1
|
Wang X, Chen L, Zhang H, Liu P, Shang X, Wang F, Zhang Z, Zhao J, Sun M, Chen J, Zhang J. Insect herbivory on woody broadleaf seedlings along a subtropical elevational gradient supports the resource concentration hypothesis. AMERICAN JOURNAL OF BOTANY 2024; 111:e16355. [PMID: 38831659 DOI: 10.1002/ajb2.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 06/05/2024]
Abstract
PREMISE Theories of plant-herbivore interactions hold that seedlings are more vulnerable to herbivory in warmer and more stable climates at lower elevations. Hypotheses of plant apparency, resource concentration, and resource availability have been proposed to explain variability in leaf herbivory. However, seasonal differences in the effects of these hypotheses on leaf herbivory on seedlings remain unclear. METHODS We evaluated the three herbivory hypotheses by comparing the percentage and frequency of leaf herbivory in understory broadleaf seedlings in a subtropical forest in May (spring) and October (autumn) along an elevational gradient (290-1370 m a.s.l.). In total, we measured 2890 leaves across 696 seedlings belonging to 95 species and used beta regressions to test the effects of plant apparency (e.g., leaf area, seedling height), resource concentration (e.g., plant species diversity), and resource availability (e.g., canopy openness, soil available N and P) on leaf herbivory. RESULTS Seedlings exhibited unimodal patterns of leaf herbivory along elevation, with drivers of leaf herbivory varying by the month. Variation in the frequency of leaf herbivory was best explained by the resource concentration hypothesis (e.g., plant species diversity) in both months, and herbivory was lower on seedlings in sites with higher plant diversity. Plant apparency hypothesis (e.g., leaf area, seedling height) was weakly supported only in spring, and the evidence for resource availability hypothesis (e.g., canopy openness, soil nutrients) was mixed. CONCLUSIONS This study supports the resource concentration hypothesis and reveals the importance of seasonal difference on understanding leaf herbivory patterns and the drivers of plant diversity in subtropical forests.
Collapse
Affiliation(s)
- Xiaoran Wang
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Lin Chen
- Administration of Guanshan National Nature Reserve, Yichun, 336300, China
| | - Hongwei Zhang
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Pengcheng Liu
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaofan Shang
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Fang Wang
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhaochen Zhang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, China
| | - Jingchao Zhao
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Mufan Sun
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Junhong Chen
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jian Zhang
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
2
|
Martini F, Chen YF, Mammides C, Goodale E, Goodale UM. Exploring potential relationships between acoustic indices and ecosystem functions: a test on insect herbivory. Oecologia 2024; 204:875-883. [PMID: 38581444 PMCID: PMC11062954 DOI: 10.1007/s00442-024-05536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/01/2024] [Indexed: 04/08/2024]
Abstract
Biodiversity loss is a global concern. Current technological advances allow the development of novel tools that can monitor biodiversity remotely with minimal disturbance. One example is passive acoustic monitoring (PAM), which involves recording the soundscape of an area using autonomous recording units, and processing these data using acoustic indices, for example, to estimate the diversity of various vocal animal groups. We explored the hypothesis that data obtained through PAM could also be used to study ecosystem functions. Specifically, we investigated the potential relationship between seven commonly used acoustic indices and insect leaf herbivory, measured as total leaf damage and as the damage from three major insect feeding guilds. Herbivory was quantified on seedlings in 13 plots in four subtropical forests in south China, and acoustic data, representing insect acoustic complexity, were obtained by recording the evening soundscapes in those same locations. Herbivory levels correlated positively with the acoustic entropy index, commonly reported as one of the best-performing indices, whose high values indicate higher acoustic complexity, likely due to greater insect diversity. Relationships for specific feeding guilds were moderately stronger for chewers, indicating that the acoustic indices capture some insect groups more than others (e.g., chewers include soniferous taxa such as crickets, whereas miners are mostly silent). Our findings suggest that the use of PAM to monitor ecosystem functions deserves to be explored further, as this is a research field with unexplored potential. Well-designed targeted studies could help us better understand how to best use novel technologies to monitor ecosystem functions.
Collapse
Affiliation(s)
- Francesco Martini
- Botany Department, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| | - You-Fang Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Christos Mammides
- Nature Conservation Unit, Frederick University, 7, Yianni Frederickou Street, Pallouriotissa, 1036, Nicosia, Cyprus
| | - Eben Goodale
- Department of Health and Environmental Science, Xi'an Jiaotong Liverpool University, Suzhou, China
| | - Uromi Manage Goodale
- Department of Health and Environmental Science, Xi'an Jiaotong Liverpool University, Suzhou, China
| |
Collapse
|
3
|
Keefover‐Ring K. The chemical biogeography of a widespread aromatic plant species shows both spatial and temporal variation. Ecol Evol 2022; 12:ECE39265. [PMID: 36177119 PMCID: PMC9461344 DOI: 10.1002/ece3.9265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/11/2022] Open
Abstract
Plants produce a wide variety of secondary metabolites, but intraspecific variation in space and time can alter the ecological interactions these compounds mediate. The aim of this work was to document the spatial and temporal chemical biogeography of Monarda fistulosa. I collected leaves from 1587 M. fistulosa individuals from 86 populations from Colorado to Manitoba, extracted and analyzed their terpenes with gas chromatography, mapped monoterpene chemotypes, and analyzed chemical variation with principal component analysis. I also measured the amounts of terpenes in different plant tissues to examine intraplant variation and monitored leaf terpene chemistry over a single growing season to examine temporal patterns. Finally, I extracted terpenes from herbarium samples up to 125 years old and compared the chemotypes with recent samples from the same sites. M. fistulosa populations consisted mostly of thymol (T) and carvacrol (C) chemotypes, but geraniol (G) and (R)-(-)-linalool (L), a chemotype new to this species, were also present. A principal component analysis showed that most of the chemical variation across populations was due to the amounts of the dominant terpene in plants. Intraplant tissue chemistry revealed that leaves mostly had the greatest amounts of terpenes, followed by floral structures, stems, and roots. Short-term temporal variation in leaf chemistry of T and C plants over a growing season showed that plants produced the highest levels of biosynthetic precursors early in the season and their dominant monoterpenes peaked in mid-summer. Plant chemotype was discernable in the oldest herbarium samples, and 15 of 18 historic samples matched the majority chemotype currently at the site, indicating that population chemotype ratios may remain stable over longer time scales. Overall, the results show that plant species' secondary chemistry can vary both spatially and temporally, which may alter the biological interactions that these compounds mediate over space and time.
Collapse
Affiliation(s)
- Ken Keefover‐Ring
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of GeographyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
4
|
Crowther MS, Rus AI, Mella VSA, Krockenberger MB, Lindsay J, Moore BD, McArthur C. Patch quality and habitat fragmentation shape the foraging patterns of a specialist folivore. Behav Ecol 2022; 33:1007-1017. [PMID: 36382228 PMCID: PMC9639584 DOI: 10.1093/beheco/arac068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 09/08/2024] Open
Abstract
Research on use of foraging patches has focused on why herbivores visit or quit patches, yet little is known about visits to patches over time. Food quality, as reflected by higher nutritional quality and lower plant defenses, and physical patch characteristics, which offer protection from predators and weather, affect patch use and hence should influence their revisitation. Due to the potentially high costs of moving between patches, fragmented habitats are predicted to complicate foraging decisions of many animals. We aimed to determine how food quality, shelter availability and habitat fragmentation influence tree reuse by a specialist folivore, the koala, in a fragmented agricultural landscape. We GPS-tracked 23 koalas in northern New South Wales, Australia and collated number of revisits, average residence time, and average time-to-return to each tree. We measured tree characteristics including food quality (foliar nitrogen and toxic formylated phloroglucinol compounds, FPCs concentrations), tree size, and tree connectedness. We also modeled the costs of locomotion between trees. Koalas re-visited isolated trees with high leaf nitrogen disproportionately often. They spent longer time in trees with high leaf nitrogen, and in large trees used for shelter. They took longer to return to trees with low leaf nitrogen. Tree connectivity reduced travel costs between patches, being either individual or groups of trees. FPC levels had no detectable effect on patch revisitation. We conclude that food quality and shelter drive koala tree re-visits. Scattered, isolated trees with nutrient-rich leaves are valuable resource patches for koalas despite movement costs to reach them.
Collapse
Affiliation(s)
- Mathew S Crowther
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Adrian I Rus
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Valentina S A Mella
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mark B Krockenberger
- Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales 2006, Australia
- The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, New South Wales 2145, Australia
- Marie Bashir Institute for Emerging Infectious diseases and Biosecurity, University of Sydney, 176 Hawkesbury Road, Westmead, New South Wales 2145, Australia
| | - Jasmine Lindsay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ben D Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales 2753, Australia
| | - Clare McArthur
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
5
|
Martini F, Aluthwattha ST, Mammides C, Armani M, Goodale UM. Plant apparency drives leaf herbivory in seedling communities across four subtropical forests. Oecologia 2020; 195:575-587. [PMID: 33251556 DOI: 10.1007/s00442-020-04804-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022]
Abstract
Insect herbivory in natural forests is of critical importance in forest regeneration and dynamics. Some hypotheses that have been proposed to explain variation in leaf consumption by herbivores focus on biotic interactions, while others emphasize the role of the abiotic environment. Here, we evaluated the relative importance of both biotic and abiotic factors in explaining leaf damage on seedlings. We measured the percentage of leaf damage in the understory seedling community of four subtropical forests, covering an elevation gradient from 400 to 1850 m asl. We used fine-scale abiotic (elevation, canopy openness, topography, soil fertility) and biotic (seedling height and number of leaves, neighborhood composition) variables to determine both direct and indirect relationships using linear mixed models and structural equation modeling. We also explored the consistency of our results across the four forests. Taller seedlings experienced higher herbivore damage. Herbivory increased at higher elevations and in areas with higher light availability in one forest, but not in the other three. We found no evidence supporting the effects of biotic interactions on herbivory. Our results, at all levels of analysis, are consistent with the plant apparency theory, which posits that more apparent plants suffer greater attack. We did not find support for hypotheses stressing the role of neighborhood composition on herbivory. Similarly, the abiotic environment does not seem to influence herbivory significantly. We argue that plant apparency, rather than other biotic and abiotic factors, may be the most important predictor of leaf damage in the seedling communities of subtropical forests.
Collapse
Affiliation(s)
- Francesco Martini
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, 530004, Guangxi, People's Republic of China. .,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, 530004, Guangxi, People's Republic of China.
| | - S Tharanga Aluthwattha
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, 530004, Guangxi, People's Republic of China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, 530004, Guangxi, People's Republic of China
| | - Christos Mammides
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, 530004, Guangxi, People's Republic of China
| | - Mohammed Armani
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, Ghana
| | - Uromi Manage Goodale
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, 530004, Guangxi, People's Republic of China. .,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, 530004, Guangxi, People's Republic of China.
| |
Collapse
|
6
|
Mella VSA, Possell M, Troxell-Smith SM, McArthur C. Visit, consume and quit: Patch quality affects the three stages of foraging. J Anim Ecol 2018; 87:1615-1626. [PMID: 29995984 DOI: 10.1111/1365-2656.12882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 02/01/2023]
Abstract
Foraging is a three-stage process during which animals visit patches, consume food and quit. Foraging theory exploring relative patch quality has mostly focused on patch use and quitting decisions, ignoring the first crucial step for any forager: finding food. Yet, the decision to visit a patch is just as important as the decision to quit, as quitting theories can only be used if animals visit patches in the first place. Therefore, to better understand the foraging process and predict its outcomes, it is necessary to explore its three stages together. We used the common brushtail possum (Trichosurus vulpecula) as a model to investigate foraging decisions in response to food varying in quality. In particular, we tested whether patch nutritional quality affected the following: (1) patch visits; (2) behaviours at the patch during a foraging visit; and (3) patch quitting decisions (quantified using giving up density-GUD). Free-ranging possums were presented with diets varying in nitrogen content and concomitantly volatile organic compound (VOC) composition at feeding stations in the wild. We found that possums were able to distinguish between different quality foods from afar, despite the location of the diets changed daily. Possums used VOC (i.e. odour cues) emitted by the diets to find and select patches from a distance. High-quality diets with higher protein and lower fibre were visited more often and for longer. Possums spent more time foraging on diets high in nutritional content, resulting in lower GUDs. Our study provides important quantitative evidence that foraging efficiency plays out during all the three stages of the foraging process (i.e. visit, consume and quit), and demonstrates the significance of considering all these stages together in future studies and foraging models. Sensory cues such as food odours play a critical role in helping foragers, including mammalian herbivores, find high-quality food. This allows foragers to make quick, accurate and important decisions about food patches well before patch quitting decisions come into play.
Collapse
Affiliation(s)
- Valentina S A Mella
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Malcolm Possell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Sandra M Troxell-Smith
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois.,Department of Biological Sciences, Oakland University, Rochester, Minnesota
| | - Clare McArthur
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Reckless HJ, Murray M, Crowther MS. A review of climatic change as a determinant of the viability of koala populations. WILDLIFE RESEARCH 2017. [DOI: 10.1071/wr16163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The koala (Phascolarctos cinereus) occupies a broad range of eastern and southern Australia, extending over tropical coastal, semiarid inland and temperate regions. In many areas koala populations are under threat, in particular from the direct and indirect effects of ongoing habitat destruction due to increased urbanisation and other anthropogenic processes. Climate change presents additional threats to the integrity of koala habitats because many species of food and non-food trees have narrow climate envelopes and are unable to adapt to altered temperatures and rainfall. Climate extremes also produce physiological stresses in koalas that may increase the likelihood of outbreaks of chlamydiosis and other diseases. Climate change–related increases in the relative content of toxic chemicals in leaves are further stresses to the koala after ingestion. In addition, populations that originated from a small number of founder individuals are at potential risk due to their relatively low genetic diversity. Strategies that maintain residual habitat fragments and promote the construction of new refugia are now being formulated. Modelling of the impact of habitat metrics on koala distribution is providing important information that can be used in the rehabilitation of koala refugia. In future these models could be augmented with metrics that describe koala homeostasis to inform local conservation strategies. These considerations are also relevant for the maintenance of other taxa in the wider ecosystem that are also at risk from habitat destruction and climate change.
Collapse
|
8
|
Gherlenda AN, Moore BD, Haigh AM, Johnson SN, Riegler M. Insect herbivory in a mature Eucalyptus woodland canopy depends on leaf phenology but not CO 2 enrichment. BMC Ecol 2016; 16:47. [PMID: 27760541 PMCID: PMC5072302 DOI: 10.1186/s12898-016-0102-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/07/2016] [Indexed: 11/10/2022] Open
Abstract
Background Climate change factors such as elevated atmospheric carbon dioxide concentrations (e[CO2]) and altered rainfall patterns can alter leaf composition and phenology. This may subsequently impact insect herbivory. In sclerophyllous forests insects have developed strategies, such as preferentially feeding on new leaf growth, to overcome physical or foliar nitrogen constraints, and this may shift under climate change. Few studies of insect herbivory at elevated [CO2] have occurred under field conditions and none on mature evergreen trees in a naturally established forest, yet estimates for leaf area loss due to herbivory are required in order to allow accurate predictions of plant productivity in future climates. Here, we assessed herbivory in the upper canopy of mature Eucalyptus tereticornis trees at the nutrient-limited Eucalyptus free-air CO2 enrichment (EucFACE) experiment during the first 19 months of CO2 enrichment. The assessment of herbivory extended over two consecutive spring—summer periods, with a first survey during four months of the [CO2] ramp-up phase after which full [CO2] operation was maintained, followed by a second survey period from months 13 to 19. Results Throughout the first 2 years of EucFACE, young, expanding leaves sustained significantly greater damage from insect herbivory (between 25 and 32 % leaf area loss) compared to old or fully expanded leaves (less than 2 % leaf area loss). This preference of insect herbivores for young expanding leaves combined with discontinuous production of new foliage, which occurred in response to rainfall, resulted in monthly variations in leaf herbivory. In contrast to the significant effects of rainfall-driven leaf phenology, elevated [CO2] had no effect on leaf consumption or preference of insect herbivores for different leaf age classes. Conclusions In the studied nutrient-limited natural Eucalyptus woodland, herbivory contributes to a significant loss of young foliage. Leaf phenology is a significant factor that determines the level of herbivory experienced in this evergreen sclerophyllous woodland system, and may therefore also influence the population dynamics of insect herbivores. Furthermore, leaf phenology appears more strongly impacted by rainfall patterns than by e[CO2]. e[CO2] responses of herbivores on mature trees may only become apparent after extensive CO2 fumigation periods. Electronic supplementary material The online version of this article (doi:10.1186/s12898-016-0102-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew N Gherlenda
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Ben D Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Anthony M Haigh
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
9
|
Stutz RS, Croak BM, Proschogo N, Banks PB, McArthur C. Olfactory and visual plant cues as drivers of selective herbivory. OIKOS 2016. [DOI: 10.1111/oik.03422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rebecca S. Stutz
- School of Life and Environmental Sciences; Univ. of Sydney; Camperdown New South Wales 2006 Australia
- Dept of Zoology; Stockholm Univ.; SE-106 91 Stockholm Sweden
| | - Benjamin M. Croak
- School of Life and Environmental Sciences; Univ. of Sydney; Camperdown New South Wales 2006 Australia
| | - Nicholas Proschogo
- School of Chemistry; Univ. of Sydney; Camperdown New South Wales Australia
| | - Peter B. Banks
- School of Life and Environmental Sciences; Univ. of Sydney; Camperdown New South Wales 2006 Australia
| | - Clare McArthur
- School of Life and Environmental Sciences; Univ. of Sydney; Camperdown New South Wales 2006 Australia
| |
Collapse
|
10
|
McKiernan AB, Potts BM, Brodribb TJ, Hovenden MJ, Davies NW, McAdam SAM, Ross JJ, Rodemann T, O'Reilly-Wapstra JM. Responses to mild water deficit and rewatering differ among secondary metabolites but are similar among provenances within Eucalyptus species. TREE PHYSIOLOGY 2016; 36:133-147. [PMID: 26496959 DOI: 10.1093/treephys/tpv106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
Water deficit associated with drought can severely affect plants and influence ecological interactions involving plant secondary metabolites. We tested the effect of mild water deficit and rewatering on physiological, morphological and chemical traits of juvenile Eucalyptus globulus Labill. and Eucalyptus viminalis Labill. We also tested if responses of juvenile eucalypts to water deficit and rewatering varied within species using provenances across a rainfall gradient. Both species and all provenances were similarly affected by mild water deficit and rewatering, as only foliar abscisic acid levels differed among provenances during water deficit. Across species and provenances, water deficit decreased leaf water potential, above-ground biomass and formylated phloroglucinol compound concentrations, and increased condensed tannin concentrations. Rewatering reduced leaf carbon : nitrogen, and total phenolic and chlorogenic acid concentrations. Water deficit and rewatering had no effect on total oil or individual terpene concentrations. Levels of trait plasticity due to water deficit and rewatering were less than levels of constitutive trait variation among provenances. The overall uniformity of responses to the treatments regardless of native provenance indicates limited diversification of plastic responses when compared with the larger quantitative variation of constitutive traits within these species. These responses to mild water deficit may differ from responses to more extreme water deficit or to responses of juvenile/mature eucalypts growing at each locality.
Collapse
Affiliation(s)
- Adam B McKiernan
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Brad M Potts
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Mark J Hovenden
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Noel W Davies
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, TAS 7001, Australia
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - John J Ross
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Thomas Rodemann
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, TAS 7001, Australia
| | - Julianne M O'Reilly-Wapstra
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| |
Collapse
|
11
|
The dilemma of foraging herbivores: dealing with food and fear. Oecologia 2014; 176:677-89. [DOI: 10.1007/s00442-014-3076-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
|
12
|
Quantifying the response of free-ranging mammalian herbivores to the interplay between plant defense and nutrient concentrations. Oecologia 2014; 175:1167-77. [DOI: 10.1007/s00442-014-2980-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/22/2014] [Indexed: 11/27/2022]
|
13
|
Roles of the volatile terpene, 1,8-cineole, in plant–herbivore interactions: a foraging odor cue as well as a toxin? Oecologia 2013; 174:827-37. [DOI: 10.1007/s00442-013-2801-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|
14
|
Nersesian CL, Banks PB, Simpson SJ, McArthur C. Mixing nutrients mitigates the intake constraints of a plant toxin in a generalist herbivore. Behav Ecol 2012. [DOI: 10.1093/beheco/ars049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
McArthur C, Orlando P, Banks PB, Brown JS. The foraging tightrope between predation risk and plant toxins: a matter of concentration. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01930.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
MCARTHUR CLARE, LONEY PRUEE, DAVIES NOELW, JORDAN GREGORYJ. Early ontogenetic trajectories vary among defence chemicals in seedlings of a fast-growing eucalypt. AUSTRAL ECOL 2010. [DOI: 10.1111/j.1442-9993.2009.02021.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Species by environment interactions affect pyrrolizidine alkaloid expression in Senecio jacobaea, Senecio aquaticus, and their hybrids. J Chem Ecol 2010; 36:378-87. [PMID: 20309618 PMCID: PMC2850523 DOI: 10.1007/s10886-010-9772-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/09/2010] [Accepted: 03/05/2010] [Indexed: 11/23/2022]
Abstract
We examined the effects of water and nutrient availability on the expression of the defense pyrrolizidine alkaloids (PAs) in Senecio jacobaea and S. aquaticus. Senecio jacobaea, and S. aquaticus are adapted to different natural habitats, characterized by differing abiotic conditions and different selection pressures from natural enemies. We tested if PA concentration and diversity are plastic over a range of water and nutrient treatments, and also whether such plasticity is dependent on plant species. We also tested the hypothesis that hybridization may contribute to PA diversity within plants, by comparing PA expression in parental species to that in artificially generated F1 hybrids, and also in later generation natural hybrids between S. jacobaea and S. aquaticus. We showed that total PA concentration in roots and shoots is not dependent on species, but that species determines the pattern of PA diversification. Pyrrolizidine alkaloid diversity and concentration are both dependent on environmental factors. Hybrids produce a putatively novel PA, and this PA is conserved in natural hybrids, that are backcrossed to S. jacobaea. Natural hybrids that are backcrossed several times to S. jacobaea are with regard to PA diversity significantly different from S. jacobaea but not from S. aquaticus, while F1 hybrids are in all cases more similar to S. jacobaea. These results collectively suggest that PA diversity is under the influence of natural selection.
Collapse
|
18
|
Native plant/herbivore interactions as determinants of the ecological and evolutionary effects of invasive mammalian herbivores: the case of the common brushtail possum. Biol Invasions 2009. [DOI: 10.1007/s10530-009-9629-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Miller AM, McArthur C, Smethurst PJ. Spatial scale and opportunities for choice influence browsing and associational refuges of focal plants. J Anim Ecol 2009; 78:1134-42. [PMID: 19594661 DOI: 10.1111/j.1365-2656.2009.01589.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Foraging decisions by herbivores depend on variation in food types, the scale(s) at which this variation occurs and the opportunity and capacity for herbivores to respond to such variation. These decisions affect not only the herbivores themselves, but also the vulnerability of individual plants to being eaten. Associational plant refuges, in which neighbouring plants alter focal plant vulnerability, are an emergent property of foraging decisions. 2. Using the red-bellied pademelon (Thylogale billardierii) as a model generalist mammalian herbivore, we investigated the spatial scale(s) at which animals made foraging decisions and the resultant effect on focal plant vulnerability. In a replicated design, we varied vegetation at the individual plant scale, generating intraspecific differences in Eucalyptus nitens seedlings by altering their nutrient status (high, low). We varied vegetation at the patch scale, in which seedlings were planted, using high- (grass) and low- (herbicided) quality patches. Animals were allowed to choose where they fed and what they ate. Animal behaviour was recorded and intake of seedlings measured. 3. We found that animals made foraging decisions first at the patch scale then at the scale of individual plants; both patch and focal seedling characteristics influenced browsing. Pademelons spent most of their time in high-quality patches, and seedlings were consequently more vulnerable there than in low-quality patches. Pademelons also ate more foliage from high- than from low-nutrient status seedlings. This behaviour concentrated resources, increasing foraging efficiency and making focal plants more vulnerable to browsing. 4. The opportunity and capacity to choose at both plant and patch scales resulted in a pattern of focal plant vulnerability consistent with the repellent-plant hypothesis. This contrasts with our previous study, in which animals were only provided with choice at the plant level and plant vulnerability followed the attractant-decoy hypothesis. These combined results demonstrate that the influence of neighbouring vegetation on consumption of a focal plant depends on the spatial scale of selection and on opportunities (and capacity) for herbivores to choose.
Collapse
|
20
|
Henery ML, Moran GF, Wallis IR, Foley WJ. Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens. THE NEW PHYTOLOGIST 2007; 176:82-95. [PMID: 17696979 DOI: 10.1111/j.1469-8137.2007.02159.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Leaves of eucalypt species contain a variety of plant secondary metabolites, including terpenoids and formylated phloroglucinol compounds (FPCs). Both terpene and FPC concentrations are quantitative traits that can show large variation within a population and have been shown to be heritable. The molecular genetic basis of this variation is currently unknown. Progeny from a field trial of a three-generation mapping pedigree of Eucalyptus nitens were assayed for terpenes and FPCs. Quantitative trait loci (QTL) analyses were conducted using a map constructed from 296 markers to locate regions of the genome influencing foliar concentrations of these plant secondary compounds. A large number of significant QTL for 14 traits were located across nine linkage groups, with significant clustering of QTL on linkage groups 7, 8 and 9. As expected, QTL for biosynthetically related compounds commonly colocated, but QTL for unrelated monterpenes and FPCs also mapped closely together. Colocation of these QTL with mapped candidate genes from the various biosynthetic pathways, and subsequent use of these genes in association mapping, will assist in determining the causes of variation in plant secondary metabolites in eucalypts.
Collapse
Affiliation(s)
- Martin L Henery
- School of Botany and Zoology, Australian National University, Canberra ACT 0200, Australia
| | - Gavin F Moran
- School of Botany and Zoology, Australian National University, Canberra ACT 0200, Australia
| | - Ian R Wallis
- School of Botany and Zoology, Australian National University, Canberra ACT 0200, Australia
| | - William J Foley
- School of Botany and Zoology, Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|