1
|
Bylemans J, Marques da Cunha L, Wilkins LGE, Nusbaumer D, Uppal A, Wedekind C. Growth of brown trout in the wild predicted by embryo stress reaction in the laboratory. Ecology 2024; 105:e4303. [PMID: 38754864 DOI: 10.1002/ecy.4303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 02/07/2024] [Indexed: 05/18/2024]
Abstract
Laboratory studies on embryos of salmonids, such as the brown trout (Salmo trutta), have been extensively used to study environmental stress and how responses vary within and between natural populations. These studies are based on the implicit assumption that early life-history traits are relevant for stress tolerance in the wild. Here we test this assumption by combining two data sets from studies on the same 60 families. These families had been experimentally produced from wild breeders to determine, in separate samples, (1) stress tolerances of singly kept embryos in the laboratory and (2) growth of juveniles during 6 months in the wild. We found that growth in the wild was well predicted by the larval size of their full sibs in the laboratory, especially if these siblings had been experimentally exposed to a pathogen. Exposure to the pathogen had not caused elevated mortality among the embryos but induced early hatching. The strength of this stress-induced change of life history was a significant predictor of juvenile growth in the wild: the stronger the response in the laboratory, the slower the growth in the wild. We conclude that embryo performance in controlled environments can be a useful predictor of juvenile performance in the wild.
Collapse
Affiliation(s)
- Jonas Bylemans
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
- University of Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| | - Lucas Marques da Cunha
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Laetitia G E Wilkins
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - David Nusbaumer
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Anshu Uppal
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Angoshtari R, Scribner KT, Marsh TL. The impact of primary colonizers on the community composition of river biofilm. PLoS One 2023; 18:e0288040. [PMID: 37956125 PMCID: PMC10642824 DOI: 10.1371/journal.pone.0288040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/19/2023] [Indexed: 11/15/2023] Open
Abstract
As a strategy for minimizing microbial infections in fish hatcheries, we have investigated how putatively probiotic bacterial populations influence biofilm formation. All surfaces that are exposed to the aquatic milieu develop a microbial community through the selective assembly of microbial populations into a surface-adhering biofilm. In the investigations reported herein, we describe laboratory experiments designed to determine how initial colonization of a surface by nonpathogenic isolates from sturgeon eggs influence the subsequent assembly of populations from a pelagic river community, into the existing biofilm. All eight of the tested strains altered the assembly of river biofilm in a strain-specific manner. Previously formed isolate biofilm was challenged with natural river populations and after 24 hours, two strains and two-isolate combinations proved highly resistant to invasion, comprising at least 80% of the biofilm community, four isolates were intermediate in resistance, accounting for at least 45% of the biofilm community and two isolates were reduced to 4% of the biofilm community. Founding biofilms of Serratia sp, and combinations of Brevundimonas sp.-Hydrogenophaga sp. and Brevundimonas sp.-Acidovorax sp. specifically blocked populations of Aeromonas and Flavobacterium, potential fish pathogens, from colonizing the biofilm. In addition, all isolate biofilms were effective at blocking invading populations of Arcobacter. Several strains, notably Deinococcus sp., recruited specific low-abundance river populations into the top 25 most abundant populations within biofilm. The experiments suggest that relatively simple measures can be used to control the assembly of biofilm on the eggs surface and perhaps offer protection from pathogens. In addition, the methodology provides a relatively rapid way to detect potentially strong ecological interactions between bacterial populations in the formation of biofilms.
Collapse
Affiliation(s)
- Roshan Angoshtari
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States of America
| | - Kim T. Scribner
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States of America
| | - Terence L. Marsh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
3
|
Liao Y, Shi H, Han T, Jiang D, Lu B, Shi G, Zhu C, Li G. Pigment Identification and Gene Expression Analysis during Erythrophore Development in Spotted Scat ( Scatophagus argus) Larvae. Int J Mol Sci 2023; 24:15356. [PMID: 37895036 PMCID: PMC10607709 DOI: 10.3390/ijms242015356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Red coloration is considered an economically important trait in some fish species, including spotted scat, a marine aquaculture fish. Erythrophores are gradually covered by melanophores from the embryonic stage. Despite studies of black spot formation and melanophore coloration in the species, little is known about erythrophore development, which is responsible for red coloration. 1-phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to inhibit melanogenesis and contribute to the visualization of embryonic development. In this study, spotted scat embryos were treated with 0.003% PTU from 0 to 72 h post fertilization (hpf) to inhibit melanin. Erythrophores were clearly observed during the embryonic stage from 14 to 72 hpf, showing an initial increase (14 to 36 hpf), followed by a gradual decrease (36 to 72 hpf). The number and size of erythrophores at 36 hpf were larger than those at 24 and 72 hpf. At 36 hpf, LC-MS and absorbance spectrophotometry revealed that the carotenoid content was eight times higher than the pteridine content, and β-carotene and lutein were the main pigments related to red coloration in spotted scat larvae. Compared with their expression in the normal hatching group, rlbp1b, rbp1.1, and rpe65a related to retinol metabolism and soat2 and apoa1 related to steroid hormone biosynthesis and steroid biosynthesis were significantly up-regulated in the PTU group, and rh2 associated with phototransduction was significantly down-regulated. By qRT-PCR, the expression levels of genes involved in carotenoid metabolism (scarb1, plin6, plin2, apoda, bco1, and rep65a), pteridine synthesis (gch2), and chromatophore differentiation (slc2a15b and csf1ra) were significantly higher at 36 hpf than at 24 hpf and 72 hpf, except for bco1. These gene expression profiles were consistent with the developmental changes of erythrophores. These findings provide insights into pigment cell differentiation and gene function in the regulation of red coloration and contribute to selective breeding programs for ornamental aquatic animals.
Collapse
Affiliation(s)
- Yongguan Liao
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Tong Han
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Baoyue Lu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China;
| | - Gang Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| |
Collapse
|
4
|
Egeland TB, Egeland ES, Nordeide JT. Does egg carotenoid improve larval quality in Arctic charr (
Salvelinus alpinus
)? Ecol Evol 2022; 12:e8812. [PMID: 35432935 PMCID: PMC9001117 DOI: 10.1002/ece3.8812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Females in mutually ornamented species are often less conspicuously ornamented than their male conspecifics. It has been hypothesized that offspring quality may decrease if females invest more resources into ornaments at the expense of resources in eggs. An experiment was carried out to test whether natural variation in carotenoid in the eggs from a wild population of Arctic charr (Salvelinus alpinus) was associated with survival and growth of their offspring until hatching. Wild Arctic charr were caught at a spawning ground during the spawning period. Eggs from two different females, one female with yellowish carotenoid‐rich eggs and one with paler eggs, were fertilized by sperm from the same male. This was repeated until gametes were collected from 42 females and 21 males, giving a total of 21 groups. After fertilization, the zygotes from each of the two females were reared in four replicated groups. These 168 groups were reared separately until hatching when the surviving larvae were counted and their body length measured. For the two response variables survival and body length at hatching, no effect was demonstrated of any of the predictors (i) amount of carotenoid in the unfertilized eggs, (ii) the mothers' body condition, or (iii) ornament intensity of their red carotenoid‐based abdominal ornament. Thus, this study gives no support for the hypothesis that females investing less carotenoid into their eggs suffer from decreased offspring quality until hatching. This lack of association between female ornament intensity and their fitness is not as expected if female ornaments evolved due to direct sexual selection from males on the more ornamented females (“direct selection hypothesis”).
Collapse
Affiliation(s)
- Torvald Blikra Egeland
- Faculty of Biosciences and Aquaculture Nord University Bodø Norway
- Faculty of Education and Arts Nord University Bodø Norway
| | | | | |
Collapse
|
5
|
Transcriptome and functional responses to absence of astaxanthin in Atlantic salmon fed low marine diets. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100841. [DOI: 10.1016/j.cbd.2021.100841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/12/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
|
6
|
Nusbaumer D, Marques da Cunha L, Wedekind C. Testing for population differences in evolutionary responses to pesticide pollution in brown trout ( Salmo trutta). Evol Appl 2021; 14:462-475. [PMID: 33664788 PMCID: PMC7896705 DOI: 10.1111/eva.13132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022] Open
Abstract
Pesticides are often toxic to nontarget organisms, especially to those living in rivers that drain agricultural land. The brown trout (Salmo trutta) is a keystone species in many such rivers, and natural populations have hence been chronically exposed to pesticides over multiple generations. The introduction of pesticides decades ago could have induced evolutionary responses within these populations. Such a response would be predicted to reduce the toxicity over time but also deplete any additive genetic variance for the tolerance to the pesticides. If so, populations are now expected to differ in their susceptibility and in the variance for the tolerance depending on the pesticides they have been exposed to. We sampled breeders from seven natural populations that differ in their habitats and that show significant genetic differentiation. We stripped them for their gametes and produced 118 families by in vitro fertilization. We then raised 20 embryos per family singly in experimentally controlled conditions and exposed them to one of two ecologically relevant concentrations of either the herbicide S-metolachlor or the insecticide diazinon. Both pesticides affected embryo and larval development at all concentrations. We found no statistically significant additive genetic variance for tolerance to these stressors within or between populations. Tolerance to the pesticides could also not be linked to variation in carotenoid content of the eggs. However, pesticide tolerance was linked to egg size, with smaller eggs being more tolerant to the pesticides than larger eggs. We conclude that an evolutionary response to these pesticides is currently unlikely and that (a) continuous selection in the past has either depleted genetic variance in all the populations we studied or (b) that exposure to the pesticides never induced an evolutionary response. The observed toxicity selects against large eggs that are typically spawned by larger and older females.
Collapse
Affiliation(s)
- David Nusbaumer
- Department of Ecology & EvolutionUniversity of LausanneLausanneSwitzerland
| | | | - Claus Wedekind
- Department of Ecology & EvolutionUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
7
|
Geffroy B, Wedekind C. Effects of global warming on sex ratios in fishes. JOURNAL OF FISH BIOLOGY 2020; 97:596-606. [PMID: 32524610 DOI: 10.1111/jfb.14429] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
In fishes, sex is determined by genetics, the environment or an interaction of both. Temperature is among the most important environmental factors that can affect sex determination. As a consequence, changes in temperature at critical developmental stages can induce biases in primary sex ratios in some species. However, early sex ratios can also be biased by sex-specific tolerances to environmental stresses that may, in some cases, be amplified by changes in water temperature. Sex-specific reactions to environmental stress have been observed at early larval stages before gonad formation starts. It is therefore necessary to distinguish between temperature effects on sex determination, generally acting through the stress axis or epigenetic mechanisms, and temperature effects on sex-specific mortality. Both are likely to affect sex ratios and hence population dynamics. Moreover, in cases where temperature effects on sex determination lead to genotype-phenotype mismatches, long-term effects on population dynamics are possible, for example temperature-induced masculinization potentially leading to the loss of Y chromosomes or feminization to male-biased operational sex ratios in future generations. To date, most studies under controlled conditions conclude that if temperature affects sex ratios, elevated temperatures mostly lead to a male bias. The few studies that have been performed on wild populations seem to confirm this general trend. Recent findings suggest that transgenerational plasticity could mitigate the effects of warming on sex ratios in some populations.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC, University of Montpellier, Ifremer, IRD, CNRS, Palavas-les-Flots, France
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Marques da Cunha L, Maitre D, Wedekind C. Low adaptive potential for tolerance to ethynylestradiol, but also low toxicity, in a grayling population (Thymallus thymallus). BMC Evol Biol 2019; 19:227. [PMID: 31842751 PMCID: PMC6916445 DOI: 10.1186/s12862-019-1558-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The presence of a novel pollutant can induce rapid evolution if there is additive genetic variance for the tolerance to the stressor. Continuous selection over some generations can then reduce the toxicity of the pollutant but also deplete the additive genetic variance for the tolerance and thereby slow down adaptation. One common pollutant that has been ecologically relevant for some time is 17alpha-ethynylestradiol (EE2), a synthetic compound of oral contraceptives since their market launch in the 1960s. EE2 is typically found in higher concentrations in rivers than in lakes. Recent experimental work revealed significant genetic variance for the tolerance to EE2 in two lake-spawning salmonid species but no such variance in river-spawning brown trout. We used another river-spawning salmonid, the European grayling Thymallus thymallus, to study the toxicity of an ecologically relevant concentration of EE2. We also used a full-factorial in vitro breeding design and singly rearing of 1555 embryos and larvae of 40 sib groups to test whether there is additive genetic variance for the tolerance to this pollutant. RESULTS We found that exposure to EE2 reduced larval growth after hatching, but contrary to what has been found in the other salmonids, there were no significant effects of EE2 on embryo growth and survival. We found additive genetic variance for embryo viability, i.e. heritability for fitness. However, there was no significant additive variance for the tolerance to EE2. CONCLUSIONS Our findings support the hypothesis that continuous selection has reduced the toxicity of EE2 and depleted genetic variance for tolerance to this synthetic stressor.
Collapse
Affiliation(s)
- Lucas Marques da Cunha
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Diane Maitre
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
9
|
Lehnert SJ, Christensen KA, Vandersteen WE, Sakhrani D, Pitcher TE, Heath JW, Koop BF, Heath DD, Devlin RH. Carotenoid pigmentation in salmon: variation in expression at BCO2-l locus controls a key fitness trait affecting red coloration. Proc Biol Sci 2019; 286:20191588. [PMID: 31615356 DOI: 10.1098/rspb.2019.1588] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are primarily responsible for the characteristic red flesh coloration of salmon. Flesh coloration is an economically and evolutionarily significant trait that varies inter- and intra-specifically, yet the underlying genetic mechanism is unknown. Chinook salmon (Oncorhynchus tshawytscha) represents an ideal system to study carotenoid variation as, unlike other salmonids, they exhibit extreme differences in carotenoid utilization due to genetic polymorphisms. Here, we crossed populations of Chinook salmon with fixed differences in flesh coloration (red versus white) for a genome-wide association study to identify loci associated with pigmentation. Here, the beta-carotene oxygenase 2-like (BCO2-l) gene was significantly associated with flesh colour, with the most significant single nucleotide polymorphism explaining 66% of the variation in colour. BCO2 gene disruption is linked to carotenoid accumulation in other taxa, therefore we hypothesize that an ancestral mutation partially disrupting BCO2-l activity (i.e. hypomorphic mutation) allowed the deposition and accumulation of carotenoids within Salmonidae. Indeed, we found elevated transcript levels of BCO2-l in white Chinook salmon relative to red. The long-standing mystery of why salmon are red, while no other fishes are, is thus probably explained by a hypomorphic mutation in the proto-salmonid at the time of divergence of red-fleshed salmonid genera (approx. 30 Ma).
Collapse
Affiliation(s)
- S J Lehnert
- Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - K A Christensen
- Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada.,University of Victoria, Victoria, British Columbia, Canada
| | - W E Vandersteen
- Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada
| | - D Sakhrani
- Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada
| | - T E Pitcher
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada.,Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - J W Heath
- Yellow Island Aquaculture Ltd., Quadra Island, British Columbia, Canada
| | - B F Koop
- University of Victoria, Victoria, British Columbia, Canada
| | - D D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada.,Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - R H Devlin
- Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Selmoni OM, Maitre D, Roux J, Wilkins LGE, Marques da Cunha L, Vermeirssen ELM, Knörr S, Robinson-Rechavi M, Wedekind C. Sex-specific changes in gene expression in response to estrogen pollution around the onset of sex differentiation in grayling (Salmonidae). BMC Genomics 2019; 20:583. [PMID: 31307399 PMCID: PMC6631537 DOI: 10.1186/s12864-019-5955-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
The synthetic 17α-ethinylestradiol (EE2) is a common estrogenic pollutant that has been suspected to affect the demography of river-dwelling salmonids. One possibility is that exposure to EE2 tips the balance during initial steps of sex differentiation, so that male genotypes show female-specific gene expression and gonad formation. Here we study EE2 effects on gene expression around the onset of sex differentiation in a population of European grayling (Thymallus thymallus) that suffers from sex ratio distortions. We exposed singly-raised embryos to one dose of 1 ng/L EE2, studied gene expression 10 days before hatching, at the day of hatching, and around the end of the yolk-sac stage, and related it to genetic sex (sdY genotype). We found that exposure to EE2 affects expression of a large number of genes, especially around hatching. These effects were strongly sex-dependent. We then raised fish for several months after hatching and found no evidence of sex reversal in the EE2-exposed fish. We conclude that ecologically relevant (i.e. low) levels of EE2 pollution do not cause sex reversal by simply tipping the balance at early stages of sex differentiation, but that they interfere with sex-specific gene expression.
Collapse
Affiliation(s)
- Oliver M Selmoni
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.,Present Address: Swiss Federal Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Diane Maitre
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland
| | - Julien Roux
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Present Address: Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Laetitia G E Wilkins
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.,Present Address: Department of Environmental Sciences, Policy and Management, University of California, Berkeley, CA, 94720, USA
| | - Lucas Marques da Cunha
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland
| | | | - Susanne Knörr
- Aquatic Ecology and Toxicology Group Center of Organismic Studies, University of Heidelberg, Heidelberg, Germany
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Marques da Cunha L, Uppal A, Seddon E, Nusbaumer D, Vermeirssen EL, Wedekind C. No additive genetic variance for tolerance to ethynylestradiol exposure in natural populations of brown trout ( Salmo trutta). Evol Appl 2019; 12:940-950. [PMID: 31080506 PMCID: PMC6503824 DOI: 10.1111/eva.12767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most common and potent pollutants of freshwater habitats is 17-alpha-ethynylestradiol (EE2), a synthetic component of oral contraceptives that is not completely eliminated during sewage treatment and that threatens natural populations of fish. Previous studies found additive genetic variance for the tolerance against EE2 in different salmonid fishes and concluded that rapid evolution to this type of pollution seems possible. However, these previous studies were done with fishes that are lake-dwelling and hence typically less exposed to EE2 than river-dwelling species. Here, we test whether there is additive genetic variance for the tolerance against EE2 also in river-dwelling salmonid populations that have been exposed to various concentrations of EE2 over the last decades. We sampled 287 adult brown trout (Salmo trutta) from seven populations that show much genetic diversity within populations, are genetically differentiated, and that vary in their exposure to sewage-treated effluent. In order to estimate their potential to evolve tolerance to EE2, we collected their gametes to produce 730 experimental families in blockwise full-factorial in vitro fertilizations. We then raised 7,302 embryos singly in 2-ml containers each and either exposed them to 1 ng/L EE2 (an ecologically relevant concentration, i.e., 2 pg per embryo added in a single spike to the water) or sham-treated them. Exposure to EE2 increased embryo mortality, delayed hatching time, and decreased hatchling length. We found no population differences and no additive genetic variance for tolerance to EE2. We conclude that EE2 has detrimental effects that may adversely affect population even at a very low concentration, but that our study populations lack the potential for rapid genetic adaptation to this type of pollution. One possible explanation for the latter is that continuous selection over the last decades has depleted genetic variance for tolerance to this synthetic stressor.
Collapse
Affiliation(s)
| | - Anshu Uppal
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Emily Seddon
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - David Nusbaumer
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | | | - Claus Wedekind
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
12
|
Consumption of carotenoids not increased by bacterial infection in brown trout embryos (Salmo trutta). PLoS One 2018; 13:e0198834. [PMID: 29897970 PMCID: PMC5999266 DOI: 10.1371/journal.pone.0198834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/25/2018] [Indexed: 02/02/2023] Open
Abstract
Carotenoids are organic pigment molecules that play important roles in signalling, control of oxidative stress, and immunity. Fish allocate carotenoids to their eggs, which gives them the typical yellow to red colouration and supports their resistance against microbial infections. However, it is still unclear whether carotenoids act mainly as a shield against infection or are used up during the embryos' immune defence. We investigated this question with experimental families produced from wild-caught brown trout (Salmo trutta). Singly raised embryos were either exposed to the bacterial pathogen Pseudomonas fluorescens or sham-treated at one of two stages during their development. A previous study on these experimental families reported positive effects of egg carotenoids on embryo growth and resistance against the infection. Here, we quantified carotenoid consumption, i.e. the active metabolization of carotenoids into compounds that are not other carotenoid types, in these infected and sham-infected maternal sib groups. We found that carotenoid contents mostly decreased during embryogenesis. However, these decreases were neither linked to the virulence induced by the pathogen nor dependent on the time point of infection. We conclude that egg carotenoids are not significantly used up by the embryos' immune defence.
Collapse
|
13
|
Amundsen T. Sex roles and sexual selection: lessons from a dynamic model system. Curr Zool 2018; 64:363-392. [PMID: 30402079 PMCID: PMC6007278 DOI: 10.1093/cz/zoy036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Our understanding of sexual selection has greatly improved during the last decades. The focus is no longer solely on males, but also on how female competition and male mate choice shape ornamentation and other sexually selected traits in females. At the same time, the focus has shifted from documenting sexual selection to exploring variation and spatiotemporal dynamics of sexual selection, and their evolutionary consequences. Here, I review insights from a model system with exceptionally dynamic sexual selection, the two-spotted goby fish Gobiusculus flavescens. The species displays a complete reversal of sex roles over a 3-month breeding season. The reversal is driven by a dramatic change in the operational sex ratio, which is heavily male-biased at the start of the season and heavily female-biased late in the season. Early in the season, breeding-ready males outnumber mature females, causing males to be highly competitive, and leading to sexual selection on males. Late in the season, mating-ready females are in excess, engage more in courtship and aggression than males, and rarely reject mating opportunities. With typically many females simultaneously courting available males late in the season, males become selective and prefer more colorful females. This variable sexual selection regime likely explains why both male and female G. flavescens have ornamental colors. The G. flavescens model system reveals that sexual behavior and sexual selection can be astonishingly dynamic in response to short-term fluctuations in mating competition. Future work should explore whether sexual selection is equally dynamic on a spatial scale, and related spatiotemporal dynamics.
Collapse
Affiliation(s)
- Trond Amundsen
- Department of Biology, Norwegian University of Science and Technology, NO 7491 Trondheim, Norway
| | | |
Collapse
|