1
|
Diao H, Wu J. Extreme precipitation reduces the recent photosynthetic carbon isotope signal detected in ecosystem respiration in an old-growth temperate forest. TREE PHYSIOLOGY 2024; 44:tpae118. [PMID: 39246247 PMCID: PMC11469762 DOI: 10.1093/treephys/tpae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
The successful utilization of stable carbon isotope approaches in investigating forest carbon dynamics has relied on the assumption that the carbon isotope compositions (δ13C) therein have detectable temporal variations. However, interpreting the δ13C signal transfer can be challenging, given the complexities involved in disentangling the effect of a single environmental factor, the isotopic dilution effect from background CO2 and the lack of high-resolution δ13C measurements. In this study, we conducted continuous in situ monitoring of atmospheric CO2 (δ13Ca) across a canopy profile in an old-growth temperate forest in northeast China during the normal year 2020 and the wet year 2021. Both years exhibited similar temperature conditions in terms of both seasonal variations and annual averages. We tracked the natural carbon isotope composition from δ13Ca to photosynthate (δ13Cp) and to ecosystem respiration (δ13CReco). We observed significant differences in δ13Ca between the two years. Contrary to in 2020, in 2021 there was a δ13Ca valley in the middle of the growing season, attributed to surges in soil CO2 efflux induced by precipitation, while in 2020 values peaked during that period. Despite substantial and similar seasonal variations in canopy photosynthetic discrimination (Δ13Ccanopy) in the two years, the variability of δ13Cp in 2021 was significantly lower than in 2020, due to corresponding differences in δ13Ca. Furthermore, unlike in 2020, we found almost no changes in δ13CReco in 2021, which we ascribed to the imprint of the δ13Cp signal on above-ground respiration and, more importantly, to the contribution of stable δ13C signals from soil heterotrophic respired CO2. Our findings suggest that extreme precipitation can impede the detectability of recent photosynthetic δ13C signals in ecosystem respiration in forests, thus complicating the interpretation of above- and below-ground carbon linkage using δ13CReco. This study provides new insights for unravelling precipitation-related variations in forest carbon dynamics using stable isotope techniques.
Collapse
Affiliation(s)
- Haoyu Diao
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China
| | - Jiabing Wu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China
| |
Collapse
|
2
|
Du Y, Wang YP, Hui D, Su F, Yan J. Significant effects of precipitation frequency on soil respiration and its components-A global synthesis. GLOBAL CHANGE BIOLOGY 2023; 29:1188-1205. [PMID: 36408676 DOI: 10.1111/gcb.16532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Global warming intensifies the hydrological cycle, which results in changes in precipitation regime (frequency and amount), and will likely have significant impacts on soil respiration (Rs ). Although the responses of Rs to changes in precipitation amount have been extensively studied, there is little consensus on how Rs will be affected by changes in precipitation frequency (PF) across the globe. Here, we synthesized the field observations from 296 published papers to quantify the effects of PF on Rs and its components using meta-analysis. Our results indicated that the effects of PF on Rs decreased with an increase in background mean annual precipitation. When the data were grouped by climate conditions, increased PF showed positive effects on Rs under the arid condition but not under the semi-humid or humid conditions, whereas decreased PF suppressed Rs across all the climate conditions. The positive effects of increased PF mainly resulted from the positive response of heterotrophic respiration under the arid condition while the negative effects of decreased PF were mainly attributed to the reductions in root biomass and respiration. Overall, our global synthesis provided for the first time a comprehensive analysis of the divergent effects of PF on Rs and its components across climate regions. This study also provided a framework for understanding and modeling responses of ecosystem carbon cycling to global precipitation change.
Collapse
Affiliation(s)
- Yue Du
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Ying-Ping Wang
- CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Fanglong Su
- School of Life Sciences, Henan University, Kaifeng, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Diao H, Wang A, Yuan F, Guan D, Wu J. Autotrophic respiration modulates the carbon isotope composition of soil respiration in a mixed forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150834. [PMID: 34627921 DOI: 10.1016/j.scitotenv.2021.150834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/24/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Carbon isotopic composition of soil respired CO2 (soil δ13CR) has been regarded as a good indicator of the linkages between aboveground processes and soil respiration. However, whether δ13CR of autotrophic or heterotrophic component of soil respiration dominates the temporal variability of total soil δ13CR was rarely examined by previous studies. In this study, carbon isotopic composition of atmospheric CO2 (δ13Cair) and soil δ13CR in control (with roots) and trenched (without roots) plots were measured in a temperated mixed forest. A 13C isotopic profile system and an automated soil respiration system were used for δ 13Cair and soil δ13CR measurements, respectively. We found that soil δ13CR in the control plots changed substantially in the growing season and it was more negative (by ~0.6‰) than that in the trenched plots, while soil δ13CR in the trenched plots showed a minor temporal variability. This suggests that δ13CR from the autotrophic respiration is the key decider of the seasonal variation pattern of the soil δ13CR. Moreover, the seasonal variation of soil δ13CR in the control plots showed a similar pattern with the seasonal variation of δ13Cair. A significant time-lag was found between δ13Cair and soil δ13CR, showing that soil δ13CR generally lagged behind δ13Cair 15 days. This result supports the hypothesis that soil respiration is closely related to carbon assimilation at the leaf-level and also stressed the importance of δ13Cair in shaping soil δ13CR. These findings are highly valuable to develop the process-based models of the carbon cycle of forest ecosystems.
Collapse
Affiliation(s)
- Haoyu Diao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anzhi Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Fenghui Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Dexin Guan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jiabing Wu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
4
|
Blessing CH, Barthel M, Gentsch L, Buchmann N. Strong Coupling of Shoot Assimilation and Soil Respiration during Drought and Recovery Periods in Beech As Indicated by Natural Abundance δ 13C Measurements. FRONTIERS IN PLANT SCIENCE 2016; 7:1710. [PMID: 27909442 PMCID: PMC5112276 DOI: 10.3389/fpls.2016.01710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/31/2016] [Indexed: 05/27/2023]
Abstract
Drought down-regulates above- and belowground carbon fluxes, however, the resilience of trees to drought will also depend on the speed and magnitude of recovery of these above- and belowground fluxes after re-wetting. Carbon isotope composition of above- and belowground carbon fluxes at natural abundance provides a methodological approach to study the coupling between photosynthesis and soil respiration (SR) under conditions (such as drought) that influence photosynthetic carbon isotope discrimination. In turn, the direct supply of root respiration with recent photoassimilates will impact on the carbon isotope composition of soil-respired CO2. We independently measured shoot and soil CO2 fluxes of beech saplings (Fagus sylvatica L.) and their respective δ13C continuously with laser spectroscopy at natural abundance. We quantified the speed of recovery of drought stressed trees after re-watering and traced photosynthetic carbon isotope signal in the carbon isotope composition of soil-respired CO2. Stomatal conductance responded strongly to the moderate drought (-65%), induced by reduced soil moisture content as well as increased vapor pressure deficit. Simultaneously, carbon isotope discrimination decreased by 8‰, which in turn caused a significant increase in δ13C of recent metabolites (1.5-2.5‰) and in δ13C of SR (1-1.5‰). Generally, shoot and soil CO2 fluxes and their δ13C were in alignment during drought and subsequent stress release, clearly demonstrating a permanent dependence of root respiration on recently fixed photoassimilates, rather than on older reserves. After re-watering, the drought signal persisted longer in δ13C of the water soluble fraction that integrates multiple metabolites (soluble sugars, amino acids, organic acids) than in the neutral fraction which represents most recently assimilated sugars or in the δ13C of SR. Nevertheless, full recovery of all aboveground physiological variables was reached within 4 days - and within 7 days for SR - indicating high resilience of (young) beech against moderate drought.
Collapse
Affiliation(s)
- Carola H. Blessing
- Centre for Carbon Water and Food, University of Sydney, Brownlow HillNSW, Australia
- Institute of Agricultural Sciences, ETH ZürichZürich, Switzerland
| | - Matti Barthel
- Institute of Agricultural Sciences, ETH ZürichZürich, Switzerland
| | - Lydia Gentsch
- Chair of Bioclimatology, Georg-August University of GöttingenGöttingen, Germany
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH ZürichZürich, Switzerland
| |
Collapse
|
5
|
Lehmann MM, Wegener F, Werner RA, Werner C. Diel variations in carbon isotopic composition and concentration of organic acids and their impact on plant dark respiration in different species. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:776-84. [PMID: 27086877 DOI: 10.1111/plb.12464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/13/2016] [Indexed: 05/19/2023]
Abstract
Leaf respiration in the dark and its C isotopic composition (δ(13) CR ) contain information about internal metabolic processes and respiratory substrates. δ(13) CR is known to be less negative compared to potential respiratory substrates, in particular shortly after darkening during light enhanced dark respiration (LEDR). This phenomenon might be driven by respiration of accumulated (13) C-enriched organic acids, however, studies simultaneously measuring δ(13) CR during LEDR and potential respiratory substrates are rare. We determined δ(13) CR and respiration rates (R) during LEDR, as well as δ(13) C and concentrations of potential respiratory substrates using compound-specific isotope analyses. The measurements were conducted throughout the diel cycle in several plant species under different environmental conditions. δ(13) CR and R patterns during LEDR were strongly species-specific and showed an initial peak, which was followed by a progressive decrease in both values. The species-specific differences in δ(13) CR and R during LEDR may be partially explained by the isotopic composition of organic acids (e.g., oxalate, isocitrate, quinate, shikimate, malate), which were (13) C-enriched compared to other respiratory substrates (e.g., sugars and amino acids). However, the diel variations in both δ(13) C and concentrations of the organic acids were generally low. Thus, additional factors such as the heterogeneous isotope distribution in organic acids and the relative contribution of the organic acids to respiration are required to explain the strong (13) C enrichment in leaf dark-respired CO2 .
Collapse
Affiliation(s)
- M M Lehmann
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen, Switzerland
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - F Wegener
- Ecosystem Physiology, University Freiburg, Freiburg, Germany
| | - R A Werner
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - C Werner
- Ecosystem Physiology, University Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Lehmann MM, Rinne KT, Blessing C, Siegwolf RTW, Buchmann N, Werner RA. Malate as a key carbon source of leaf dark-respired CO2 across different environmental conditions in potato plants. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5769-81. [PMID: 26139821 PMCID: PMC4566975 DOI: 10.1093/jxb/erv279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Dissimilation of carbon sources during plant respiration in support of metabolic processes results in the continuous release of CO2. The carbon isotopic composition of leaf dark-respired CO2 (i.e. δ (13) C R ) shows daily enrichments up to 14.8‰ under different environmental conditions. However, the reasons for this (13)C enrichment in leaf dark-respired CO2 are not fully understood, since daily changes in δ(13)C of putative leaf respiratory carbon sources (δ (13) C RS ) are not yet clear. Thus, we exposed potato plants (Solanum tuberosum) to different temperature and soil moisture treatments. We determined δ (13) C R with an in-tube incubation technique and δ (13) C RS with compound-specific isotope analysis during a daily cycle. The highest δ (13) C RS values were found in the organic acid malate under different environmental conditions, showing less negative values compared to δ (13) C R (up to 5.2‰) and compared to δ (13) C RS of soluble carbohydrates, citrate and starch (up to 8.8‰). Moreover, linear relationships between δ (13) C R and δ (13) C RS among different putative carbon sources were strongest for malate during daytime (r(2)=0.69, P≤0.001) and nighttime (r(2)=0.36, P≤0.001) under all environmental conditions. A multiple linear regression analysis revealed δ (13) C RS of malate as the most important carbon source influencing δ (13) C R . Thus, our results strongly indicate malate as a key carbon source of (13)C enriched dark-respired CO2 in potato plants, probably driven by an anapleurotic flux replenishing intermediates of the Krebs cycle.
Collapse
Affiliation(s)
- Marco M Lehmann
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland Institute of Agricultural Sciences, ETH Zurich, Universitaetsstr. 2, CH-8092 Zurich, Switzerland
| | - Katja T Rinne
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland
| | - Carola Blessing
- Institute of Agricultural Sciences, ETH Zurich, Universitaetsstr. 2, CH-8092 Zurich, Switzerland
| | - Rolf T W Siegwolf
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitaetsstr. 2, CH-8092 Zurich, Switzerland
| | - Roland A Werner
- Institute of Agricultural Sciences, ETH Zurich, Universitaetsstr. 2, CH-8092 Zurich, Switzerland
| |
Collapse
|
7
|
Snell HSK, Robinson D, Midwood AJ. Minimising methodological biases to improve the accuracy of partitioning soil respiration using natural abundance 13C. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2341-2351. [PMID: 25279748 DOI: 10.1002/rcm.7017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Microbial degradation of soil organic matter (heterotrophic respiration) is a key determinant of net ecosystem exchange of carbon, but it is difficult to measure because the CO2 efflux from the soil surface is derived not only from heterotrophic respiration, but also from plant root and rhizosphere respiration (autotrophic). Partitioning total CO2 efflux can be achieved using the different natural abundance stable isotope ratios (δ(13)C) of root and soil CO2. Successful partitioning requires very accurate measurements of total soil efflux δ(13)CO2 and the δ(13)CO2 of the autotrophic and heterotrophic sources, which typically differ by just 2-8‰. METHODS In Scottish moorland and grass mesocosm studies we systematically tested some of the most commonly used techniques in order to identify and minimise methodological errors. Typical partitioning methods are to sample the total soil-surface CO2 efflux using a chamber, then to sample CO2 from incubated soil-free roots and root-free soil. We investigated the effect of collar depth on chamber measurements of surface efflux δ(13)CO2 and the effect of incubation time on estimates of end-member δ(13)CO2. RESULTS (1) a 5 cm increase in collar depth affects the measurement of surface efflux δ(13)CO2 by -1.5‰ and there are fundamental inconsistencies between modelled and measured biases; (2) the heterotrophic δ(13)CO2 changes by up to -4‰ within minutes of sampling; we recommend using regression to estimate the in situ δ(13)CO2 values; (3) autotrophic δ(13)CO2 measurements are reliable if root CO2 is sampled within an hour of excavation; (4) correction factors should be used to account for instrument drift of up to 3‰ and concentration-dependent non-linearity of CRDS (cavity ringdown spectroscopy) analysis. CONCLUSIONS Methodological biases can lead to large inaccuracies in partitioning estimates. The utility of stable isotope partitioning of soil CO2 efflux will be enhanced by consensus on the optimum measurement protocols and by minimising disturbance, particularly during chamber measurements.
Collapse
Affiliation(s)
- Helen S K Snell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UL, UK; Environmental and Biochemical Sciences, James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | | | | |
Collapse
|
8
|
Dubbert M, Piayda A, Cuntz M, Correia AC, Costa e Silva F, Pereira JS, Werner C. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange. FRONTIERS IN PLANT SCIENCE 2014; 5:530. [PMID: 25339970 PMCID: PMC4188126 DOI: 10.3389/fpls.2014.00530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/18/2014] [Indexed: 05/04/2023]
Abstract
Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated. The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43 and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to drought.
Collapse
Affiliation(s)
- Maren Dubbert
- Agroecosystem Research, University of Bayreuth, BayCEERBayreuth, Germany
| | - Arndt Piayda
- Agroecosystem Research, University of Bayreuth, BayCEERBayreuth, Germany
- Computational Hydrosystems, Helmholtz Center for Environmental Research (UFZ)Leipzig, Germany
| | - Matthias Cuntz
- Computational Hydrosystems, Helmholtz Center for Environmental Research (UFZ)Leipzig, Germany
| | | | | | - Joao S. Pereira
- Instituto Superior de Agronomia, University of LisbonLisbon, Portugal
| | - Christiane Werner
- Agroecosystem Research, University of Bayreuth, BayCEERBayreuth, Germany
| |
Collapse
|
9
|
Effects of precipitation variability on carbon and water fluxes in the understorey of a nitrogen-limited montado ecosystem. Oecologia 2014; 176:1199-212. [PMID: 25241297 DOI: 10.1007/s00442-014-3090-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
Abstract
To date the implications of greater intra-annual variability and extremes in precipitation on ecosystem functioning have received little attention. This study presents results on soil and vegetation carbon and water fluxes in the understorey of a Mediterranean oak woodland in response to increasing precipitation variability, with an extension of the dry period between precipitation events from 3 to 6 weeks, without altering total annual precipitation inputs. With prolonged dry periods soil moisture did breach the stress thresholds for ecosystem processes, which led to short-term treatment differences in photosynthesis, but not in system carbon losses, with subsequent short-term decreases in net ecosystem exchange. Independent of treatment, irrigation events rapidly increased carbon and water fluxes. However, contradicting the predictions drawn from the 'bucket model', over the course of the growing season no all-over treatment differences were found in system assimilation and respiration, nor in evapotranspiration and ecosystem water use efficiency. This lack of responsiveness is attributed to the ecosystem's resilience to low soil moisture during the growing season of the herbaceous understorey, with temperature rather than soil moisture controlling key ecosystem processes. Moreover, severe nitrogen limitation of the studied ecosystem may explain the lack of moisture effects on net system carbon dynamics. Thus, although the bucket model predicts changes in soil water dynamics with increasing precipitation variability, ecosystem responses to more extreme precipitation regimes may be influenced by additional factors, such as inter-annual variability in nutrient availability.
Collapse
|
10
|
Dubbert M, Mosena A, Piayda A, Cuntz M, Correia AC, Pereira JS, Werner C. Influence of tree cover on herbaceous layer development and carbon and water fluxes in a Portuguese cork-oak woodland. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2014. [DOI: 10.1016/j.actao.2014.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Máguas C, Pinho P, Branquinho C, Hartard B, Lakatos M. Carbon-Water-Nitrogen relationships between lichens and the atmosphere: Tools to understand metabolism and ecosystem change. MycoKeys 2013. [DOI: 10.3897/mycokeys.6.4814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
12
|
Sun W, Resco V, Williams DG. Environmental and physiological controls on the carbon isotope composition of CO2 respired by leaves and roots of a C3 woody legume (Prosopis velutina) and a C4 perennial grass (Sporobolus wrightii). PLANT, CELL & ENVIRONMENT 2012; 35:567-577. [PMID: 21955347 DOI: 10.1111/j.1365-3040.2011.02436.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Accurate estimates of the δ(13) C value of CO(2) respired from roots (δ(13) C(R_root) ) and leaves (δ(13) C(R_leaf) ) are important for tracing and understanding changes in C fluxes at the ecosystem scale. Yet the mechanisms underlying temporal variation in these isotopic signals are not fully resolved. We measured δ(13) C(R_leaf) , δ(13) C(R_root) , and the δ(13) C values and concentrations of glucose and sucrose in leaves and roots in the C(4) grass Sporobolus wrightii and the C(3) tree Prosopis velutina in a savanna ecosystem in southeastern Arizona, USA. Night-time variation in δ(13) C(R_leaf) of up to 4.6 ± 0.6‰ in S. wrightii and 3.0 ± 0.6‰ in P. velutina were correlated with shifts in leaf sucrose concentration, but not with changes in δ(13) C values of these respiratory substrates. Strong positive correlations between δ(13) C(R_root) and root glucose δ(13) C values in P. velutina suggest large diel changes in δ(13) C(R_root) (were up to 3.9‰) influenced by short-term changes in δ(13) C of leaf-derived phloem C. No diel variation in δ(13) C(R_root) was observed in S. wrightii. Our findings show that short-term changes in δ(13) C(R_leaf) and δ(13) C(R_root) were both related to substrate isotope composition and concentration. Changes in substrate limitation or demand for biosynthesis may largely control short-term variation in the δ(13) C of respired CO(2) in these species.
Collapse
Affiliation(s)
- Wei Sun
- Department of Renewable Resources Department of Botany Program in Ecology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | |
Collapse
|
13
|
Ubierna N, Marshall JD. Vertical and seasonal variation in the δ¹³C of leaf-respired CO₂ in a mixed conifer forest. TREE PHYSIOLOGY 2011; 31:414-427. [PMID: 21551356 DOI: 10.1093/treephys/tpr026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The C-isotopic composition (δ¹³C) of leaf respiration (δ(LR)) has previously been shown to vary among functional groups, plant organs and times of day. We here investigated vertical and seasonal variation in δ(LR) through deep (~35 m) forest canopies. We measured δ(LR), δ¹³C of leaf bulk organic matter (δ(LB)), specific leaf area, net photosynthesis (A) and dark respiration in shade, middle and sun foliage in four conifer species from May to August. We used Keeling plots to estimate δ(LR); we developed a novel technique for ensuring that the respiratory substrate was not changing over the course of the measurement. Variables δ(LR) and δ(LB) displayed a vertical pattern in Abies grandis, Pseudotsuga menziesii and Thuja plicata, but were independent of canopy position in Larix occidentalis. Vertical gradients in δ(LB) (3.6‰) and δ(LR) (2.8‰) were similar. The respiratory enrichment (δ(LR)-δ(LB)) was smaller in expanding (3‰) than mature (4-8‰) foliage. There was a linear relationship between the respiratory enrichment and A. Our data support the hypothesis that δ(LR) values are related to patterns of C allocation among metabolic pathways. We demonstrated that considerable variation in δ(LR) occurs vertically through the canopy (3‰ gradient) and seasonally (3-7‰). Understanding sources of variation in respiratory signals is fundamental to comprehending C dynamics and for global model applications.
Collapse
Affiliation(s)
- Nerea Ubierna
- Department of Forest Resources, University of Idaho, PO Box 441133, Moscow, ID 83844-1133, USA.
| | | |
Collapse
|
14
|
Rascher KG, Máguas C, Werner C. On the use of phloem sap δ¹³C as an indicator of canopy carbon discrimination. TREE PHYSIOLOGY 2010; 30:1499-514. [PMID: 21071770 DOI: 10.1093/treephys/tpq092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this study we measured δ¹³C in various carbon pools along the basipetal transport pathway in co-occurring Pinus pinaster and Acacia longifolia trees under Mediterranean climate conditions in the field. Overall, species differences in photosynthetic discrimination resulted in more enriched δ¹³C values in the water-conserving overstory P. pinaster relative to the water-spending understory invasive A. longifolia. Post-photosynthetic fractionation effects resulted in differences in δ¹³C of water-soluble organic matter pools along the plant axis with progressive depletion in δ¹³C from the canopy to the trunk (∼6.5‰ depletion in A. longifolia and ∼0.8‰ depletion in P. pinaster). Regardless of these fractionation effects, phloem sap δ¹³C in both terminal branches and the main stem correlated well with environmental parameters driving photosynthesis for both species, indicating that phloem sap δ¹³C has potential as an integrative tracer of changes in canopy carbon discrimination (Δ¹³C). Furthermore, we illustrate that a simple model based on sap flow estimated canopy stomatal conductance (G(S)) and phloem sap δ¹³C measurements has significant potential as a tool for estimating canopy-level carbon assimilation rates.
Collapse
Affiliation(s)
- Katherine G Rascher
- Exp. and Systems Ecology, University of Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany.
| | | | | |
Collapse
|