1
|
Ma C, Zhang R, He Z, Su P, Wang L, Yao Y, Zhang X, Liu X, Yang F. Biochar alters the soil fauna functional traits and community diversity: A quantitative and cascading perspective. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135302. [PMID: 39053065 DOI: 10.1016/j.jhazmat.2024.135302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
With the widespread use of biochar, the cascading effects of biochar exposure on soil fauna urgently require deeper understanding. A meta-analysis quantified hierarchical changes in functional traits and community diversity of soil fauna under biochar exposure. Antioxidant enzymes (24.1 %) did not fully mitigate the impact of MDA (13.5 %), leading to excessive DNA damage in soil fauna (21.2 %). Concurrently, reproduction, growth, and survival rates decreased by 20.2 %, 8.5 %, and 21.2 %, respectively. Due to a 39.7 % increase in avoidance behavior of soil fauna towards biochar, species richness ultimately increased by 80.2 %. Compared to other feeding habits, biochar posed a greater threat to the survival of herbivores. Additionally, macrofauna were the most sensitive to biochar. The response of soil fauna also depended on the type, size, concentration, and duration of biochar exposure. It should be emphasized that as exposure concentration increased, the damage to soil fauna became more severe. Furthermore, the smaller the biochar sizes, the greater the damage to soil fauna. To mitigate the adverse effects on soil fauna, this study recommens applying biochar at appropriate times and selecting large sizes in low to medium concentrations. These findings confirm the threat of biochar to soil health from the perspective of soil fauna.
Collapse
Affiliation(s)
- Chen Ma
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Runjie Zhang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Zhe He
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Pinjie Su
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Lukai Wang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Yanzhong Yao
- Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xiaojing Zhang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Xingyu Liu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Fengshuo Yang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| |
Collapse
|
2
|
Tomanović Ž, Kavallieratos NG, Ye Z, Nika EP, Petrović A, Vollhardt IMG, Vorburger C. Cereal Aphid Parasitoids in Europe (Hymenoptera: Braconidae: Aphidiinae): Taxonomy, Biodiversity, and Ecology. INSECTS 2022; 13:1142. [PMID: 36555052 PMCID: PMC9785021 DOI: 10.3390/insects13121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Cereals are very common and widespread crops in Europe. Aphids are a diverse group of herbivorous pests on cereals and one of the most important limiting factors of cereal production. Here, we present an overview of knowledge about the taxonomy, biodiversity, and ecology of cereal aphid parasitoids in Europe, an important group of natural enemies contributing to cereal aphid control. We review the knowledge obtained from the integrative taxonomy of 26 cereal aphid primary parasitoid species, including two allochthonous species (Lysiphlebus testaceipes and Trioxys sunnysidensis) and two recently described species (Lipolexis labialis and Paralipsis brachycaudi). We further review 28 hyperparasitoid species belonging to three hymenopteran superfamilies and four families (Ceraphronoidea: Megaspillidae; Chalcidoidea: Pteromalidae, Encyrtidae; Cynipoidea: Figitidae). We also compile knowledge on the presence of secondary endosymbionts in cereal aphids, as these are expected to influence the community composition and biocontrol efficiency of cereal aphid parasitoids. To study aphid-parasitoid-hyperparasitoid food webs more effectively, we present two kinds of DNA-based approach: (i) diagnostic PCR (mainly multiplex PCR), and (ii) DNA sequence-based methods. Finally, we also review the effects of landscape complexity on the different trophic levels in the food webs of cereal aphids and their associated parasitoids, as well as the impacts of agricultural practices and environmental variation.
Collapse
Affiliation(s)
- Željko Tomanović
- Faculty of Biology, Institute of Zoology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Zhengpei Ye
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China
| | - Erifili P. Nika
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Andjeljko Petrović
- Faculty of Biology, Institute of Zoology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia
| | - Ines M. G. Vollhardt
- Agroecology, Department of Crop Science, Georg-August University Göttingen, Grisebachstrasse 6, 37077 Göttingen, Germany
| | - Christoph Vorburger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
3
|
Frago E, Gols R, Schweiger R, Müller C, Dicke M, Godfray HCJ. Herbivore-induced plant volatiles, not natural enemies, mediate a positive indirect interaction between insect herbivores. Oecologia 2022; 198:443-456. [PMID: 35001172 DOI: 10.1007/s00442-021-05097-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
Many insect herbivores engage in apparent competition whereby two species interact through shared natural enemies. Upon insect attack, plants release volatile blends that attract natural enemies, but whether these volatiles mediate apparent competition between herbivores is not yet known. We investigate the role of volatiles that are emitted by bean plants upon infestation by Acyrthosiphon pisum aphids on the population dynamics and fitness of Sitobion avenae aphids, and on wheat phloem sap metabolites. In a field experiment, the dynamics of S. avenae aphids on wheat were studied by crossing two treatments: exposure of aphid colonies to A. pisum-induced bean volatiles and exclusion of natural enemies. Glasshouse experiments and analyses of primary metabolites in wheat phloem exudates were performed to better understand the results from the field experiment. In the field, bean volatiles did not affect S. avenae dynamics or survival when aphids were exposed to natural enemies. When protected from them, however, volatiles led to larger aphid colonies. In agreement with this observation, in glasshouse experiments, aphid-induced bean volatiles increased the survival of S. avenae aphids on wheat plants, but not on an artificial diet. This suggests that volatiles may benefit S. avenae colonies via metabolic changes in wheat plants, although we did not find any effect on wheat phloem exudate composition. We report a potential case of associational susceptibility whereby plant volatiles weaken the defences of receiving plants, thus leading to increased herbivore performance.
Collapse
Affiliation(s)
- E Frago
- CIRAD, UMR CBGP, 755 avenue du campus Agropolis-CS30016, Montferrier sur lez cedex, 34988, Montpellier, France.
| | - R Gols
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - R Schweiger
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - C Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - M Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - H C J Godfray
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Can the Combined Use of the Mirid Predator Nesidiocoris tenuis and a Braconid Larval Endoparasitoid Dolichogenidea gelechiidivoris Improve the Biological Control of Tuta absoluta? INSECTS 2021; 12:insects12111004. [PMID: 34821804 PMCID: PMC8621560 DOI: 10.3390/insects12111004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Combining natural enemies may lead to synergistic, additive, or antagonistic effects on the control of insect pests. An investigation into the nature and outcome of the interaction between a generalist mirid predator, Nesidiocoris tenuis, and a specialist koinobiont larval endoparasitoid, Dolichogenidea gelechiidivoris, in the control of a co-shared host/prey, Tuta absoluta, was undertaken under laboratory conditions. We found that the presence of N. tenuis did not affect oviposition performance or progeny production by D. gelechiidivoris. When both natural enemies were combined, the efficacy in reducing T. absoluta populations was significantly higher than that of either natural enemy used alone. Nesidiocoris tenuis preferentially reduced the densities of T. absoluta eggs, while D. gelechiidivoris reduced the larval stages of the pest. The combined use of N. tenuis and D. gelechiidivoris could potentially help reduce the overall infestation level of T. absoluta in tomato agroecosystems. Abstract The koinobiont solitary larval endoparasitoid Dolichogenidea gelechiidivoris (Marsh) (Syn.: Apanteles gelechiidivoris) (Hymenoptera: Braconidae) and the predatory bug Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) are important natural enemies of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), a serious pest of tomato. Although N. tenuis preferentially feeds on T.absoluta eggs, it is also recorded as a predator of first and second instar larval stages. Dolichogenidea gelechiidivoris preferentially seeks these early larval stages of T. absoluta for oviposition. The occurrence of intraguild predation between N. tenuis and D. gelechiidivoris and the consequences on the oviposition performance of D. gelechiidivoris were investigated in the laboratory. Regardless of the manner of introduction (i.e., the sequence of combinations with D. gelechiidivoris) or density (i.e., number of N. tenuis combined with D. gelechiidivoris), the presence of N. tenuis did not affect the oviposition performance of D. gelechiidivoris or the parasitoid’s progeny. Combination assays revealed that the efficacy of the combined use of N. tenuis and D. gelechiidivoris in controlling T. absoluta populations was significantly higher than that of either natural enemy alone. Our results highlight the potential of combining mirid predators and koinobiont larval endoparasitoids to control T. absoluta. The findings further contribute to data supporting the release of D. gelechiidivoris in tomato agroecosystems for the control of T. absoluta in Africa, where N. tenuis is widespread and abundant.
Collapse
|
5
|
Hosseini M, Mehrparvar M, Zytynska SE, Hatano E, Weisser WW. Aphid alarm pheromone alters larval behaviour of the predatory gall midge, Aphidoletes aphidimyza and decreases intraguild predation by anthocorid bug, Orius laevigatus. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:445-453. [PMID: 33663631 DOI: 10.1017/s0007485321000122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intraguild predation is the killing and consuming of a heterospecific competitor that uses similar resources as the prey, and also benefit from preying on each other. We investigated the foraging behaviour of the gallmidge, Aphidoletes aphidimyza, a predator of aphids used for biological control that is also the intraguild prey for most other aphid natural enemies. We focus on how aphid alarm pheromone can alter the behaviour of the gallmidge, and predation by the anthocorid bug Orius laevigatus (O. laevigatus). We hypothesised that gallmidges would respond to the presence of (E)-β-farnesene (EBF) by leaving the host plant. Since feeding by Aphidoletes gallmidge larvae does not induce EBF emission by aphids, this emission indicates the presence of an intraguild predator. We found that gallmidge larvae reduced their foraging activities and left the plant earlier when exposed to EBF, particularly when aphids were also present. Contrastingly, gallmidge females did not change the time visiting plants when exposed to EBF, but lay more eggs on plants that had a higher aphid density. Lastly, EBF reduced the number of attacks of the intraguild predator, O. laevigatus, on gallmidge larvae, potentially because more gallmidges stopped aphid feeding and moved off the plant at which point O. laevigatus predated on aphids. Our work highlights the importance of understanding how intraguild predation can influence the behaviour of potential biological control agents and the impact on pest control services when other natural enemies are also present.
Collapse
Affiliation(s)
- Mojtaba Hosseini
- Institute of Ecology, Friedrich-Schiller-University, Jena, Germany
| | - Mohsen Mehrparvar
- Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Sharon E Zytynska
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Centre for Food and Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Eduardo Hatano
- Institute of Ecology, Friedrich-Schiller-University, Jena, Germany
| | - Wolfgang W Weisser
- Institute of Ecology, Friedrich-Schiller-University, Jena, Germany
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Centre for Food and Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
High Survivorship of First-Generation Monarch Butterfly Eggs to Third Instar Associated with a Diverse Arthropod Community. INSECTS 2021; 12:insects12060567. [PMID: 34205618 PMCID: PMC8234420 DOI: 10.3390/insects12060567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The eastern migratory population of the monarch butterfly has been the focus of extensive conservation efforts in recent years. However, there are gaps in our knowledge about the survival of first, or spring generation, monarchs in their core areas of Texas, Oklahoma, and Louisiana. This is important because the spring generation represents the first stage of annual recovery from overwinter mortality. It is, therefore, an important stage for monarch conservation efforts. This study showed that, in the context of a complex arthropod community in north Texas, first generation monarch survival was high. The study found that survival was not directly related to predators on the host plant, but was higher on host plants that harbored a greater number and variety of other, non-predatory arthropods. This is possibly because the presence of alternate, preferable prey enabled monarch eggs and larvae to be overlooked by predators. The implication is that, at least in the southern U.S., monarch conservation should consider strategies that promote diverse functional arthropod communities. Abstract Based on surveys of winter roost sites, the eastern migratory population of the monarch butterfly (Danaus plexippus) in North America appears to have declined in the last 20 years and this has prompted the implementation of numerous conservation strategies. However, there is little information on the survivorship of first-generation monarchs in the core area of occupancy in Texas, Oklahoma, and Louisiana where overwinter population recovery begins. The purpose of this study was to determine the survivorship of first-generation eggs to third instars at a site in north Texas and to evaluate host plant arthropods for their effect on survivorship. Survivorship to third instar averaged 13.4% and varied from 11.7% to 15.6% over three years. The host plants harbored 77 arthropod taxa, including 27 predatory taxa. Despite their abundance, neither predator abundance nor predator richness predicted monarch survival. However, host plants upon which monarchs survived often harbored higher numbers of non-predatory arthropod taxa and more individuals of non-predatory taxa. These results suggest that ecological processes may have buffered the effects of predators and improved monarch survival in our study. The creation of diverse functional arthropod communities should be considered for effective monarch conservation, particularly in southern latitudes.
Collapse
|
7
|
Qiao F, Yang QF, Hou RX, Zhang KN, Li J, Ge F, Ouyang F. Moderately decreasing fertilizer in fields does not reduce populations of cereal aphids but maximizes fitness of parasitoids. Sci Rep 2021; 11:2517. [PMID: 33510226 PMCID: PMC7843967 DOI: 10.1038/s41598-021-81855-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022] Open
Abstract
Examination of the tradeoff between the extent of decreasing nitrogen input and pest suppression is crucial for maintaining the balance between essential yield and an efficient, sustainable pest control strategy. In this study, an experiment with four manipulated nitrogen fertilizer levels (70, 140, 210, and 280 kg N ha−1 = conventional level) was conducted to explore the effects of decreasing nitrogen on cereal aphids (Sitobion avenae and Rhopalosiphum padi) (Hemiptera: Aphididae), Aphidiinae parasitoids (Hymenoptera: Braconidae: Aphidiinae), and body sizes of parasitoids. The results indicated that nitrogen application, in the range of 70–280 kg N ha−1, has the potential to impact the populations of cereal aphids and their parasitoids. However, both differences between densities of cereal aphids and their parasitoids in moderate (140–210 kg N ha−1) and those in high nitrogen input (280 kg N ha−1) were not significant, and the parasitism rate was also unaffected. A higher parasitism rate reduced population growth of the cereal aphid (S. avenae). Additionally, a moderate decrease of nitrogen fertilizer from 280 to 140–210 kg N ha−1 maximized the body sizes of Aphidiinae parasitoids, indicating that a moderate decrease of nitrogen fertilizer could facilitate biocontrol of cereal aphid by parasitoids in the near future. We conclude that a moderate decrease in nitrogen application, from 280 to 140–210 kg N ha−1, does not quantitatively impact the densities of cereal aphids or the parasitism rate but can qualitatively maximize the fitness of the parasitoids.
Collapse
Affiliation(s)
- Fei Qiao
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Quan-Feng Yang
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui-Xing Hou
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ke-Ning Zhang
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fang Ouyang
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
8
|
Culshaw‐Maurer M, Sih A, Rosenheim JA. Bugs scaring bugs: enemy-risk effects in biological control systems. Ecol Lett 2020; 23:1693-1714. [PMID: 32902103 PMCID: PMC7692946 DOI: 10.1111/ele.13601] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 08/13/2020] [Indexed: 01/09/2023]
Abstract
Enemy-risk effects, often referred to as non-consumptive effects (NCEs), are an important feature of predator-prey ecology, but their significance has had little impact on the conceptual underpinning or practice of biological control. We provide an overview of enemy-risk effects in predator-prey interactions, discuss ways in which risk effects may impact biocontrol programs and suggest avenues for further integration of natural enemy ecology and integrated pest management. Enemy-risk effects can have important influences on different stages of biological control programs, including natural enemy selection, efficacy testing and quantification of non-target impacts. Enemy-risk effects can also shape the interactions of biological control with other pest management practices. Biocontrol systems also provide community ecologists with some of the richest examples of behaviourally mediated trophic cascades and demonstrations of how enemy-risk effects play out among species with no shared evolutionary history, important topics for invasion biology and conservation. We conclude that the longstanding use of ecological theory by biocontrol practitioners should be expanded to incorporate enemy-risk effects, and that community ecologists will find many opportunities to study enemy-risk effects in biocontrol settings.
Collapse
Affiliation(s)
- Michael Culshaw‐Maurer
- Department of Entomology and NematologyUniversity of CaliforniaDavisCA95616USA
- Department of Evolution and EcologyUniversity of CaliforniaDavisCA95616USA
| | - Andrew Sih
- Department of Environmental Science and PolicyUniversity of CaliforniaDavisCA95616USA
| | - Jay A. Rosenheim
- Department of Entomology and NematologyUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
9
|
Yu XL, Feng Y, Feng ZJ, Chana P, Zhu GX, Xia PL, Liu TX. Effects of mummy consumption on fitness and oviposition site selection on Harmonia axyridis. INSECT SCIENCE 2020; 27:1101-1110. [PMID: 31487096 DOI: 10.1111/1744-7917.12724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 05/19/2023]
Abstract
Intraguild predation (IGP) has been commonly reported between predators and parasitoids used as biological control agents as predators consuming parasitoids within their hosts. However, the effect of parasitoid-mummy consumption on the fitness of the predator and subsequent oviposition site selection have not been well studied. In our study, we conducted two laboratory experiments to examine the influence of Aphidius gifuensis Ashmead (Hymenoptera: Braconidae) mummies as prey on fitness and subsequently oviposition site selection of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Results indicate that when H. axyridis was reared on A. gifuensis mummies only, its larval development was prolonged, and body weight of the 4th instar larvae and newly emerged adults, and fecundity decreased. Moreover, H. axyridis did not exhibit oviposition preference on plants infested with unparasitized aphids or aphids parasitized for shorter than 9 days. However, compared with plants with mummies (parasitized ≥9 days), H. axyridis laid more eggs on plants with unparasitized aphids. In contrast, H. axyridis previously fed with A. gifuensis mummies did not show a significant oviposition preference between plants with unparasitized aphids and those with mummies (parasitized ≥9 days). Overall, our results suggest that mummy consumption reduced the fitness of H. axyridis. Although H. axyridis avoided laying eggs on plants with A. gifuensis mummies, prior feeding experience on A. gifuensis mummies could alter the oviposition site preference. Thus, in biological control practice, prior feeding experience of H. axyridis should be carefully considered for reduction of IGP and increase of fitness of H. axyridis on A. gifuensis.
Collapse
Affiliation(s)
- Xing-Lin Yu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Feng
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhu-Jun Feng
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Phongsakorn Chana
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guan-Xiong Zhu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng-Liang Xia
- Hubei Tobacco Company Enshi State Co., Ltd., Enshi, Hubei, China
| | - Tong-Xian Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Yu XL, Tang R, Xia PL, Wang B, Feng Y, Liu TX. Effects of Prey Distribution and Heterospecific Interactions on the Functional Response of Harmonia axyridis and Aphidius gifuensis to Myzus persicae. INSECTS 2020; 11:E325. [PMID: 32466529 PMCID: PMC7348948 DOI: 10.3390/insects11060325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 12/01/2022]
Abstract
Natural enemy guilds normally forage for prey that is patchily distributed simultaneously. Previous studies have investigated the influence of conspecific interactions and prey distribution on the functional response of natural enemies. However, little is known about how prey distribution and heterospecific interactions between natural enemies could affect their foraging efficiency. We examined the effects of prey distribution (aggregate and uniform) and heterospecific interactions on the functional response of a predator, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) and a parasitoid, Aphidius gifuensis Ashmead (Hymenoptera: Braconidae) to the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Type II functional responses were observed in all experiments. Functional response curves of single H. axyridis or A. gifuensis were higher in the aggregate treatment than in the uniform treatment when aphid densities were between 40-180 or 70-170, respectively. When comparing between aggregate and uniform treatments with the heterospecific enemy occurrence, no differences were found in the parasitism efficiency of A. gifuensis, while H. axyridis consumed more aphids in the aggregate treatment than in the uniform treatment when aphid densities were between 50-230. The functional response of individual H. axyridis was not affected by A. gifuensis under two aphid distributions. However, the functional response of a single A. gifuensis and the treatment when A. gifuensis concurrently with H. axyridis overlapped in uniform treatment of above approximately 150 aphids. Our results indicate that the predation rate of H. axyridis was affected by aphid distribution, but was not affected by heterospecific interactions. The parasitism rate of A. gifuensis was affected by aphid distribution, and by heterospecific interactions in both the aggregate and uniform treatments. Thus, to optimize the management efficiency of M. persicae, the combined use of H. axyridis and A. gifuensis should be considered when M. persicae is nearly uniformly distributed under relatively high density.
Collapse
Affiliation(s)
- Xing-Lin Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (X.-L.Y.); (R.T.); (B.W.)
| | - Rui Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (X.-L.Y.); (R.T.); (B.W.)
| | - Peng-Liang Xia
- Hubei Tobacco Company Enshi State Co., Ltd., Enshi 445000, China;
| | - Bo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (X.-L.Y.); (R.T.); (B.W.)
| | - Yi Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (X.-L.Y.); (R.T.); (B.W.)
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (X.-L.Y.); (R.T.); (B.W.)
| |
Collapse
|
11
|
Blubaugh CK, Asplund JS, Eigenbrode SD, Morra MJ, Philips CR, Popova IE, Reganold JP, Snyder WE. Dual-guild herbivory disrupts predator-prey interactions in the field. Ecology 2019; 99:1089-1098. [PMID: 29464698 DOI: 10.1002/ecy.2192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 11/11/2022]
Abstract
Plant defenses often mediate whether competing chewing and sucking herbivores indirectly benefit or harm one another. Dual-guild herbivory also can muddle plant signals used by specialist natural enemies to locate prey, further complicating the net impact of herbivore-herbivore interactions in naturally diverse settings. While dual-guild herbivore communities are common in nature, consequences for top-down processes are unclear, as chemically mediated tri-trophic interactions are rarely evaluated in field environments. Combining observational and experimental approaches in the open field, we test a prediction that chewing herbivores interfere with top-down suppression of phloem feeders on Brassica oleracea across broad landscapes. In a two-year survey of 52 working farm sites, we found that parasitoid and aphid densities on broccoli plants positively correlated at farms where aphids and caterpillars rarely co-occurred, but this relationship disappeared at farms where caterpillars commonly co-occurred. In a follow-up experiment, we compared single and dual-guild herbivore communities at four local farm sites and found that caterpillars (P. rapae) caused a 30% reduction in aphid parasitism (primarily by Diaeretiella rapae), and increased aphid colony (Brevicoryne brassicae) growth at some sites. Notably, in the absence of predators, caterpillars indirectly suppressed, rather than enhanced, aphid growth. Amid considerable ecological noise, our study reveals a pattern of apparent commensalism: herbivore-herbivore facilitation via relaxed top-down suppression. This work suggests that enemy-mediated apparent commensalism may override constraints to growth induced by competing herbivores in field environments, and emphasizes the value of placing chemically mediated interactions within their broader environmental and community contexts.
Collapse
Affiliation(s)
- Carmen K Blubaugh
- Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, 29678, USA.,Department of Entomology, Washington State University, Pullman, Washington, 99164, USA
| | - Jacob S Asplund
- Department of Entomology, Washington State University, Pullman, Washington, 99164, USA
| | - Sanford D Eigenbrode
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844, USA
| | - Matthew J Morra
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844, USA
| | - Christopher R Philips
- Department of Entomology, Washington State University, Pullman, Washington, 99164, USA
| | - Inna E Popova
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844, USA
| | - John P Reganold
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, 99164, USA
| | - William E Snyder
- Department of Entomology, Washington State University, Pullman, Washington, 99164, USA
| |
Collapse
|
12
|
Stam JM, Kos M, Dicke M, Poelman EH. Cross-seasonal legacy effects of arthropod community on plant fitness in perennial plants. THE JOURNAL OF ECOLOGY 2019; 107:2451-2463. [PMID: 31598003 PMCID: PMC6774310 DOI: 10.1111/1365-2745.13231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/06/2019] [Indexed: 05/21/2023]
Abstract
In perennial plants, interactions with other community members during the vegetative growth phase may influence community assembly during subsequent reproductive years and may influence plant fitness. It is well-known that plant responses to herbivory affect community assembly within a growing season, but whether plant-herbivore interactions result in legacy effects on community assembly across seasons has received little attention. Moreover, whether plant-herbivore interactions during the vegetative growing season are important in predicting plant fitness directly or indirectly through legacy effects is poorly understood.Here, we tested whether plant-arthropod interactions in the vegetative growing season of perennial wild cabbage plants, Brassica oleracea, result in legacy effects in arthropod community assembly in the subsequent reproductive season and whether legacy effects have plant fitness consequences. We monitored the arthropod community on plants that had been induced with either aphids, caterpillars or no herbivores in a full-factorial design across 2 years. We quantified the plant traits 'height', 'number of leaves' and 'number of flowers' to understand mechanisms that may mediate legacy effects. We measured seed production in the second year to evaluate plant fitness consequences of legacy effects.Although we did not find community responses to the herbivory treatments, our data show that community composition in the first year leaves a legacy on community composition in a second year: predator community composition co-varied across years. Structural equation modelling analyses indicated that herbivore communities in the vegetative year correlated with plant performance traits that may have caused a legacy effect on especially predator community assembly in the subsequent reproductive year. Interestingly, the legacy of the herbivore community in the vegetative year predicted plant fitness better than the herbivore community that directly interacted with plants in the reproductive year. Synthesis. Thus, legacy effects of plant-herbivore interactions affect community assembly on perennial plants across growth seasons and these processes may affect plant reproductive success. We argue that plant-herbivore interactions in the vegetative phase as well as in the cross-seasonal legacy effects caused by plant responses to arthropod herbivory may be important in perennial plant trait evolution such as ontogenetic variation in growth and defence strategies.
Collapse
Affiliation(s)
- Jeltje M. Stam
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Martine Kos
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
13
|
Kirk D, Shea D, Start D. Host traits and competitive ability jointly structure disease dynamics and community assembly. J Anim Ecol 2019; 88:1379-1391. [PMID: 31120552 DOI: 10.1111/1365-2656.13028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/03/2019] [Indexed: 01/13/2023]
Abstract
Parasitism and competition are both ubiquitous interactions in ecological communities. The ability of host species to interact directly via competition and indirectly through shared parasites suggests that host traits related to competition and parasitism are likely important in structuring communities and disease dynamics. Specifically, those host traits affecting competition and those mediating parasitism are often correlated either because of trade-offs (in resource acquisition or resource allocation) or condition dependence, yet the consequences of these trait relationships for community and epidemiological dynamics are poorly understood. We conducted a literature review of parasite-related host traits-competitive ability relationships. We found that transmission-competitive ability relationships were most often reported, and that superior competitors exhibited elevated transmission relative to their less-competitive counterparts in nearly 80% of the cases. We also found a significant number of virulence-competitive ability and parasite shedding-competitive ability relationships. We investigated these links by altering the relationship between host competitive ability and three parasite-related traits (transmission, virulence and parasite shedding rates) in a simple model, incorporating competitive asymmetries in a multi-host community. We show that these relationships can lead to a range of different communities. For example, depending on the strength and direction of these distinct trait relationships, we observed communities with anywhere from high parasite prevalence to complete parasite extinction, and either one, two or the maximum of three host species coexisting. Our results suggest that parasite-competitive ability relationships may be common in nature, that further integration of these relationships can produce novel and unexpected community and disease dynamics, and that generalizations may allow for the prediction of how parasitism and competition jointly structure disease and diversity in natural communities.
Collapse
Affiliation(s)
- Devin Kirk
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Dylan Shea
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Denon Start
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Frago E, Mala M, Weldegergis BT, Yang C, McLean A, Godfray HCJ, Gols R, Dicke M. Symbionts protect aphids from parasitic wasps by attenuating herbivore-induced plant volatiles. Nat Commun 2017; 8:1860. [PMID: 29192219 PMCID: PMC5709398 DOI: 10.1038/s41467-017-01935-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/26/2017] [Indexed: 12/23/2022] Open
Abstract
Plants respond to insect attack by releasing blends of volatile chemicals that attract their herbivores’ specific natural enemies, while insect herbivores may carry endosymbiotic microorganisms that directly improve herbivore survival after natural enemy attack. Here we demonstrate that the two phenomena can be linked. Plants fed upon by pea aphids release volatiles that attract parasitic wasps, and the pea aphid can carry facultative endosymbiotic bacteria that prevent the development of the parasitic wasp larva and thus markedly improve aphid survival after wasp attack. We show that these endosymbionts also attenuate the systemic release of volatiles by plants after aphid attack, reducing parasitic wasp recruitment and increasing aphid fitness. Our results reveal a novel mechanism through which symbionts can benefit their hosts and emphasise the importance of considering the microbiome in understanding insect ecological interactions. Bacterial symbionts are increasingly known to influence behaviour and fitness in insects. Here, Frago et al. show that plants fed on by aphids with symbionts have altered volatile chemical profiles, leading to reduced parasitoid attack of aphids.
Collapse
Affiliation(s)
- Enric Frago
- Laboratory of Entomology, Wageningen University, P.O. Box 16,, 6700AA, Wageningen, The Netherlands. .,CIRAD, UMR PVBMT, Saint-Pierre, La Réunion F-97410, France.
| | - Mukta Mala
- Laboratory of Entomology, Wageningen University, P.O. Box 16,, 6700AA, Wageningen, The Netherlands
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University, P.O. Box 16,, 6700AA, Wageningen, The Netherlands
| | - Chenjiao Yang
- Laboratory of Entomology, Wageningen University, P.O. Box 16,, 6700AA, Wageningen, The Netherlands
| | - Ailsa McLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - H Charles J Godfray
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, P.O. Box 16,, 6700AA, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 16,, 6700AA, Wageningen, The Netherlands
| |
Collapse
|
15
|
Terry JCD, Morris RJ, Bonsall MB. Trophic interaction modifications: an empirical and theoretical framework. Ecol Lett 2017; 20:1219-1230. [PMID: 28921859 PMCID: PMC6849598 DOI: 10.1111/ele.12824] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/01/2017] [Accepted: 07/17/2017] [Indexed: 12/01/2022]
Abstract
Consumer-resource interactions are often influenced by other species in the community. At present these 'trophic interaction modifications' are rarely included in ecological models despite demonstrations that they can drive system dynamics. Here, we advocate and extend an approach that has the potential to unite and represent this key group of non-trophic interactions by emphasising the change to trophic interactions induced by modifying species. We highlight the opportunities this approach brings in comparison to frameworks that coerce trophic interaction modifications into pairwise relationships. To establish common frames of reference and explore the value of the approach, we set out a range of metrics for the 'strength' of an interaction modification which incorporate increasing levels of contextual information about the system. Through demonstrations in three-species model systems, we establish that these metrics capture complimentary aspects of interaction modifications. We show how the approach can be used in a range of empirical contexts; we identify as specific gaps in current understanding experiments with multiple levels of modifier species and the distributions of modifications in networks. The trophic interaction modification approach we propose can motivate and unite empirical and theoretical studies of system dynamics, providing a route to confront ecological complexity.
Collapse
Affiliation(s)
| | - Rebecca J. Morris
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUK
- Biological Sciences, Faculty of Natural and Environmental SciencesUniversity of SouthamptonLife Sciences Building 85Highfield CampusSouthamptonSO17 1BJUK
| | - Michael B. Bonsall
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUK
- St. Peter's CollegeNew Inn Hall StreetOxfordOX1 2DLUK
| |
Collapse
|
16
|
Blubaugh CK, Widick IV, Kaplan I. Does fear beget fear? Risk-mediated habitat selection triggers predator avoidance at lower trophic levels. Oecologia 2017; 185:1-11. [DOI: 10.1007/s00442-017-3909-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/08/2017] [Indexed: 11/29/2022]
|
17
|
Naselli M, Biondi A, Tropea Garzia G, Desneux N, Russo A, Siscaro G, Zappalà L. Insights into food webs associated with the South American tomato pinworm. PEST MANAGEMENT SCIENCE 2017; 73:1352-1357. [PMID: 28299894 DOI: 10.1002/ps.4562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND The complexity of both natural and managed ecosystems involves various forms of interaction among organisms. Two or more species that exploit the same resource can engage in competitive behaviours, usually referred to as intraguild interactions. These can be direct, i.e. one species feeds directly upon the competitor (intraguild predation) or indirect, e.g. when the dominant organism competes for a food source that another organism is feeding upon (kleptoparasitism). We investigated the potential for such interactions in a biological model composed by the South American tomato pinworm, Tuta absoluta, and three of its newly associated natural enemies: the zoophytophagous predator Nesidiocoris tenuis and the two idiobiont ectoparasitoids Bracon nigricans and Necremnus tutae. RESULTS N. tenuis was shown (i) to scavenge on parasitised T. absoluta larvae and (ii) directly to attack and feed upon larvae of both parasitoid species, although at a higher percentage in the case of N. tutae. In the presence of the host plant, the predator reduced the emergence of both B. nigricans and N. tutae adults significantly. CONCLUSION This study stresses the ecological success of a generalist predator over indigenous parasitoids attacking an invasive pest. Moreover, these findings provide potential elements for better design of biological control programmes against T. absoluta. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mario Naselli
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | | | - Nicolas Desneux
- INRA (French National Institute for Agricultural Research), Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Agatino Russo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Gaetano Siscaro
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Lucia Zappalà
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| |
Collapse
|
18
|
Kehoe R, Frago E, Barten C, Jecker F, van Veen F, Sanders D. Nonhost diversity and density reduce the strength of parasitoid-host interactions. Ecol Evol 2016; 6:4041-9. [PMID: 27516862 PMCID: PMC4972230 DOI: 10.1002/ece3.2191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/13/2016] [Accepted: 04/26/2016] [Indexed: 12/03/2022] Open
Abstract
The presence of nonprey or nonhosts is known to reduce the strength of consumer- resource interactions by increasing the consumer's effort needed to find its resource. These interference effects can have a stabilizing effect on consumer-resource dynamics, but have also been invoked to explain parasitoid extinctions. To understand how nonhosts affect parasitoids, we manipulated the density and diversity of nonhost aphids using experimental host-parasitoid communities and tested how this affects parasitation efficiency of two aphid parasitoid species. To further study the behavioral response of parasitoids to nonhosts, we tested for changes in parasitoid time allocation in relation to their host-finding strategies. The proportion of successful attacks (attack rate) in both parasitoid species was reduced by the presence of nonhosts. The parasitoid Aphidius megourae was strongly affected by increasing nonhost diversity with the attack rate dropping from 0.39 without nonhosts to 0.05 with high diversity of nonhosts, while Lysiphlebus fabarum responded less strongly, but in a more pronounced way to an increase in nonhost density. Our experiments further showed that increasing nonhost diversity caused host searching and attacking activity levels to fall in A. megourae, but not in L. fabarum, and that A. megourae changed its behavior after a period of time in the presence of nonhosts by increasing its time spent resting. This study shows that nonhost density and diversity in the environment are crucial determinants for the strength of consumer-resource interactions. Their impact upon a consumer's efficiency strongly depends on its host/prey finding strategy as demonstrated by the different responses for the two parasitoid species. We discuss that these trait-mediated indirect interactions between host and nonhost species are important for community stability, acting either stabilizing or destabilizing depending on the level of nonhost density or diversity present.
Collapse
Affiliation(s)
- Rachel Kehoe
- Centre for Ecology & ConservationUniversity of ExeterPenrynCornwallTR 10 9EZUK
| | - Enric Frago
- Laboratory of EntomologyWageningen UniversityP.O. Box 8031WageningenNL‐6700 EHThe Netherlands
- CIRADUMR PVBMTF‐97410Saint‐PierreLa RéunionFrance
| | - Catherin Barten
- Community EcologyInstitute of Ecology and EvolutionUniversity of BernBaltzerstrasse 6Bern3012Switzerland
| | - Flurin Jecker
- Community EcologyInstitute of Ecology and EvolutionUniversity of BernBaltzerstrasse 6Bern3012Switzerland
| | - Frank van Veen
- Centre for Ecology & ConservationUniversity of ExeterPenrynCornwallTR 10 9EZUK
| | - Dirk Sanders
- Centre for Ecology & ConservationUniversity of ExeterPenrynCornwallTR 10 9EZUK
- Community EcologyInstitute of Ecology and EvolutionUniversity of BernBaltzerstrasse 6Bern3012Switzerland
| |
Collapse
|
19
|
Kaser JM, Ode PJ. Hidden risks and benefits of natural enemy-mediated indirect effects. CURRENT OPINION IN INSECT SCIENCE 2016; 14:105-111. [PMID: 27436655 DOI: 10.1016/j.cois.2016.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/03/2016] [Indexed: 06/06/2023]
Abstract
Polyphagous natural enemies can mediate a variety of indirect interactions between resource populations. Such indirect interactions are often reciprocally negative (i.e. apparent competition), but the sign of effects between resource populations can be any combination of positive (+), negative (-), or neutral (0). In this article we focus on parasitoids to illustrate the importance of natural enemy-mediated indirect interactions in predicting risk and efficacy in biological control. We review recent findings to illustrate how an improved understanding of parasitoid behavioral ecology may increase model accuracy.
Collapse
Affiliation(s)
- Joe M Kaser
- Department of Entomology, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Paul J Ode
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
20
|
Frago E. Interactions between parasitoids and higher order natural enemies: intraguild predation and hyperparasitoids. CURRENT OPINION IN INSECT SCIENCE 2016; 14:81-86. [PMID: 27436651 DOI: 10.1016/j.cois.2016.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/01/2016] [Accepted: 02/07/2016] [Indexed: 05/26/2023]
Abstract
Parasitoids kill and live at the expense of their hosts, but they also serve as food for intraguild predators and hyperparasitoids. Natural enemy diversity can thus challenge herbivore suppression by parasitoids, but this depends on the ecological niches of the species involved and their functional diversity. The spatial context is another important layer of complexity, particularly in areas with reduced habitat complexity and increased fragmentation. Parasitoids have evolved strategies to locate their host, but this can be affected by risk of intraguild predation or hyperparasitism. To better understand these interactions we need more long-term experiments and trophic-web studies. This will provide fundamental knowledge, improve pest control, and allow ecologists to better predict the impact of human activities on species extinctions.
Collapse
Affiliation(s)
- Enric Frago
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion, France; Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, Building 107, PO Box 16, 6700AA Wageningen, The Netherlands.
| |
Collapse
|
21
|
Zhang YX, Ge LQ, Jiang YP, Lu XL, Li X, Stanley D, Song QS, Wu JC. RNAi knockdown of acetyl-CoA carboxylase gene eliminates jinggangmycin-enhanced reproduction and population growth in the brown planthopper, Nilaparvata lugens. Sci Rep 2015; 5:15360. [PMID: 26482193 PMCID: PMC4611885 DOI: 10.1038/srep15360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/22/2015] [Indexed: 11/16/2022] Open
Abstract
A major challenge in ecology lies in understanding the coexistence of intraguild species, well documented at the organismal level, but not at the molecular level. This study focused on the effects of the antibiotic, jinggangmycin (JGM), a fungicide widely used in Asian rice agroecosystems, on reproduction of insects within the planthopper guild, including the brown planthopper (BPH) Nilaparvata lugens and the white-backed planthopper (WBPH) Sogatella furcifera, both serious resurgence rice pests. JGM exposure significantly increased BPH fecundity and population growth, but suppressed both parameters in laboratory and field WBPH populations. We used digital gene expression and transcriptomic analyses to identify a panel of differentially expressed genes, including a set of up-regulated genes in JGM-treated BPH, which were down-regulated in JGM-treated WBPH. RNAi silencing of Acetyl Co-A carboxylase (ACC), highly expressed in JGM-treated BPH, reduced ACC expression (by > 60%) and eliminated JGM-induced fecundity increases in BPH. These findings support our hypothesis that differences in ACC expression separates intraguild species at the molecular level.
Collapse
Affiliation(s)
- Yi-Xin Zhang
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, P.R.China
| | - Lin-Quan Ge
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, P.R.China
| | - Yi-Ping Jiang
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, P.R.China
| | - Xiu-Li Lu
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, P.R.China
| | - Xin Li
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, P.R.China
| | - David Stanley
- USDA/Agricultural Research Service, Biological Control of insect Research Laboratory, Columbia, Missouri
| | - Qi-Sheng Song
- Division of Plant Science, University of Missouri, Agriculture Building, Columbia, MO 65211, USA
| | - Jin-Cai Wu
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, P.R.China
| |
Collapse
|
22
|
Velasco-Hernández MC, Ramirez-Romero R, Sánchez-Hernández C, Biondi A, Muñoz-Urias A, Desneux N. Foraging behaviour of the parasitoid Eretmocerus eremicus under intraguild predation risk by Macrolophus pygmaeus. PEST MANAGEMENT SCIENCE 2015; 71:1346-1353. [PMID: 25377901 DOI: 10.1002/ps.3938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/24/2014] [Accepted: 11/02/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Intraguild predation (IGP), predation between species that use a common resource, can affect the populations of a pest, of the pest's natural enemy (IG prey) and of the predator of the pest's natural enemy (IG predator). In this study, we determined whether the parasitoid Eretmocerus eremicus (Hymenoptera: Aphelinidae) (IG prey), modifies its foraging behaviour under the risk of IGP by Macrolophus pygmaeus (Hemiptera: Miridae) (IG predator). Parasitoid behaviour was analysed using two bioassays (choice and no-choice) with the following treatments: (i) control, tomato leaf infested with whitefly nymphs; and (ii) PEP, tomato leaf infested with whitefly nymphs and previously exposed to the IG predator; and (iii) PP, tomato leaf infested with whitefly nymphs, with both, the IG predator and the IG prey present. RESULTS In both bioassays, we found that E. eremicus did not significantly modify the number of ovipositions, time of residence, duration of oviposition or behavioural sequence. However, in the no-choice bioassay, the number of attacks was higher and their duration shorter in the PEP treatment than in the control. CONCLUSION Our results indicate that the parasitoid may detect IGP risk to a certain extent, but it did not significantly modify its foraging behaviour, suggesting that simultaneous release of the two natural enemies can be successfully employed.
Collapse
Affiliation(s)
| | - Ricardo Ramirez-Romero
- Departamento de Producción Agrícola, CUCBA, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Carla Sánchez-Hernández
- Departamento de Producción Agrícola, CUCBA, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Antonio Biondi
- French National Institute for Agricultural Research (INRA), UMR1355, Sophia-Antipolis, France
- Department of Agri-food and Environmental Systems Management, University of Catania, Catania, Italy
| | - Alejandro Muñoz-Urias
- Departamento de Producción Agrícola, CUCBA, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Nicolas Desneux
- French National Institute for Agricultural Research (INRA), UMR1355, Sophia-Antipolis, France
| |
Collapse
|
23
|
Zhu F, Broekgaarden C, Weldegergis BT, Harvey JA, Vosman B, Dicke M, Poelman EH. Parasitism overrides herbivore identity allowing hyperparasitoids to locate their parasitoid host using herbivore-induced plant volatiles. Mol Ecol 2015; 24:2886-99. [DOI: 10.1111/mec.13164] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/13/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Feng Zhu
- Laboratory of Entomology; Wageningen University; Wageningen The Netherlands
| | - Colette Broekgaarden
- Wageningen UR Plant Breeding; Wageningen University; Wageningen The Netherlands
- Plant-Microbe Interactions; Department of Biology; Utrecht University; Utrecht The Netherlands
| | | | - Jeffrey A. Harvey
- Department of Terrestrial Ecology; Netherlands Institute of Ecology; Wageningen The Netherlands
| | - Ben Vosman
- Wageningen UR Plant Breeding; Wageningen University; Wageningen The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology; Wageningen University; Wageningen The Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology; Wageningen University; Wageningen The Netherlands
| |
Collapse
|
24
|
Kos M, Tuijl MAB, de Roo J, Mulder PPJ, Bezemer TM. Plant-soil feedback effects on plant quality and performance of an aboveground herbivore interact with fertilisation. OIKOS 2014. [DOI: 10.1111/oik.01828] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martine Kos
- Dep of Terrestrial Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50, NL-6700 AB Wageningen the Netherlands
| | - Maarten A. B. Tuijl
- Dep of Terrestrial Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50, NL-6700 AB Wageningen the Netherlands
| | - Joris de Roo
- Dep of Terrestrial Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50, NL-6700 AB Wageningen the Netherlands
| | - Patrick P. J. Mulder
- RIKILT-Wageningen UR, Wageningen Univ. and Research Centre; PO Box 230, NL-6700 AE Wageningen the Netherlands
| | - T. Martijn Bezemer
- Dep of Terrestrial Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50, NL-6700 AB Wageningen the Netherlands
| |
Collapse
|