single multimeric receptor. Ligand-gated ion channels expressed by enteric nerves are: nicotinic acetylcholine receptors (nAChRs), P2X receptors, 5-hydroxytryptamine3 (5-HT3) receptors, gamma-aminobutyric acid (GABAA) receptors, N-methyl-d-aspartate (NMDA) receptors,alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and glycine receptors. P2X, 5-HT3 and nAChRs participate in fast synaptic transmission in S-type neurones in the ENS. Fast synaptic transmission occurs in some AH-type neurones, and AH neurones express all the ligand-gated ion channels listed above. Ligand-gated ion channels may be localized at extra-synaptic sites in some AH neurones and these extra-synaptic receptors may be useful targets for drugs that can be used to treat disorders of gastrointestinal function.
Collapse
Affiliation(s)
- J J Galligan
- Department of Pharmacology and Toxicology and the Neuroscience Program, Michigan State University, East Lansing 48824, USA.
| |
Collapse
|
19
|
Hu HZ, Gao N, Lin Z, Gao C, Liu S, Ren J, Xia Y, Wood JD. Chemical coding and electrophysiology of enteric neurons expressing neurofilament 145 in guinea pig gastrointestinal tract. J Comp Neurol 2001. [DOI: 10.1002/cne.1424] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Al-Jiffry BO, Meedeniya AC, Chen JW, Toouli J, Saccone GT. Endothelin-1 induces contraction of human and Australian possum gallbladder in vitro. REGULATORY PEPTIDES 2001; 102:31-9. [PMID: 11600208 DOI: 10.1016/s0167-0115(01)00302-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Endothelin-1 (ET-1) stimulates guinea pig gallbladder (GB) muscle strip contractility; however, the role and source of ET-1 in the GB remains to be elucidated. AIMS To determine the effect of ET-1 on human and possum GB muscle strip contractility and evaluate whether ET-1 is present in GB tissue. METHODS GB muscle strips were mounted in organ baths to measure isometric tension. ET-1 was added cumulatively with and without pretreatment with the neural blocker tetrodotoxin (TTX) or the ET receptor antagonists BQ-123, BQ-788, and tezosentan. Immunohistochemical localization of ET was performed on freshly fixed and cultured GBs. RESULTS ET-1 induced concentration-dependent increases in tone in human and possum GB strips (p<0.05). This response was unaffected by BQ-123, BQ-788, and TTX but antagonized by BQ-123+BQ-788 in the human tissue only. Tezosentan (10(-4) mol/l) blocked the ET-1-induced response in human and possum GB strips (p<0.001). Although ET immunoreactivity was absent in freshly fixed possum GB, immunoreactivity was observed in the GB epithelium of freshly fixed human tissue and in both possum and human tissue following 24 h of organ culture. CONCLUSION ET-1 acts directly on human and possum GB smooth muscle producing contractions, possibly via ET-B receptors. ET may be present under pathophysiological conditions altering GB function.
Collapse
Affiliation(s)
- B O Al-Jiffry
- Department of General and Digestive Surgery, Centre for Digestive Science and Centre for Neuroscience, Flinders University of South Australia, PO Box 2100, SA 5001, Adelaide, Australia.
| | | | | | | | | |
Collapse
|
21
|
Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: Abnormal intestinal motility and the expression of cation transporters. J Neurosci 2001. [PMID: 11487658 DOI: 10.1523/jneurosci.21-16-06348.2001] [Citation(s) in RCA: 283] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The enteric serotonin reuptake transporter (SERT) has been proposed to play a critical role in serotonergic neurotransmission and in the initiation of peristaltic and secretory reflexes. We analyzed potential compensatory mechanisms and enteric function in the bowels of mice with a targeted deletion of SERT. The guts of these animals were found to lack mRNA encoding SERT; moreover, high-affinity uptake of 5-HT into epithelial cells, mast cells, and enteric neurons was present in the SERT +/+ bowel but absent in the SERT -/- bowel. However, both the SERT +/+ gut and the -/- gut expressed molecules capable of transporting 5-HT, but with affinities and selectivity much lower than those of SERT. These included the dopamine transporter (DAT) and polyspecific organic cation transporters OCT-1 and OCT-3. DAT and OCT immunoreactivities were present in both the submucosal and myenteric plexuses, and the OCTs were also located in the mucosal epithelium. 5-HT was found in all of its normal sites in the SERT -/- bowel, which contained mRNA encoding tryptophan hydroxylase, but no 5-HT was present in the blood of SERT -/- animals. Stool water and colon motility were increased in most SERT -/- animals; however, the increase in motility (diarrhea) occasionally alternated irregularly with decreased motility (constipation). The watery diarrhea is probably attributable to the potentiation of serotonergic signaling in SERT -/- mice, whereas the transient constipation may be caused by episodes of enhanced 5-HT release leading to 5-HT receptor desensitization.
Collapse
|
22
|
Abstract
Neuroanatomical tracing techniques, and retrograde labelling in particular, are widely used tools for the analysis of neuronal pathways in the central and peripheral nervous system. Over the last 10 years, these techniques have been used extensively to identify enteric neuronal pathways. In combination with multiple-labelling immunohistochemistry, quantitative data about the projections and neurochemical profile of many functional classes of cells have been acquired. These data have revealed a high degree of organization of the neuronal plexuses, even though the different classes of nerve cell bodies appear to be randomly assorted in ganglia. Each class of neurone has a predictable target, length and polarity of axonal projection, a particular combination of neurochemicals in its cell body and distinctive morphological characteristics. The combination of retrograde labelling with targeted intracellular recording has made it possible to target small populations of cells that would rarely be sampled during random impalements. These neuroanatomical techniques have also been applied successfully to human tissue and are gradually unravelling the complexity of the human enteric nervous system.
Collapse
Affiliation(s)
- S Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, South Australia.
| |
Collapse
|
23
|
Abstract
The guinea-pig small intestine has been very widely used to study the physiology, pharmacology and morphology of the enteric nervous system. It also provides an ideal, simple mammalian preparation for studying how nerve cells are organised into functional circuits underlying simple behaviours. Many different types of nerve cells are present in the enteric nervous system and they show characteristic combinations of morphological features, projections, biophysical properties, neurochemicals, and receptors. To identify the different functional classes is an important prerequisite for systematic analysis of how the enteric nervous system controls normal gut behaviour. Based on combinations of multiple-labelling immunohistochemistry and retrograde tracing, it has been possible to account quantitatively for all of the neurones in the guinea-pig small intestine. This article summarises that account and updates it in the light of recent data. A total of 18 classes of neurones are currently distinguishable, including primary afferent neurones, motor neurones, interneurones, secretomotor and vasomotor neurones. It is now possible to take an individual nerve cell and use a few carefully chosen criteria to assign it to a functional class. This provides a firm anatomical foundation for the systematic analysis of how the enteric nervous system normally functions and how it goes wrong in various clinically important disorders.
Collapse
Affiliation(s)
- S J Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia 5001.
| |
Collapse
|
24
|
Abstract
This study examined whether myenteric neurons activate submucosal vasodilator pathways in in vitro combined submucosal-myenteric plexus preparations from guinea pig ileum. Exposed myenteric ganglia were electrically stimulated, and changes in the outside diameter of submucosal arterioles were monitored in adjoining tissue by videomicroscopy. Stimulation up to 18 mm from the recording site evoked large TTX-sensitive vasodilations in both orad and aborad directions. In double-chamber baths, which isolated the stimulating myenteric chamber from the recording submucosal chamber, hexamethonium or the muscarinic antagonist 4-diphenylacetoxy-N-(2-chloroethyl)-piperdine hydrochloride (4-DAMP) almost completely blocked dilations when superfused in the submucosal chamber. When hexamethonium was placed in the myenteric chamber approximately 50% of responses were hexamethonium sensitive in both orad and aboard orientations. The addition of 4-DAMP or substitution of Ca(2+)-free, 12 mM Mg(2+) solution did not cause further inhibition. These results demonstrate that polysynaptic pathways in the myenteric plexus projecting orad and aborad can activate submucosal vasodilator neurons. These pathways could coordinate intestinal blood flow and motility.
Collapse
Affiliation(s)
- S Vanner
- Gastrointestinal Diseases Research Unit, Departments of Biology, Medicine, and Physiology, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
25
|
Hens J, Schr�dl F, Brehmer A, Adriaensen D, Neuhuber W, Scheuermann DW, Schemann M, Timmermans JP. Mucosal projections of enteric neurons in the porcine small intestine. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000605)421:3<429::aid-cne10>3.0.co;2-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Lomax RB, Gallego S, Novalbos J, García AG, Warhurst G. L-Type calcium channels in enterochromaffin cells from guinea pig and human duodenal crypts: an in situ study. Gastroenterology 1999; 117:1363-9. [PMID: 10579977 DOI: 10.1016/s0016-5085(99)70286-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS This study has investigated stimulus-secretion coupling of enterochromaffin cells by studying the cellular location and function of voltage-gated Ca(2+) channels within small intestinal crypts. METHODS Digital fluorescence imaging and electrochemical detection were used to measure intracellular Ca(2+) responses and serotonin (5-hydroxytryptamine [5-HT]) secretion in intact crypts isolated from guinea pig and human duodenum. RESULTS In fluo-3-loaded crypts, electrical depolarization with high K(+) solution increased cytosolic free [Ca(2+)] only in single cells subsequently identified by immunocytochemistry as enterochromaffin cells. In guinea pig enterochromaffin cells, the L-type Ca(2+) channel agonist FPL 64176 (3 micromol/L) did not change resting intracellular [Ca(2+)] but potentiated the depolarization-evoked increase in [Ca(2+)] (298 +/- 72 nmol/L) by 19 +/- 3-fold. In the majority of human enterochromaffin cells, FPL 64176 alone increased resting [Ca(2+)] by 423 +/- 171 nmol/L. Secretion studies in guinea pig crypts showed that high K(+) and FPL 64176 caused a 12-fold increase in 5-HT release. Noradrenaline caused increases in both enterochromaffin cell [Ca(2+)] and 5-HT release. CONCLUSIONS Using this approach, we have found that in duodenal crypts, enterochromaffin cells, but not other epithelial cells, contain L-type voltage-gated Ca(2+) channels involved in regulating 5-HT secretion. These data have implications for the pharmacological control of intestinal disorders involving enterochromaffin cell dysfunction.
Collapse
Affiliation(s)
- R B Lomax
- Section of Gastrointestinal Science, Clinical Division I, University of Manchester, Salford, England
| | | | | | | | | |
Collapse
|
27
|
Thomas EA, Bertrand PP, Bornstein JC. Genesis and role of coordinated firing in a feedforward network: a model study of the enteric nervous system. Neuroscience 1999; 93:1525-37. [PMID: 10501477 DOI: 10.1016/s0306-4522(99)00243-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enteric nervous system can generate complex motor patterns independently of the central nervous system. The ascending enteric reflex pathway consists of sensory neurons, long chains of a single class of orally directed interneuron and excitatory motor neurons. Because of the importance of this pathway in peristalsis, it was modelled from the firing of sensory neurons through to muscle membrane activation. The model was anatomically realistic in the number of neurons simulated and in the patterns of connections between neurons. The model was also realistic in the simulation of ligand-gated currents in neuron and muscle membrane, current flow in the muscle syncytium and voltage-dependent currents in muscle. Sensory neurons were activated in a manner consistent with a brief mechanical stimulus. Transmission between sensory neurons and first-order interneurons was by slow excitatory transmission, which caused interneurons to fire continuously for several hundred milliseconds. Interneurons then transmitted to higher order interneurons by fast excitatory postsynaptic potentials, each lasting for around 40 ms. As the activity propagated along the pathway, random firing became progressively more synchronized between neurons, until the network as a whole was firing in a coordinated manner. The coordinated firing was a robust phenomenon over a wide range of network and neuron parameters. It is therefore possible that this is a general property of feedforward networks that receive high levels of sustained input. The smooth muscle model indicated that bursting input to the muscle may increase the likelihood of muscle cells firing action potentials when compared with uniform input. In addition, the syncytium model explains how the predicted muscle excitation might be related to current experimental observations.
Collapse
Affiliation(s)
- E A Thomas
- Department of Physiology, University of Melbourne, Parkville, Australia.
| | | | | |
Collapse
|
28
|
Kadowaki M, Kuramoto H, Kuwahara A. Morphological relationship between serotonergic neurons and nitrergic neurons for electrolytes secretion in the submucous plexus of the guinea pig distal colon. Brain Res 1999; 831:288-91. [PMID: 10412008 DOI: 10.1016/s0006-8993(99)01428-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the submucous plexus, double immunocytochemistry revealed that nitric oxide synthase (NOS)-immunoreactivity was found in both numerous nerve fibers and some nerve cell bodies, while 5-hydroxytryptamine (5-HT)-immunoreactivity was limited to many nerve fibers, but not any nerve cell bodies. About 30% of the total NOS positive neurons (978) had close or some contact with 5-HT positive nerve fiber, suggesting that NO may participate in the 5-HT-evoked chloride secretion.
Collapse
Affiliation(s)
- M Kadowaki
- Gastrointestinal Research Group, Pharmacological Research Laboratories, Fujisawa Pharmaceutical, Osaka 532-0031, Japan.
| | | | | |
Collapse
|
29
|
Song ZM, Costa M, Brookes SJ. Projections of submucous neurons to the myenteric plexus in the guinea pig small intestine. J Comp Neurol 1998; 399:255-68. [PMID: 9721907 DOI: 10.1002/(sici)1096-9861(19980921)399:2<255::aid-cne8>3.0.co;2-#] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The distribution of submucous neurons that project to the myenteric plexus of the guinea pig small intestine was established by retrograde transport of the carbocyanine dye 1,1'-didodecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (DiI) from myenteric ganglia in organ culture in combination with immunohistochemistry. Following the application of DiI to the serosal surface of a single myenteric ganglion, from 2 to 15 DiI-labelled nerve cell bodies were labelled in the submucous plexus up to 7.9 mm circumferentially, 4.5 mm orally, and 3.4 mm aborally to the DiI application site. No cells were labelled in preparations in which connections between myenteric and submucous plexuses had been severed prior to DiI application. Cells that were immunoreactive for vasoactive intestinal polypeptide (VIP) or for substance P (SP) accounted for about 75% and 11% of DiI-labelled cells, respectively. Neither neuropeptide Y- nor calretinin-immunoreactive submucous neurons were labelled by DiI, indicating that these classes of neurons do not project to the myenteric plexus. Retrograde tracing from the myenteric plexus with Neurobiotin revealed that labelled VIP-immunoreactive neurons had several short, filamentous processes and a single long axon that could be followed through the circular muscle to myenteric ganglia without branches to the mucosa. The previously described projection of submucous, SP-immunoreactive putative sensory neurons to the myenteric plexus was confirmed. However, this study has identified a considerably larger population of presumed interneurons that are immunoreactive for VIP that likely transmit information from the submucous plexus to the myenteric plexus and presumably coordinate activity between the two ganglionated plexuses.
Collapse
Affiliation(s)
- Z M Song
- Department of Human Physiology and Center for Neuroscience, The Flinders University of South Australia, Adelaide, Australia
| | | | | |
Collapse
|