1
|
Hay AE, Deborde C, Dussarrat T, Moing A, Millery A, Hoang TPT, Touboul D, Rey M, Ledru L, Ibanez S, Pétriacq P, Vanhaverbeke C, Gallet C. Comparative metabolomics reveals how the severity of predation by the invasive insect Cydalima perspectalis modulates the metabolism re-orchestration of native Buxus sempervirens. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38985650 DOI: 10.1111/plb.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
The recent biological invasion of box tree moth Cydalima perspectalis on Buxus trees has a major impact on European boxwood stands through severe defoliation. This can hinder further regrowth and threaten survival of populations. In a mesocosm approach and controlled larval density over a 2-month period, responses of B. sempervirens essential and specialized metabolites were characterized using metabolomics, combining 1H-NMR and LC-MS/MS approaches. This is the first metabolome depiction of major Buxus responses to boxwood moth invasion. Under severe predation, remaining green leaves accumulate free amino acids (with the noticeable exception of proline). The leaf trans-4-hydroxystachydrine and stachydrine reached 10-13% and 2-3% (DW), while root content was lower but also modulated by predation level. Larval predation promoted triterpenoid and (steroidal) alkaloid synthesis and diversification, while flavonoids did not seem to have a relevant role in Buxus resistance. Our results reveal the concomitant responses of central and specialized metabolism, in relation to severity of predation. They also confirm the potential of metabolic profiling using 1H-NMR and LC-MS to detect re-orchestration of metabolism of native boxwood after severe herbivorous predation by the invasive box-tree moth, and thus their relevance for plant-insect relationships and ecometabolomics.
Collapse
Affiliation(s)
- A E Hay
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne - CESN, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France
| | - C Deborde
- Université Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Bordeaux, France
| | - T Dussarrat
- Université Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux, France
| | - A Moing
- Université Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Bordeaux, France
| | - A Millery
- Laboratoire d'Ecologie Alpine UMR CNRS 5553, Université Savoie Mont-Blanc, Université Grenoble Alpes, Grenoble, France
| | - T P T Hoang
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - D Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - M Rey
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne - CESN, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France
| | - L Ledru
- Laboratoire d'Ecologie Alpine UMR CNRS 5553, Université Savoie Mont-Blanc, Université Grenoble Alpes, Grenoble, France
| | - S Ibanez
- Laboratoire d'Ecologie Alpine UMR CNRS 5553, Université Savoie Mont-Blanc, Université Grenoble Alpes, Grenoble, France
| | - P Pétriacq
- Université Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Bordeaux, France
| | | | - C Gallet
- Laboratoire d'Ecologie Alpine UMR CNRS 5553, Université Savoie Mont-Blanc, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
2
|
Pastierovič F, Kalyniukova A, Hradecký J, Dvořák O, Vítámvás J, Mogilicherla K, Tomášková I. Biochemical Responses in Populus tremula: Defending against Sucking and Leaf-Chewing Insect Herbivores. PLANTS (BASEL, SWITZERLAND) 2024; 13:1243. [PMID: 38732458 PMCID: PMC11085190 DOI: 10.3390/plants13091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
The main biochemical traits were estimated in poplar leaves under biotic attack (aphids and spongy moth infestation). Changes in the abundance of bioactive compounds in genetically uniform individuals of European aspen (Populus tremula), such as proline, polyphenolic compounds, chlorophylls a and b, and volatile compounds, were determined between leaves damaged by sucking insects (aphid-Chaitophorus nassonowi) and chewing insects (spongy moth-Lymantria dispar) compared to uninfected leaves. Among the nine analyzed phenolic compounds, only catechin and procyanidin showed significant differences between the control leaves and leaves affected by spongy moths or aphids. GC-TOF-MS volatile metabolome analysis showed the clear separation of the control versus aphids-infested and moth-infested leaves. In total, the compounds that proved to have the highest explanatory power for aphid-infested leaves were 3-hexenal and 5-methyl-2-furanone, and for moth-infested leaves, trans-α-farnesene and 4-cyanocyclohexane. The aphid-infested leaves contained around half the amount of chlorophylls and twice the amount of proline compared to uninfected leaves, and these results evidenced that aphids influence plant physiology more than chewing insects.
Collapse
Affiliation(s)
- Filip Pastierovič
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Alina Kalyniukova
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Jaromír Hradecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Ondřej Dvořák
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Jan Vítámvás
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad 500030, Telangana, India
| | - Ivana Tomášková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| |
Collapse
|
3
|
Hundacker J, Linda T, Hilker M, Lortzing V, Bittner N. The impact of insect egg deposition on Pinus sylvestris transcriptomic and phytohormonal responses to larval herbivory. TREE PHYSIOLOGY 2024; 44:tpae008. [PMID: 38227779 PMCID: PMC10878248 DOI: 10.1093/treephys/tpae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Plants can improve their resistance to feeding damage by insects if they have perceived insect egg deposition prior to larval feeding. Molecular analyses of these egg-mediated defence mechanisms have until now focused on angiosperm species. It is unknown how the transcriptome of a gymnosperm species responds to insect eggs and subsequent larval feeding. Scots pine (Pinus sylvestris L.) is known to improve its defences against larvae of the herbivorous sawfly Diprion pini L. if it has previously received sawfly eggs. Here, we analysed the transcriptomic and phytohormonal responses of Scots pine needles to D. pini eggs (E-pine), larval feeding (F-pine) and to both eggs and larval feeding (EF-pine). Pine showed strong transcriptomic responses to sawfly eggs and-as expected-to larval feeding. Many egg-responsive genes were also differentially expressed in response to feeding damage, and these genes play an important role in biological processes related to cell wall modification, cell death and jasmonic acid signalling. EF-pine showed fewer transcriptomic changes than F-pine, whereas EF-treated angiosperm species studied so far showed more transcriptional changes to the initial phase of larval feeding than only feeding-damaged F-angiosperms. However, as with responses of EF-angiosperms, EF-pine showed higher salicylic acid concentrations than F-pine. Based on the considerable overlap of the transcriptomes of E- and F-pine, we suggest that the weaker transcriptomic response of EF-pine than F-pine to larval feeding damage is compensated by the strong, egg-induced response, which might result in maintained pine defences against larval feeding.
Collapse
Affiliation(s)
- Janik Hundacker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Tom Linda
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Norbert Bittner
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Albrecht-Thaer-Weg 6, Berlin 14195, Germany
| |
Collapse
|
4
|
Lindroth RL, Wooley SC, Donaldson JR, Rubert-Nason KF, Morrow CJ, Mock KE. Phenotypic Variation in Phytochemical Defense of Trembling Aspen in Western North America: Genetics, Development, and Geography. J Chem Ecol 2023; 49:235-250. [PMID: 36765024 DOI: 10.1007/s10886-023-01409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Trembling aspen (Populus tremuloides) is arguably the most important deciduous tree species in the Intermountain West of North America. There, as elsewhere in its range, aspen exhibits remarkable genetic variation in observable traits such as morphology and phenology. In contrast to Great Lakes populations, however, relatively little is known about phytochemical variation in western aspen. This survey of phytochemistry in western aspen was undertaken to assess how chemical expression varies among genotypes, cytotypes (diploid vs. triploid), and populations, and in response to development and mammalian browsing. We measured levels of foliar nitrogen, salicinoid phenolic glycosides (SPGs) and condensed tannins (CTs), as those constituents influence organismal interactions and ecosystem processes. Results revealed striking genotypic variation and considerable population variation, but minimal cytotype variation, in phytochemistry of western aspen. Levels of SPGs and nitrogen declined, whereas levels of CTs increased, with tree age. Browsed ramets had much higher levels of SPGs, and lower levels of CTs, than unbrowsed ramets of the same genotype. We then evaluated how composite chemical profiles of western aspen differ from those of Great Lakes aspen (assessed in earlier research). Interestingly, mature western aspen trees maintain much higher levels of SPGs, and lower levels of CTs, than Great Lakes aspen. Phenotypic variation in chemical composition of aspen - a foundation species - in the Intermountain West likely has important consequences for organismal interactions and forest ecosystem dynamics. Moreover, those consequences likely play out over spatial and temporal scales somewhat differently than have been documented for Great Lakes aspen.
Collapse
Affiliation(s)
- Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Stuart C Wooley
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biological Sciences, California State University-Stanislaus, Turlock, CA, 95382, USA
| | - Jack R Donaldson
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- , Orem, UT, USA
| | - Kennedy F Rubert-Nason
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Division of Natural Sciences, University of Maine at Fort Kent, Fort Kent, ME, 04743, USA
| | - Clay J Morrow
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Karen E Mock
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
5
|
Valdovinos FS, Hale KRS, Dritz S, Glaum PR, McCann KS, Simon SM, Thébault E, Wetzel WC, Wootton KL, Yeakel JD. A bioenergetic framework for aboveground terrestrial food webs. Trends Ecol Evol 2023; 38:301-312. [PMID: 36437144 DOI: 10.1016/j.tree.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022]
Abstract
Bioenergetic approaches have been greatly influential for understanding community functioning and stability and predicting effects of environmental changes on biodiversity. These approaches use allometric relationships to establish species' trophic interactions and consumption rates and have been successfully applied to aquatic ecosystems. Terrestrial ecosystems, where body mass is less predictive of plant-consumer interactions, present inherent challenges that these models have yet to meet. Here, we discuss the processes governing terrestrial plant-consumer interactions and develop a bioenergetic framework integrating those processes. Our framework integrates bioenergetics specific to terrestrial plants and their consumers within a food web approach while also considering mutualistic interactions. Such a framework is poised to advance our understanding of terrestrial food webs and to predict their responses to environmental changes.
Collapse
Affiliation(s)
- Fernanda S Valdovinos
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA.
| | - Kayla R S Hale
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sabine Dritz
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| | - Paul R Glaum
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| | - Kevin S McCann
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Sophia M Simon
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| | - Elisa Thébault
- Sorbonne Université, UPEC, Université Paris Cité, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - William C Wetzel
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Kate L Wootton
- BioFrontiers Institute at the University of Colorado, Boulder, CO, USA
| | - Justin D Yeakel
- Department of Life & Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
6
|
Yan S, Tan M, Zheng L, Wu H, Wang K, Chai R, Jiang D. Defense response of Fraxinus mandshurica seedlings to Hyphantria cunea larvae under Cd stress: A contradiction between attraction and resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160390. [PMID: 36427402 DOI: 10.1016/j.scitotenv.2022.160390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal pollution, as a common and serious environmental problem worldwide, has been regarded as an abiotic stimulus that can affect plant insect resistance and pest occurrence. This study evaluated the defense response of Fraxinus mandshurica seedlings to Hyphantria cunea larvae under Cd stress, with consideration given to chemical defense, physical defense, and elemental defense. Our results showed that the H. cunea larvae had a strong preference for Cd-treated F. mandshurica seedlings, but there was a significant reduction in body weight and survival rate in larvae that fed on leaves of Cd-treated seedlings. Under Cd treatment, the increase in attractant metabolites (e.g., styrene, dibutyl phthalate, and d-limonene) and the decrease in repellent metabolites (e.g., aromadendrene, heptadecane, and camphene) in leaf volatiles were responsible for the high attractant activity to H. cunea larvae. Based on leaf physicochemical properties, tissue structure, and phenolic acid content, an overall reduction in physical defense, chemical defense and their combination in F. mandshurica seedlings exposed to Cd stress was identified by Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) analysis. Elemental defense occurred in Cd-treated F. mandshurica seedlings, as evidenced by the high concentration of Cd in leaves and H. cunea larvae under Cd treatment. Taken together, these findings demonstrate that under Cd stress, elemental defense replaces the dominant role of basic defense in F. mandshurica seedlings and accounts for the enhanced ability to defend against H. cunea larvae.
Collapse
Affiliation(s)
- Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lin Zheng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Hongfei Wu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Kai Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Rusong Chai
- Forest Botanical Garden of Heilongjiang Province, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
7
|
Muklada H, Schwartz A, Davidovich-Rikanati R, Klein JD, Deutch-Traubman T, Voet H, Lewinsohn E, Landau SY. Effect of water quality on the biomass production, nutritional value, and contents of secondary compounds of three genotypes of willow (Salix acmophylla Boiss.) grown for fodder. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Jia M, Liu J, Zhou W, Hua J, Luo S. Antimicrobial diterpene induced by two gall-inducing adelgids coexisting on Picea koraiensis. TREE PHYSIOLOGY 2022; 42:1601-1612. [PMID: 35405001 DOI: 10.1093/treephys/tpac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The mechanism by which closely related species can coexist is a central factor in the stability of ecological communities. The larch adelgid (Adelges laricis laricis) and the eastern spruce adelgid (Adelges (Sacchiphantes) abietis) have both been found on the branches of Picea koraiensis in China. These two adelgids exhibit strong infectivity and readily induce the formation of 'fish scale-like' and 'pineapple-like' galls with branch parasitism rates of between 75.01 ± 7.03 and 88.02 ± 4.39%. Interestingly, the gall tissues in which these two gall-inducing insects were found to be coexisting were discovered at a rate of ~0.2% in the studied populations. The weight and number of gall chambers as well as the number of adelgids in the 'fish scale-like' side were higher than those in the 'pineapple-like' side. Furthermore, compared with the normal branches, a diterpene neoabietic acid was found at elevated concentrations in the gall tissues, with especially high concentrations seen in the tissues of the co-occupied galls. Neoabietic acid exhibited strong antibacterial activities against Bacillus spp. isolated from the branches of P. koraiensis, as well as potent antifungal activity against the hyphal growth of Fusarium graminearum JMY-1, which was obtained from the gall tissues. Our result provides evidence that the coexistence of the two closely related species could be explained by alterations of the host tissues by the insects resulting in increased concentrations of the antimicrobial agent.
Collapse
Affiliation(s)
- Mingyue Jia
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Jiayi Liu
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | | | - Juan Hua
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Shihong Luo
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| |
Collapse
|
9
|
Rahmanpour A, Farahpour MR, Shapouri R, Jafarirad S, Rahimi P. Synthesis and characterization of alumina-based nanocomposites of TiO2/Al2O3/Chitosan with antibacterial properties accelarate healing of infected excision wounds. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Bertocci F, Mannino G. Can Agri-Food Waste Be a Sustainable Alternative in Aquaculture? A Bibliometric and Meta-Analytic Study on Growth Performance, Innate Immune System, and Antioxidant Defenses. Foods 2022; 11:1861. [PMID: 35804678 PMCID: PMC9266230 DOI: 10.3390/foods11131861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/31/2022] Open
Abstract
The agri-food industry generates a large amount of waste every year, which is both an environmental and economic problem, especially for the countries in charge of its disposal. Over the years, there has been a growing interest especially in plant waste, since they are rich in compounds with high nutritional and nutraceutical value. As a result, several scientific disciplines are investigating their alternative use in the formulation of dietary supplements for human or animal use, or as biostimulants for agricultural purposes. In this review, using a meta-analytical approach, we summarize the main and most recent findings related to the use of plant waste as potential ingredients in dietary supplementation for fish grown under controlled experimental conditions. In particular, in this review, it has been highlighted that plant waste may have not only positive effects on growth performance, but also beneficial effects on modulation of the innate immune system and antioxidant defenses. Finally, the bibliometric study and a mapping provide an overview of the recent publications, showing the research strength across the country, the number of potential collaborations among institutions, and the main research focus, demonstrating how this topic is growing in interest, especially in Europe.
Collapse
Affiliation(s)
- Filippo Bertocci
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80134 Naples, Italy;
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
11
|
Bravo-Monzón ÁE, Montiel-González C, Benítez-Malvido J, Arena-Ortíz ML, Flores-Puerto JI, Chiappa-Carrara X, Avila-Cabadilla LD, Alvarez-Añorve MY. The Assembly of Tropical Dry Forest Tree Communities in Anthropogenic Landscapes: The Role of Chemical Defenses. PLANTS 2022; 11:plants11040516. [PMID: 35214850 PMCID: PMC8877018 DOI: 10.3390/plants11040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022]
Abstract
The effect of anthropogenic disturbance on plant community traits and tradeoffs remains poorly explored in tropical forests. In this study, we aimed to identify tradeoffs between defense and other plant functions related to growth processes in order to detect potential aboveground and edaphic environmental conditions modulating traits variation on plant communities, and to find potential assembly rules underlying species coexistence in secondary (SEF) and old-growth forests (OGF). We measured the foliar content of defense phytochemicals and leaf traits related to fundamental functions on 77 species found in SEF and OGF sites in the Jalisco dry forest ecoregion, Mexico, and we explored (1) the trait-trait and trait-habitat associations, (2) the intra and interspecies trait variation, and (3) the traits-environment associations. We found that phytochemical content was associated with high leaf density and leaf fresh mass, resulting in leaves resistant to drought and high radiation, with chemical and physical defenses against herbivore/pathogen attack. The phytochemicals and chlorophyll concentrations were negatively related, matching the predictions of the Protein Competition Model. The phylogenetic signal in functional traits, suggests that abundant clades share the ability to resist the harsh biotic and abiotic conditions and face similar tradeoffs between productive and defensive functions. Environmental filters could modulate the enhanced expression of defensive phytochemicals in SEF, while, in OGFs, we found a stronger filtering effect driving community assembly. This could allow for the coexistence of different defensive strategies in OGFs, where a greater species richness could dilute the prevalence of pathogens/herbivores. Consequently, anthropogenic disturbance could alter TDF ecosystem properties/services and functioning.
Collapse
Affiliation(s)
- Ángel E. Bravo-Monzón
- Laboratorio de Ecología Funcional de Ecosistemas Terrestres, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Yucatán, Mexico; (Á.E.B.-M.); (C.M.-G.); (J.I.F.-P.)
| | - Cristina Montiel-González
- Laboratorio de Ecología Funcional de Ecosistemas Terrestres, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Yucatán, Mexico; (Á.E.B.-M.); (C.M.-G.); (J.I.F.-P.)
| | - Julieta Benítez-Malvido
- Laboratorio de Ecología de Hábitats Alterados, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia 58190, Michoacán, Mexico;
| | - María Leticia Arena-Ortíz
- Laboratorio de Ecogenómica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico, Mérida 97302, Yucatán, Mexico;
| | - José Israel Flores-Puerto
- Laboratorio de Ecología Funcional de Ecosistemas Terrestres, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Yucatán, Mexico; (Á.E.B.-M.); (C.M.-G.); (J.I.F.-P.)
| | - Xavier Chiappa-Carrara
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Yucatán, Mexico;
| | - Luis Daniel Avila-Cabadilla
- Laboratorio de Ecología Funcional de Ecosistemas Terrestres, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Yucatán, Mexico; (Á.E.B.-M.); (C.M.-G.); (J.I.F.-P.)
- Correspondence: (L.D.A.-C.); (M.Y.A.-A.)
| | - Mariana Yolotl Alvarez-Añorve
- Laboratorio de Ecología Funcional de Ecosistemas Terrestres, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Yucatán, Mexico; (Á.E.B.-M.); (C.M.-G.); (J.I.F.-P.)
- Correspondence: (L.D.A.-C.); (M.Y.A.-A.)
| |
Collapse
|
12
|
Amo L, Mrazova A, Saavedra I, Sam K. Exogenous Application of Methyl Jasmonate Increases Emissions of Volatile Organic Compounds in Pyrenean Oak Trees, Quercus pyrenaica. BIOLOGY 2022; 11:84. [PMID: 35053082 PMCID: PMC8773279 DOI: 10.3390/biology11010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 05/27/2023]
Abstract
The tri-trophic interactions between plants, insects, and insect predators and parasitoids are often mediated by chemical cues. The attraction to herbivore-induced Plant Volatiles (HIPVs) has been well documented for arthropod predators and parasitoids, and more recently for insectivorous birds. The attraction to plant volatiles induced by the exogenous application of methyl jasmonate (MeJA), a phytohormone typically produced in response to an attack of chewing herbivores, has provided controversial results both in arthropod and avian predators. In this study, we examined whether potential differences in the composition of bouquets of volatiles produced by herbivore-induced and MeJA-treated Pyrenean oak trees (Quercus pyrenaica) were related to differential avian attraction, as results from a previous study suggested. Results showed that the overall emission of volatiles produced by MeJA-treated and herbivore-induced trees did not differ, and were higher than emissions of Control trees, although MeJA treatment showed a more significant reaction and released several specific compounds in contrast to herbivore-induced trees. These slight yet significant differences in the volatile composition may explain why avian predators were not so attracted to MeJA-treated trees, as observed in a previous study in this plant-herbivore system. Unfortunately, the lack of avian visits to the experimental trees in the current study did not allow us to confirm this result and points out the need to perform more robust predator studies.
Collapse
Affiliation(s)
- Luisa Amo
- Area of Biodiversity and Conservation, Universidad Rey Juan Carlos C/ Tulipán, s/n, E-28933 Móstoles, Spain
| | - Anna Mrazova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 37005 Ceske Budejovice, Czech Republic; (A.M.); (K.S.)
- Faculty of Science, University of South Bohemia, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
| | - Irene Saavedra
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/ José Gutiérrez Abascal, 2, E-28006 Madrid, Spain;
| | - Katerina Sam
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 37005 Ceske Budejovice, Czech Republic; (A.M.); (K.S.)
- Faculty of Science, University of South Bohemia, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
13
|
Volf M, Volfová T, Seifert CL, Ludwig A, Engelmann RA, Jorge LR, Richter R, Schedl A, Weinhold A, Wirth C, van Dam NM. A mosaic of induced and non-induced branches promotes variation in leaf traits, predation and insect herbivore assemblages in canopy trees. Ecol Lett 2021; 25:729-739. [PMID: 34958165 DOI: 10.1111/ele.13943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/10/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Forest canopies are complex and highly diverse environments. Their diversity is affected by pronounced gradients in abiotic and biotic conditions, including variation in leaf chemistry. We hypothesised that branch-localised defence induction and vertical stratification in mature oaks constitute sources of chemical variation that extend across trophic levels. To test this, we combined manipulation of plant defences, predation monitoring, food-choice trials with herbivores and sampling of herbivore assemblages. Both induction and vertical stratification affected branch chemistry, but the effect of induction was stronger. Induction increased predation in the canopy and reduced herbivory in bioassays. The effects of increased predation affected herbivore assemblages by decreasing their abundance, and indirectly, their richness. In turn, we show that there are multiple factors contributing to variation across canopies. Branch-localised induction, variation between tree individuals and predation may be the ones with particularly strong effects on diverse assemblages of insects in temperate forests.
Collapse
Affiliation(s)
- Martin Volf
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Tereza Volfová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Carlo L Seifert
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Faculty of Forest Sciences and Forest Ecology, Department of Forest Nature Conservation, Georg-August-University, Göttingen, Germany
| | - Antonia Ludwig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Rolf A Engelmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Leonardo Ré Jorge
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Ronny Richter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany.,Geoinformatics and Remote Sensing, Institute for Geography, University of Leipzig, Leipzig, Germany
| | - Andreas Schedl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany.,Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
14
|
Jamloki A, Bhattacharyya M, Nautiyal MC, Patni B. Elucidating the relevance of high temperature and elevated CO 2 in plant secondary metabolites (PSMs) production. Heliyon 2021; 7:e07709. [PMID: 34430728 PMCID: PMC8371220 DOI: 10.1016/j.heliyon.2021.e07709] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 11/15/2022] Open
Abstract
Plant secondary metabolites (PSMs) are plant products that are discontinuously distributed throughout the plant kingdom. These secondary compounds have various chemical groups and are named according to their chemical constituents. For their ability to defend biotic and abiotic stresses they are considered as plants' defensive compounds. These metabolites take part in plant protection from insects, herbivores, and extreme environmental conditions. They are indirectly involved in plants’ growth and development. Secondary metabolites are also used by people in the form of medicines, pharmaceuticals, agrochemicals, colors, fragrances, flavorings, food additives, biopesticides, and drugs development. However, the increase in atmospheric temperature by several anthropogenic activities majorly by the combustion of hydrocarbons is a great issue now. On the other hand, climate change leaves an impact on the quality and quantity of plant secondary metabolites. It is measured that several greenhouse gases (GHGs) are present in the atmosphere, like Chlorofluorocarbons (CFCs), nitrous oxides (NOx), Carbon dioxide (CO2), Methane (CH4) and Ozone (O3), etc. CO2, the major greenhouse gas is essential for photosynthesis. On the other hand, CO2 plays a significant role in the up-regulation of atmospheric temperature. Plants produce various types of primary metabolites such as carbohydrates, proteins, fats, membrane lipids, nucleic acids, and chlorophyll as well as a variety of secondary metabolites from photosynthesis. The high temperature in the atmosphere creates heat stress for plants. As a matter of fact many morphological, physiological and biochemical changes occur in the plant. The high temperature invariably elicits the production of several secondary metabolites within plants. Various strategies have been universally documented to improve the production of PSMs. With this objective, the focus of the current review is to further investigate and discuss futuristic scenarios the effect of elevated CO2 and high temperature on PSMs production which may perhaps beneficial for pharmaceutical industries, biotechnology industries, and also in climate change researches.
Collapse
Affiliation(s)
- Abhishek Jamloki
- High Altitude Plant Physiology Research Centre (HAPPRC), H.N.B. Garhwal University, Post Box: 14, Srinagar Garhwal, 246174, Uttarakhand, India
| | - Malini Bhattacharyya
- High Altitude Plant Physiology Research Centre (HAPPRC), H.N.B. Garhwal University, Post Box: 14, Srinagar Garhwal, 246174, Uttarakhand, India
| | - M C Nautiyal
- High Altitude Plant Physiology Research Centre (HAPPRC), H.N.B. Garhwal University, Post Box: 14, Srinagar Garhwal, 246174, Uttarakhand, India
| | - Babita Patni
- High Altitude Plant Physiology Research Centre (HAPPRC), H.N.B. Garhwal University, Post Box: 14, Srinagar Garhwal, 246174, Uttarakhand, India
| |
Collapse
|
15
|
Espinosa-García FJ, García-Rodríguez YM, Bravo-Monzón AE, Vega-Peña EV, Delgado-Lamas G. Implications of the foliar phytochemical diversity of the avocado crop Persea americana cv. Hass in its susceptibility to pests and pathogens. PeerJ 2021; 9:e11796. [PMID: 35070514 PMCID: PMC8759378 DOI: 10.7717/peerj.11796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/25/2021] [Indexed: 11/20/2022] Open
Abstract
Phytochemical diversity (PD) can be considered as a defensive trait; it can operate through single plant secondary metabolites or usually as complex mixtures of them. We tested the more diversity-better defense hypothesis correlating the leaf plant secondary metabolites (PSMs) with the incidence of plant enemies on Hass avocado trees. We expected a negative correlation between the occurrence of plant enemies and PD metrics. Also, as intraspecific PSMs polymorphisms in plant populations are common, we studied the incidence of plant enemies on Hass avocado trees representing chemical variants (chemotypes). We expected a differential incidence of plant enemies among trees grouped by their mono and sesquiterpene + phenylpropanoid chemotypes. We analyzed foliar hexane extracts from 236 trees in 17 orchards by gas chromatography and for the incidence of red mite, thrips, whitefly, avocado branch borer, fruit rot, scab, and peduncle collar blight. The predicted negative correlation between the plant enemies’ incidence and the phytochemical metrics did not occur. To determine the relationship between enemy incidence and chemotypes we grouped the trees by cluster analysis using a matrix of PSMs in each tree. Most trees were grouped under four out of 23 chemotypes. Branch borers attacked trees of low-frequency chemotypes more frequently than trees with common chemotypes. The incidence of five plant enemies was different among the predominant chemotypes. The hypothesis of more diversity-better defense was not supported by the correlations between the phytochemical diversity and the incidence of pests and pathogens in Hass avocado orchards. Based on our results, we hypothesize that phytochemical diversity function as a defensive trait relies more on differentiation among individuals in a population than on the sole increase of chemical diversity. Also, the differential incidence of pests and pathogens on trees classified by their foliar chemotypes implies that these susceptibility or resistance markers represent potential useful tools for Hass avocado orchard pest management.
Collapse
Affiliation(s)
- Francisco J. Espinosa-García
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Yolanda M. García-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Angel E. Bravo-Monzón
- Escuela Nacional de Estudios Superiores Mérida, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
| | - Ernesto V. Vega-Peña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | | |
Collapse
|
16
|
Fernandez-Conradi P, Castagneyrol B, Jactel H, Rasmann S. Combining phytochemicals and multitrophic interactions to control forest insect pests. CURRENT OPINION IN INSECT SCIENCE 2021; 44:101-106. [PMID: 33933685 DOI: 10.1016/j.cois.2021.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Forest pests can cause massive ecological and economic damage worldwide. Ecologically sound solutions to diminish forest insect pest impacts include the use of their natural enemies, such as predators and parasitoids, as well as entomopathogenic fungi, bacteria or viruses. Phytochemical compounds mediate most interactions between these organisms, but knowledge of such chemically mediated multitrophic relationships is still at its infancy for forest systems, particularly when compared to agricultural systems. Here, we highlight the main gaps in how phytochemicals of forest trees facilitate or interfere with trophic interactions between trees, insect herbivores, and interacting organisms including predators, parasitoids and microbes. We propose future avenues of research on phytochemical-based biocontrol of forest pests taking into account the characteristics of trees and forests.
Collapse
Affiliation(s)
- Pilar Fernandez-Conradi
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland; INRAE, UR629 Recherches Forestières Méditerranéennes (URFM), 84914 Avignon, France.
| | | | - Hervé Jactel
- INRAE, University of Bordeaux, BIOGECO, F-33610 Cestas, France
| | - Sergio Rasmann
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
17
|
Seifert CL, Volf M, Jorge LR, Abe T, Carscallen G, Drozd P, Kumar R, Lamarre GPA, Libra M, Losada ME, Miller SE, Murakami M, Nichols G, Pyszko P, Šigut M, Wagner DL, Novotný V. Plant phylogeny drives arboreal caterpillar assemblages across the Holarctic. Ecol Evol 2020; 10:14137-14151. [PMID: 33732431 PMCID: PMC7771119 DOI: 10.1002/ece3.7005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co-occurring plant species.Using a Holarctic dataset of exposed-feeding and shelter-building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.Our plant-caterpillar network data derived from plot-based samplings at three different continents included >28,000 individual caterpillar-plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed-feeding and shelter-building caterpillars.Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host-specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large-scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
Collapse
Affiliation(s)
- Carlo L Seifert
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Martin Volf
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
| | - Leonardo R Jorge
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | | | - Grace Carscallen
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal VA USA
| | - Pavel Drozd
- Faculty of Science University of Ostrava Ostrava Czech Republic
| | - Rajesh Kumar
- Central Sericultural Research and Training Institute Central Silk Board Ministry of Textiles Govt. of India Pampore Jammu and Kashmir India
| | - Greg P A Lamarre
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
- ForestGEO Smithsonian Tropical Research Institute Balboa, Ancon Panama
| | - Martin Libra
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Maria E Losada
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal VA USA
- National Museum of Natural History Smithsonian Institution Washington DC USA
| | - Scott E Miller
- National Museum of Natural History Smithsonian Institution Washington DC USA
| | | | - Geoffrey Nichols
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal VA USA
| | - Petr Pyszko
- Faculty of Science University of Ostrava Ostrava Czech Republic
| | - Martin Šigut
- Faculty of Science University of Ostrava Ostrava Czech Republic
| | | | - Vojtěch Novotný
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| |
Collapse
|
18
|
Volf M, Weinhold A, Seifert CL, Holicová T, Uthe H, Alander E, Richter R, Salminen JP, Wirth C, van Dam NM. Branch-Localized Induction Promotes Efficacy of Volatile Defences and Herbivore Predation in Trees. J Chem Ecol 2020; 47:99-111. [PMID: 33180276 DOI: 10.1007/s10886-020-01232-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
Induction of plant defences can show various levels of localization, which can optimize their efficiency. Locally induced responses may be particularly important in large plants, such as trees, that show high variability in traits and herbivory rates across their canopies. We studied the branch-localized induction of polyphenols, volatiles (VOCs), and changes in leaf protein content in Carpinus betulus L., Quercus robur L., and Tilia cordata L. in a common garden experiment. To induce the trees, we treated ten individuals per species on one branch with methyl jasmonate. Five other individuals per species served as controls. We measured the traits in the treated branches, in control branches on treated trees, and in control trees. Additionally, we ran predation assays and caterpillar food-choice trials to assess the effects of our treatment on other trophic levels. Induced VOCs included mainly mono- and sesquiterpenes. Their production was strongly localized to the treated branches in all three tree species studied. Treated trees showed more predation events than control trees. The polyphenol levels and total protein content showed a limited response to the treatment. Yet, winter moth caterpillars preferred leaves from control branches over leaves from treated branches within C. betulus individuals and leaves from control Q. robur individuals over leaves from treated Q. robur individuals. Our results suggest that there is a significant level of localization in induction of VOCs and probably also in unknown traits with direct effects on herbivores. Such localization allows trees to upregulate defences wherever and whenever they are needed.
Collapse
Affiliation(s)
- Martin Volf
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany. .,Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute of Biodiversity, University of Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Carlo L Seifert
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Tereza Holicová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute of Biodiversity, University of Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Erika Alander
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20500, Turku, Finland
| | - Ronny Richter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute for Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.,Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University, Johannisallee 19a, 04103, Leipzig, Germany
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20500, Turku, Finland
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute for Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.,Max-Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute of Biodiversity, University of Jena, Dornburger Str. 159, 07743, Jena, Germany
| |
Collapse
|
19
|
Eisenring M, Unsicker SB, Lindroth RL. Spatial, genetic and biotic factors shape within‐crown leaf trait variation and herbivore performance in a foundation tree species. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Eisenring
- Department of Entomology University of Wisconsin‐Madison Madison WI USA
- Forest Entomology Swiss Federal Research Institute WSL Birmensdorf Switzerland
| | - Sybille B. Unsicker
- Department of BiochemistryMax Planck Institute for Chemical Ecology Jena Germany
| | | |
Collapse
|
20
|
Valdés-Correcher E, Bourdin A, González-Martínez SC, Moreira X, Galmán A, Castagneyrol B, Hampe A. Leaf chemical defences and insect herbivory in oak: accounting for canopy position unravels marked genetic relatedness effects. ANNALS OF BOTANY 2020; 126:865-872. [PMID: 32463869 PMCID: PMC7539359 DOI: 10.1093/aob/mcaa101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Highly controlled experiments document that plant genetic diversity and relatedness can shape herbivore communities and patterns of herbivory. Evidence from the field is, however, scarce and inconsistent. We assessed whether a genetic signal underlying herbivory can be detected in oak woodlands when accounting for variation at smaller (within-tree) and larger (among-stand) scales. METHODS We tested relationships between tree genetic relatedness, leaf chemical defences and insect herbivory for different canopy layers in 240 trees from 15 pedunculate oak (Quercus robur) forest stands. We partitioned sources of variability in herbivory and defences among stands, individuals and branches. KEY RESULTS Leaf defences, insect herbivory and their relationship differed systematically between the upper and the lower tree canopy. When accounting for this canopy effect, the variation explained by tree genetic relatedness rose from 2.8 to 34.1 % for herbivory and from 7.1 to 13.8 % for leaf defences. The effect was driven by markedly stronger relationships in the upper canopy. CONCLUSIONS Our findings illustrate that considerable effects of the host plant genotype on levels of leaf chemical defences and associated insect herbivory can be detected in natural tree populations when within-individual variation is properly accounted for.
Collapse
Affiliation(s)
| | | | | | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Andrea Galmán
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | | | - Arndt Hampe
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
| |
Collapse
|
21
|
A Comprehensive Review of Phytochemistry and Biological Activities of Quercus Species. FORESTS 2020. [DOI: 10.3390/f11090904] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Quercus genus provides a large amount of biomaterial with many applications in fields like pharmaceutics, cosmetics, and foodstuff areas. Due to the worldwide dissemination of the genus, many species were used for centuries in traditional healing methods or in the wine maturing process. This review aims to bring together the results about phytoconstituents from oak extracts and their biological applicability as antioxidants, antimicrobial, anticancer, etc. The literature data used in this paper were collected via PubMed, Scopus, and Science Direct (2010–June 2020). The inclusion criteria were papers published in English, with information about phytoconstituents from Quercus species (leaves, bark and seeds/acorns) and biological activities such as antioxidant, antibacterial, antiobesity, anti-acne vulgaris, antifungal, anticancer, antiviral, antileishmanial, antidiabetic, anti-inflammatory. The exclusion criteria were the research of other parts of the Quercus species (e.g., galls, wood, and twigs); lack of information about phytochemistry and biological activities; non-existent Quercus species reported by the authors. The most studied Quercus species, in terms of identified biomolecules and biological activity, are Q. brantii, Q. infectoria and Q. robur. The Quercus species have been reported to contain several phytoconstituents. The main bioactive phytochemicals are phenolic compounds, volatile organic compounds, sterols, aliphatic alcohols and fatty acids. The, Quercus species are intensely studied due to their antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, provided by their phytochemical composition. The general conclusion is that oak extracts can be exploited for their biological activity and can be used in research fields, such as pharmaceutical, nutraceutical and medical.
Collapse
|
22
|
Eberl F, Fernandez de Bobadilla M, Reichelt M, Hammerbacher A, Gershenzon J, Unsicker SB. Herbivory meets fungivory: insect herbivores feed on plant pathogenic fungi for their own benefit. Ecol Lett 2020; 23:1073-1084. [PMID: 32307873 DOI: 10.1111/ele.13506] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/19/2020] [Accepted: 03/08/2020] [Indexed: 12/23/2022]
Abstract
Plants are regularly colonised by fungi and bacteria, but plant-inhabiting microbes are rarely considered in studies on plant-herbivore interactions. Here we show that young gypsy moth (Lymantria dispar) caterpillars prefer to feed on black poplar (Populus nigra) foliage infected by the rust fungus Melampsora larici-populina instead of uninfected control foliage, and selectively consume fungal spores. This consumption, also observed in a related lepidopteran species, is stimulated by the sugar alcohol mannitol, found in much higher concentration in fungal tissue and infected leaves than uninfected plant foliage. Gypsy moth larvae developed more rapidly on rust-infected leaves, which cannot be attributed to mannitol but rather to greater levels of total nitrogen, essential amino acids and B vitamins in fungal tissue and fungus-infected leaves. Herbivore consumption of fungi and other microbes may be much more widespread than commonly believed with important consequences for the ecology and evolution of plant-herbivore interactions.
Collapse
Affiliation(s)
- Franziska Eberl
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Maite Fernandez de Bobadilla
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Hatfield, 0028, South Africa
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| |
Collapse
|
23
|
Volf M, Wirth C, van Dam NM. Localized defense induction in trees: a mosaic of leaf traits promoting variation in plant traits, predation, and communities of canopy arthropods? AMERICAN JOURNAL OF BOTANY 2020; 107:545-548. [PMID: 32189332 DOI: 10.1002/ajb2.1457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/23/2020] [Indexed: 05/24/2023]
Affiliation(s)
- Martin Volf
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, University of Jena, Jena, Germany
| |
Collapse
|
24
|
Müller C, Bräutigam A, Eilers E, Junker R, Schnitzler JP, Steppuhn A, Unsicker S, van Dam N, Weisser W, Wittmann M. Ecology and Evolution of Intraspecific Chemodiversity of Plants. RESEARCH IDEAS AND OUTCOMES 2020. [DOI: 10.3897/rio.6.e49810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An extraordinarily high intraspecific chemical diversity, i.e. chemodiversity, has been found in several plant species, of which some are of major ecological or economic relevance. Moreover, even within an individual plant there is substantial chemodiversity among tissues and across seasons. This chemodiversity likely has pronounced ecological effects on plant mutualists and antagonists, associated foodwebs and, ultimately, biodiversity. Surprisingly, studies on interactions between plants and their herbivores or pollinators often neglect plant chemistry as a level of diversity and phenotypic variation. The main aim of this Research Unit (RU) is to understand the emergence and maintenance of intraspecific chemodiversity in plants. We address the following central questions:
1) How does plant chemodiversity vary across levels, i.e., within individuals, among individuals within populations, and among populations?
2) What are the ecological consequences of intraspecific plant chemodiversity?
3) How is plant chemodiversity genetically determined and maintained?
By combining field and laboratory studies with metabolomics, transcriptomics, genetic tools, statistical data analysis and modelling, we aim to understand causes and consequences of plant chemodiversity and elucidate its impacts on the interactions of plants with their biotic environment. Furthermore, we want to identify general principles, which hold across different species, and develop meaningful measures to describe the fascinating diversity of defence chemicals in plants. These tasks require integrated scientific collaboration of experts in experimental and theoretical ecology, including chemical and molecular ecology, (bio)chemistry and evolution.
Collapse
|
25
|
Lackner S, Lackus ND, Paetz C, Köllner TG, Unsicker SB. Aboveground phytochemical responses to belowground herbivory in poplar trees and the consequence for leaf herbivore preference. PLANT, CELL & ENVIRONMENT 2019; 42:3293-3307. [PMID: 31350910 DOI: 10.1111/pce.13628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Belowground (BG) herbivory can influence aboveground (AG) herbivore performance and food preference via changes in plant chemistry. Most evidence for this phenomenon derives from studies in herbaceous plants but studies in woody plants are scarce. Here we investigated whether and how BG herbivory on black poplar (Populus nigra) trees by Melolontha melolontha larvae influences the feeding preference of Lymantria dispar (gypsy moth) caterpillars. In a food choice assay, caterpillars preferred to feed on leaves from trees that had experienced attack by BG herbivores. Therefore, we investigated the effect of BG herbivory on the phytochemical composition of P. nigra trees alone and in combination with AG feeding by L. dispar caterpillars. BG herbivory did not increase systemic AG tree defences like volatile organic compounds, protease inhibitors and salicinoids. Jasmonates and salicylic acid were also not induced by BG herbivory in leaves but abscisic acid concentrations drastically increased together with proline and few other amino acids. Leaf coating experiments with amino acids suggest that proline might be responsible for the caterpillar feeding preference via presumptive phagostimulatory properties. This study shows that BG herbivory in poplar can modify the feeding preference of AG herbivores via phytochemical changes as a consequence of root-to-shoot signaling.
Collapse
Affiliation(s)
- Sandra Lackner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Nathalie D Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| |
Collapse
|
26
|
Wetzel WC, Whitehead SR. The many dimensions of phytochemical diversity: linking theory to practice. Ecol Lett 2019; 23:16-32. [PMID: 31724320 DOI: 10.1111/ele.13422] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
Abstract
Research on the ecological and evolutionary roles of phytochemicals has recently progressed from studying single compounds to examining chemical diversity itself. A key conceptual advance enabling this progression is the use of species diversity metrics for quantifying phytochemical diversity. In this perspective, we extend the theory developed for species diversity to further our understanding of what exactly phytochemical diversity is and how its many dimensions impact ecological and evolutionary processes. First, we discuss the major dimensions of phytochemical diversity - richness, evenness, functional diversity, and alpha, gamma and beta diversity. We describe their potential independent roles in biotic interactions and the practical challenges associated with their analysis. Second, we re-analyse the published and unpublished datasets to reveal that the phytochemical diversity experienced by an organism (or observed by a researcher) depends strongly on the scale of the interaction and the total amount of phytochemicals involved. We argue that we must account for these frames of reference to meaningfully understand diversity. Moving from a general notion of phytochemical diversity as a single measure to a precise definition of its multidimensional and multiscale nature yields overlooked testable predictions that will facilitate novel insights about the evolutionary ecology of plant biotic interactions.
Collapse
Affiliation(s)
- William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Susan R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
27
|
Fabisch T, Gershenzon J, Unsicker SB. Specificity of Herbivore Defense Responses in a Woody Plant, Black Poplar (Populus nigra). J Chem Ecol 2019; 45:162-177. [PMID: 30788656 PMCID: PMC6469625 DOI: 10.1007/s10886-019-01050-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 11/25/2022]
Abstract
The specificity of woody plant defense responses to different attacking herbivores is poorly known. We investigated the responses of black poplar (Populus nigra) to leaf feeding by three lepidopteran species (Lymantria dispar, Laothoe populi and Amata mogadorensis) and two leaf beetle species (Phratora vulgatissima and Chrysomela populi). Of the direct defenses monitored, increases in trypsin protease inhibitor activity and the salicinoid salicin were triggered by herbivore damage, but this was not herbivore-specific. Moreover, the majority of leaf salicinoid content was present constitutively and not induced by herbivory. On the other hand, volatile emission profiles did vary among herbivore species, especially between coleopterans and lepidopterans. Monoterpenes and sesquiterpenes were induced in damaged and adjacent undamaged leaves, while the emission of green leaf volatiles, aromatic and nitrogen-containing compounds (known to attract herbivore enemies) was restricted to damaged leaves. In conclusion, indirect defenses appear to show more specific responses to attacking herbivores than direct defenses in this woody plant.
Collapse
Affiliation(s)
- Thomas Fabisch
- Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Jonathan Gershenzon
- Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Sybille B Unsicker
- Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany.
| |
Collapse
|
28
|
Simberloff D, Leppanen C. Plant somatic mutations in nature conferring insect and herbicide resistance. PEST MANAGEMENT SCIENCE 2019; 75:14-17. [PMID: 30066358 DOI: 10.1002/ps.5157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 05/21/2023]
Abstract
Because of the role of the meristem in plant growth and reproduction, somatic mutations in plants have long been suspected of conferring herbivore and pathogen resistance on individual plants and, in the case of trees, individual branches within single plants. A few instances of resistance to phytophagous insects owing to somatic mutations have been reported in the literature. More recently, a striking example has demonstrated how somatic mutations confer resistance to an herbicide on an invasive plant, Hydrilla verticillata. The array of new methods for manipulating genomes (e.g., gene-editing) plus existing examples of somatic mutation-associated resistance suggest that such mutations might be useful in silviculture, agriculture, and horticulture. Answering several general questions about somatic mutations in plants would facilitate such applications: Why are so few examples reported? Do other cases exist but go undetected for want of adequate attention or methods? Under what circumstances do somatic mutations enter gametophytes? © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Christy Leppanen
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
29
|
Barker HL, Holeski LM, Lindroth RL. Independent and interactive effects of plant genotype and environment on plant traits and insect herbivore performance: A meta‐analysis with Salicaceae. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hilary L. Barker
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin
| | - Liza M. Holeski
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona
| | - Richard L. Lindroth
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin
| |
Collapse
|
30
|
Holopainen JK, Virjamo V, Ghimire RP, Blande JD, Julkunen-Tiitto R, Kivimäenpää M. Climate Change Effects on Secondary Compounds of Forest Trees in the Northern Hemisphere. FRONTIERS IN PLANT SCIENCE 2018; 9:1445. [PMID: 30333846 PMCID: PMC6176061 DOI: 10.3389/fpls.2018.01445] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/12/2018] [Indexed: 05/09/2023]
Abstract
Plant secondary compounds (PSCs), also called secondary metabolites, have high chemical and structural diversity and appear as non-volatile or volatile compounds. These compounds may have evolved to have specific physiological and ecological functions in the adaptation of plants to their growth environment. PSCs are produced by several metabolic pathways and many PSCs are specific for a few plant genera or families. In forest ecosystems, full-grown trees constitute the majority of plant biomass and are thus capable of producing significant amounts of PSCs. We summarize older literature and review recent progress in understanding the effects of abiotic and biotic factors on PSC production of forest trees and PSC behavior in forest ecosystems. The roles of different PSCs under stress and their important role in protecting plants against abiotic and biotic factors are also discussed. There was strong evidence that major climate change factors, CO2 and warming, have contradictory effects on the main PSC groups. CO2 increases phenolic compounds in foliage, but limits terpenoids in foliage and emissions. Warming decreases phenolic compounds in foliage but increases terpenoids in foliage and emissions. Other abiotic stresses have more variable effects. PSCs may help trees to adapt to a changing climate and to pressure from current and invasive pests and pathogens. Indirect adaptation comes via the effects of PSCs on soil chemistry and nutrient cycling, the formation of cloud condensation nuclei from tree volatiles and by CO2 sequestration into PSCs in the wood of living and dead forest trees.
Collapse
Affiliation(s)
- Jarmo K. Holopainen
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Virpi Virjamo
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Rajendra P. Ghimire
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - James D. Blande
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
31
|
Müller C, Orians CM. From plants to herbivores: novel insights into the ecological and evolutionary consequences of plant variation. Oecologia 2018; 187:357-360. [DOI: 10.1007/s00442-018-4126-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
|