1
|
Luo Y, Du L, Zhang J, Ren H, Shen Y, Zhang J, Li N, Tian R, Wang S, Liu H, Xu Z. Nitrogen addition alleviates the adverse effects of drought on plant productivity in a temperate steppe. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2969. [PMID: 38562107 DOI: 10.1002/eap.2969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 04/04/2024]
Abstract
Drought and nitrogen enrichment could profoundly affect the productivity of semiarid ecosystems. However, how ecosystem productivity will respond to different drought scenarios, especially with a concurrent increase in nitrogen availability, is still poorly understood. Using data from a 4-year field experiment conducted in a semiarid temperate steppe, we explored the responses of aboveground net primary productivity (ANPP) to different drought scenarios and nitrogen addition, and the underlying mechanisms linking soil properties, plant species richness, functional diversity (community-weighted means of plant traits, functional dispersion) and phylogenetic diversity (net relatedness index) to ANPP. Our results showed that completely excluding precipitation in June (1-month intense drought) and reducing half the precipitation amount from June to August (season-long chronic drought) both significantly reduced ANPP, with the latter having a more negative impact on ANPP. However, reducing half of the precipitation frequency from June to August (precipitation redistribution) had no significant effect on ANPP. Nitrogen addition increased ANPP irrespective of drought scenarios. ANPP was primarily determined by soil moisture and nitrogen availability by regulating the community-weighted means of plant height, rather than other aspects of plant diversity. Our findings suggest that precipitation amount is more important than precipitation redistribution in influencing the productivity of temperate steppe, and nitrogen supply could alleviate the adverse impacts of drought on grassland productivity. Our study advances the mechanistic understanding of how the temperate grassland responds to drought stress, and implies that management strategies to protect tall species in the community would be beneficial for maintaining the productivity and carbon sequestration of grassland ecosystems under climate drought.
Collapse
Affiliation(s)
- Yonghong Luo
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lan Du
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jiatao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Haiyan Ren
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Shen
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jinbao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Na Li
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ru Tian
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Shan Wang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Heyong Liu
- School of Life Sciences, Hebei University, Baoding, China
| | - Zhuwen Xu
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, China
| |
Collapse
|
2
|
Li X, Song Z, Hu Y, Qiao J, Chen Y, Wang S, Yue P, Chen M, Ke Y, Xu C, Yu Q, Zuo X. Drought intensity and post-drought precipitation determine vegetation recovery in a desert steppe in Inner Mongolia, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167449. [PMID: 37832659 DOI: 10.1016/j.scitotenv.2023.167449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Extreme drought events are expected to increase in frequency and severity, posing significant threats to ecosystems worldwide. While considerable research has been concentrated on the effects of climate extremes on the stability of grasslands, the process by which grassland productivity may recover after extreme drought events are still not well understood. Here, we conducted a four-year (2019-2022) recovery investigation after four-year's (2015-2018) extreme drought treatments of different intensities (control, press and pulse) to explore the vegetation recovery of desert-grassland ecosystems Inner Mongolia, China. Press drought involved a 66 % reduction in natural precipitation from May to August, while pulse drought reduced it by 100 % during June and July. We found that both press and pulse droughts led to a sharp decrease in aboveground net primary productivity (ANPP) after four years, primarily due to reduced growth, density, and productivity of annual and perennial plants. However, ANPP under pulse drought could recover fully after four years of stopping of drought treatment, and it could not under press drought. Additionally, community structure (i.e., species richness, plant density, and height) fully recovered within 1 year after the end of the two extreme drought treatments. Both plant density and height contributed to the ANPP recovery after press and pulse droughts. Structural equation modeling (SEM) results further revealed that the reduction in ANPP during the extreme drought was primarily due to a decrease in plant density caused by reduced soil water content. The recovery of ANPP in pulse drought was directly caused by increased soil water content in the post-extreme drought. These results suggest that drought intensity and precipitation determine ANPP recovery in a degraded desert steppe. Our findings are crucial for deepening understanding of the processes and mechanisms of ecosystem recovery after extreme drought, as well as for the successful management and protection of grassland ecosystems.
Collapse
Affiliation(s)
- Xiangyun Li
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Zhaobin Song
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Ya Hu
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Jingjuan Qiao
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Yuheng Chen
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Shaokun Wang
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Ping Yue
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Min Chen
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Yuguang Ke
- Hulunber Grassland Ecosystem National Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Chong Xu
- Hulunber Grassland Ecosystem National Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing 10008, China
| | - Xiaoan Zuo
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
3
|
Liu Q, Eisenhauer N, Scheu S, Angst G, Bücker M, Huang Y, Meador TB, Schädler M. Climate-dependent plant responses to earthworms in two land-use types. Oecologia 2024; 204:133-146. [PMID: 38147134 PMCID: PMC10830777 DOI: 10.1007/s00442-023-05493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Plant nutrient uptake and productivity are driven by a multitude of factors that have been modified by human activities, like climate change and the activity of decomposers. However, interactive effects of climate change and key decomposer groups like earthworms have rarely been studied. In a field microcosm experiment, we investigated the effects of a mean future climate scenario with warming (+ 0.50 °C to + 0.62 °C) and altered precipitation (+ 10% in spring and autumn, - 20% in summer) and earthworms (anecic-two Lumbricus terrestris, endogeic-four Allolobophora chlorotica and both together within 10 cm diameter tubes) on plant biomass and stoichiometry in two land-use types (intensively used meadow and conventional farming). We found little evidence for earthworm effects on aboveground biomass. However, future climate increased above- (+40.9%) and belowground biomass (+44.7%) of grass communities, which was mainly driven by production of the dominant Festulolium species during non-summer drought periods, but decreased the aboveground biomass (- 36.9%) of winter wheat. Projected climate change and earthworms interactively affected the N content and C:N ratio of grasses. Earthworms enhanced the N content (+1.2%) thereby decreasing the C:N ratio (- 4.1%) in grasses, but only under ambient climate conditions. The future climate treatment generally decreased the N content of grasses (aboveground: - 1.1%, belowground: - 0.15%) and winter wheat (- 0.14%), resulting in an increase in C:N ratio of grasses (aboveground: + 4.2%, belowground: +6.3%) and wheat (+5.9%). Our results suggest that climate change diminishes the positive effects of earthworms on plant nutrient uptakes due to soil water deficit, especially during summer drought.
Collapse
Affiliation(s)
- Qun Liu
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle (Saale), Germany.
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany.
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Leipzig University, Leipzig, Germany
| | - Stefan Scheu
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Gerrit Angst
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Leipzig University, Leipzig, Germany
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, České Budějovice, Czech Republic
| | - Miriam Bücker
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Leipzig University, Leipzig, Germany
| | - Travis B Meador
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Martin Schädler
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Chen W, Jiang L, Jia R, Tang B, Jiang H, Wang Y, Lu X, Su J, Bai Y. Plant litter loss exacerbates drought influences on grasslands. THE NEW PHYTOLOGIST 2024; 241:142-153. [PMID: 37932883 DOI: 10.1111/nph.19374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023]
Abstract
Plant litter is known to affect soil, community, and ecosystem properties. However, we know little about the capacity of litter to modulate grassland responses to climate change. Using a 7-yr litter removal experiment in a semiarid grassland, here we examined how litter removal interacts with a 2-yr drought to affect soil environments, plant community composition, and ecosystem function. Litter loss exacerbates the negative impacts of drought on grasslands. Litter removal increased soil temperature but reduced soil moisture and nitrogen mineralization, which substantially increased the negative impacts of drought on primary productivity and the abundance of perennial rhizomatous graminoids. Moreover, complete litter removal shifted plant community composition from grass-dominated to forb-dominated and reduced species and functional group asynchrony, resulting in lower ecosystem temporal stability. Our results suggest that ecological processes that lead to reduction in litter, such as burning, grazing, and haying, may render ecosystems more vulnerable and impair the capacity of grasslands to withstand drought events.
Collapse
Affiliation(s)
- Wanjie Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruoyu Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Bo Tang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongzhi Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaoming Lu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jishuai Su
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
5
|
Li S, Lu S, Li X, Hou X, Zhao X, Xu X, Zhao N. Effects of Spring Drought and Nitrogen Addition on Productivity and Community Composition of Degraded Grasslands. PLANTS (BASEL, SWITZERLAND) 2023; 12:2836. [PMID: 37570989 PMCID: PMC10421370 DOI: 10.3390/plants12152836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
To explore whether there were differences among the patterns of response of grasslands with different levels of degradation to extreme drought events and nitrogen addition, three grasslands along a degradation gradient (extremely, moderately, and lightly degraded) were selected in the Bashang area of northern China using the human disturbance index (HDI). A field experiment with simulated extreme spring drought, nitrogen addition, and their interaction was conducted during the growing seasons of 2020 and 2021. The soil moisture, aboveground biomass, and composition of the plant community were measured. The primary results were as follows. (1) Drought treatment caused soil drought stress, with moderately degraded grassland being the most affected, which resulted in an 80% decrease in soil moisture and a 78% decrease in aboveground biomass. The addition of nitrogen did not mitigate the impact of drought. Moreover, the aboveground net primary production (ANPP) in 2021 was less sensitive to spring drought than in 2020. (2) The community composition changed after 2 years of drought treatment, particularly for the moderately degraded grasslands with annual forbs, such as Salsola collina, increasing significantly in biomass proportion, which led to a trend of exacerbated degradation (higher HDI). This degradation trend decreased under the addition of nitrogen. (3) The variation in drought sensitivities of the ANPP was primarily determined by the proportion of plants based on the classification of degradation indicators in the community, with higher proportions of intermediate degradation indicator species exhibiting more sensitivity to spring drought. These findings can help to provide scientific evidence for the governance and restoration of regional degraded grassland under frequent extreme weather conditions.
Collapse
Affiliation(s)
- Shaoning Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (S.L.); (S.L.)
- Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102203, China
| | - Shaowei Lu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (S.L.); (S.L.)
- Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102203, China
| | - Xiaohui Li
- Huamugou Forest Farm, Hexigten Banner, Chifeng City, Inner Mongolia Autonomous Region, Chifeng 025350, China
| | - Xingchen Hou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (S.L.); (S.L.)
- Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102203, China
| | - Xi Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (S.L.); (S.L.)
- Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102203, China
| | - Xiaotian Xu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (S.L.); (S.L.)
- Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
| | - Na Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (S.L.); (S.L.)
- Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
| |
Collapse
|
6
|
Drought Timing Modulates Soil Moisture Thresholds for CO2 Fluxes and Vegetation Responses in an Experimental Alpine Grassland. Ecosystems 2023. [DOI: 10.1007/s10021-023-00831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
AbstractDrought timing determines the degree to which dry events impact ecosystems, with the ability of key processes to withstand change differing between drought periods. Findings indicate that drought timing effects vary across ecosystems, with few studies focusing on alpine grasslands. We conducted a mesocosm experiment using small grassland monoliths collected in September from the high Alps and left to overwinter at 0 °C until the experiment began in lowland Italy under late-winter outdoor conditions. Together with watered controls, we imposed three different drought treatments (zero precipitation): (1) one-month early-drought immediately after simulated snowmelt; (2) one-month mid-drought a month after melt-out; and (3) continuous two-month drought across the entire experimental period. Ecosystem responses were assessed by measuring CO2 fluxes, while vegetation responses were investigated by measuring aboveground net primary production (ANPP) of graminoids and forbs and post-harvest resprouting after one-month rehydration. We found that ecosystem respiration and gross ecosystem production (GEP) during the day were more negatively affected by mid-season drought compared to drought starting early in the season. By the end of treatments, GEP reduction under mid-season drought was similar to that of a continuous two-month drought. ANPP reduction was similar in early- and mid-drought treatments, showing a greater decrease under an enforced two-month period without precipitation. Plant resprouting, however, was only reduced in full- and mid-season drought pots, with forbs more negatively affected than graminoids. Seasonal soil moisture variation can account for these patterns: remaining winter moisture allowed almost full canopy development during the first month of the season, despite precipitation being withheld, while soil moisture depletion in the second month, resulting from higher temperatures and greater biomass, caused a collapse of gas exchange and diminished plant resprouting. Our data illustrates the importance of the timing of zero-precipitation periods for both plant and ecosystem responses in alpine grasslands.
Collapse
|
7
|
Zhou H, Hou L, Lv X, Yang G, Wang Y, Wang X. Compensatory growth as a response to post-drought in grassland. FRONTIERS IN PLANT SCIENCE 2022; 13:1004553. [PMID: 36531403 PMCID: PMC9752846 DOI: 10.3389/fpls.2022.1004553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Grasslands are structurally and functionally controlled by water availability. Ongoing global change is threatening the sustainability of grassland ecosystems through chronic alterations in climate patterns and resource availability, as well as by the increasing frequency and intensity of anthropogenic perturbations. Compared with many studies on how grassland ecosystems respond during drought, there are far fewer studies focused on grassland dynamics after drought. Compensatory growth, as the ability of plants to offset the adverse effects of environmental or anthropogenic perturbations, is a common phenomenon in grassland. However, compensatory growth induced by drought and its underlying mechanism across grasslands remains not clear. In this review, we provide examples of analogous compensatory growth from different grassland types across drought characteristics (intensity, timing, and duration) and explain the effect of resource availability on compensatory growth and their underlying mechanisms. Based on our review of the literature, a hypothetic framework for integrating plant, root, and microbial responses is also proposed to increase our understanding of compensatory growth after drought. This research will advance our understanding of the mechanisms of grassland ecosystem functioning in response to climate change.
Collapse
Affiliation(s)
- Huailin Zhou
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
| | - Lulu Hou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomin Lv
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
| | - Guang Yang
- College of Teacher Education, Capital Normal University, Beijing, China
| | - Yuhui Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xu Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
He C, Zhao Y, Wang Y, Cai J, Gao J, Zhang J. Forage quality and physiological performance of mowed alfalfa ( Medicago sativa L.) subjected to combined light quality and drought. FRONTIERS IN PLANT SCIENCE 2022; 13:1047294. [PMID: 36483958 PMCID: PMC9723141 DOI: 10.3389/fpls.2022.1047294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Alfalfa (Medicago sativa) can dwell in water-deficient habitats, where it is difficult to predict dry mass (DM) production and forage quality due to understory transmittance. Mowing is a recommended practice for alfalfa populations under drought, but its effect on forested land receives less attention. In a controlled indoor experiment, we found that drought better reduces shoot DM weight and crude fiber content (CFi) in blue light (33.7% red, 48.5% green, and 17.8% blue lights) than red light (71.7% red, 13.7% green, and 14.6% blue lights). Mowing decreases carbon (C) isotope signature (δ13C), CFi, and total C content in shoots but increases their accumulations in DM, nonstructural carbohydrates, and crude fat content (CFa). The results also demonstrated that mown alfalfa has higher starch content when exposed to green light (26.2% red, 56.4% green, and 17.4% blue lights) compared to the other two spectra. Multiple factorial regression indicated that higher soluble sugar content accounted for the increase of CFa and DM weight for CFi. Overall, mowing in blue-light-enriched understory stands is recommended and produces high-forage-quality alfalfa, which can be used as a lowered crude fiber component.
Collapse
Affiliation(s)
- Chunxia He
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Henan Xiaolangdi Earth Critical Zone National Research Station on the Middle Yellow River, Jiyuan, China
| | - Yan Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yao Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Henan Xiaolangdi Earth Critical Zone National Research Station on the Middle Yellow River, Jiyuan, China
| | - Jinfeng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jun Gao
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Henan Xiaolangdi Earth Critical Zone National Research Station on the Middle Yellow River, Jiyuan, China
| | - Jinsong Zhang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Henan Xiaolangdi Earth Critical Zone National Research Station on the Middle Yellow River, Jiyuan, China
| |
Collapse
|
9
|
Qian R, Hao Y, Li L, Zheng Z, Wen F, Cui X, Wang Y, Zhao T, Tang Z, Du J, Xue K. Joint control of seasonal timing and plant function types on drought responses of soil respiration in a semiarid grassland. FRONTIERS IN PLANT SCIENCE 2022; 13:974418. [PMID: 36046587 PMCID: PMC9421296 DOI: 10.3389/fpls.2022.974418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Globally, droughts are the most widespread climate factor impacting carbon (C) cycling. However, as the second-largest terrestrial C flux, the responses of soil respiration (Rs) to extreme droughts co-regulated by seasonal timing and PFT (plant functional type) are still not well understood. Here, a manipulative extreme-duration drought experiment (consecutive 30 days without rainfall) was designed to address the importance of drought timing (early-, mid-, or late growing season) for Rs and its components (heterotrophic respiration (Rh) and autotrophic respiration (Ra)) under three PFT treatments (two graminoids, two shrubs, and their combination). The results suggested that regardless of PFT, the mid-drought had the greatest negative effects while early-drought overall had little effect on Rh and its dominated Rs. However, PFT treatments had significant effects on Rh and Rs in response to the late drought, which was PFT-dependence: reduction in shrubs and combination but not in graminoids. Path analysis suggested that the decrease in Rs and Rh under droughts was through low soil water content induced reduction in MBC and GPP. These findings demonstrate that responses of Rs to droughts depend on seasonal timing and communities. Future droughts with different seasonal timing and induced shifts in plant structure would bring large uncertainty in predicting C dynamics under climate changes.
Collapse
Affiliation(s)
- Ruyan Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Linfeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenzhen Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fuqi Wen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Wang
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tong Zhao
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ziyang Tang
- The High School Affiliated to Renmin University of China, Beijing, China
| | - Jianqing Du
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Xue
- Yanshan Mountains Earth Critical Zone and Surface Flux Research Station, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Guo J, Richards CL, Holsinger KE, Fox GA, Zhang Z, Zhou C. Genetic structure in patchy populations of a candidate foundation plant: a case study of Leymus chinensis using genetic and clonal diversity. AMERICAN JOURNAL OF BOTANY 2021; 108:2371-2387. [PMID: 34636406 DOI: 10.1002/ajb2.1771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The distribution of genetic diversity on the landscape has critical ecological and evolutionary implications. This may be especially the case on a local scale for foundation plant species because they create and define ecological communities, contributing disproportionately to ecosystem function. METHODS We examined the distribution of genetic diversity and clones, which we defined first as unique multilocus genotypes (MLG), and then by grouping similar MLGs into multilocus lineages. We used 186 markers from inter-simple sequence repeats (ISSR) across 358 ramets from 13 patches of the foundation grass Leymus chinensis. We examined the relationship between genetic and clonal diversities, their variation with patch size, and the effect of the number of markers used to evaluate genetic diversity and structure in this species. RESULTS Every ramet had a unique MLG. Almost all patches consisted of individuals belonging to a single multilocus lineages. We confirmed this with a clustering algorithm to group related genotypes. The predominance of a single lineage within each patch could be the result of the accumulation of somatic mutations, limited dispersal, some sexual reproduction with partners mainly restricted to the same patch, or a combination of all three. CONCLUSIONS We found strong genetic structure among patches of L. chinensis. Consistent with previous work on the species, the clustering of similar genotypes within patches suggests that clonal reproduction combined with somatic mutation, limited dispersal, and some degree of sexual reproduction among neighbors causes individuals within a patch to be more closely related than among patches.
Collapse
Affiliation(s)
- Jian Guo
- School of Life Science, Liaoning University, Shenyang, 110036, P.R. China
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Christina L Richards
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
- Plant Evolutionary Ecology group, University of Tübingen, Tübingen, D-72076, Germany
| | - Kent E Holsinger
- Department of Ecology and Evolutionary Biology, University of Connecticut, U-3043, Storrs, Connecticut, 06269, USA
| | - Gordon A Fox
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Zhuo Zhang
- School of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, P.R. China
| | - Chan Zhou
- School of Life Science, Liaoning University, Shenyang, 110036, P.R. China
| |
Collapse
|
11
|
Zhang J, Gao X, Zheng X, Yang Y, Fan G, Shi Y, Wang J, Mu C. A high stem to leaf ratio reduced rainfall use efficiency under altered rainfall patterns in a semi-arid grassland in northeast China. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:760-769. [PMID: 33915008 DOI: 10.1111/plb.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Rainfall use efficiency (RUE) is crucial for understanding the changes in grassland productivity due to variations in future rainfall patterns. Recently, numerous studies have been conducted on the relationship between RUE and the amount of rainfall, but there has been little research on the influence of rainfall distribution and the interactive effect of rainfall amounts and distribution on RUE. Here, a simulated rainfall experiment was conducted to evaluate the impacts of rainfall amount (average rainfall amount (R0), 334 mm; decreased (R-) and increased (R+) rainfall amounts, 233 mm and 434 mm, respectively) and dry intervals (comprising 6-day, 9-day, 12-day, 15-day, 18-day and 21-day intervals between rainfall) on productivity and RUE in Leymus chinensis (Trin.) Tzvel., a dominant grass of the Eastern Eurasian Steppe. Our results showed that (1) for biomass production and RUE, moderate extension of dry intervals was conducive to enhancing total biomass production and RUE. The peak values of total biomass and RUE appeared during the 15-day interval for R-, and the 18-day interval for R0 and R+. (2) For biomass allocation, extension of dry intervals decreased the stem to leaf ratio (S/L) and the root to shoot ratio (R/S). (3) Further, the S/L ratio was significantly negatively correlated with RUE. These results suggest that variations in rainfall patterns can alter the RUE by changing the S/L ratio, and finally influence biomass production in L. chinensis. These findings have important implications for understanding and predicting the effect of future climate change on productivity in semi-arid grassland.
Collapse
Affiliation(s)
- J Zhang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - X Gao
- Meteorological Observatory of Jilin Province, Changchun Jilin Province, 130062, China
| | - X Zheng
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Y Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - G Fan
- Key Laboratory of Photobiology, Institute of botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Y Shi
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - J Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - C Mu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
12
|
Meng B, Li J, Maurer GE, Zhong S, Yao Y, Yang X, Collins SL, Sun W. Nitrogen addition amplifies the nonlinear drought response of grassland productivity to extended growing-season droughts. Ecology 2021; 102:e03483. [PMID: 34287849 DOI: 10.1002/ecy.3483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 11/09/2022]
Abstract
Understanding the response of grassland production and carbon exchange to intra-annual variation in precipitation and nitrogen addition is critical for sustainable grassland management and ecosystem restoration. We introduced growing-season drought treatments of different lengths (15, 30, 45 and 60 d drought) by delaying growing-season precipitation in a long-term nitrogen addition experiment in a low diversity meadow steppe in northeast China. Response variables included aboveground biomass (AGB), ecosystem net carbon exchange (NEE), and leaf net carbon assimilation rate (A). In unfertilized plots drought decreased AGB by 13.7% after a 45-d drought and 31.7% after a 60-d drought (47.6% in fertilized plots). Progressive increases in the drought response of NEE were also observed. The effects of N addition on the drought response of productivity increased as drought duration increased, and these responses were a function of changes in AGB and biomass allocation, particularly root to shoot ratio. However, no significant effects of drought occurred in fertilized or unfertilized plots in the growing season a year after the experiment, N addition did limit the recovery of AGB from severe drought during the remainder of the current growing season. Our results imply that chronic N enrichment could exacerbate the effects of growing-season drought on grassland productivity caused by altered precipitation seasonality under climate change, but that these effects do not carry over to the next growing season.
Collapse
Affiliation(s)
- Bo Meng
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China.,Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Junqin Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Gregory E Maurer
- Jornada Basin LTER Program, New Mexico State University, Las Cruces, New Mexico, 88003, USA
| | - Shangzhi Zhong
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 255109, China
| | - Yuan Yao
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Xuechen Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China.,Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
13
|
Liu Y, Xu M, Li G, Wang M, Li Z, De Boeck HJ. Changes of Aboveground and Belowground Biomass Allocation in Four Dominant Grassland Species Across a Precipitation Gradient. FRONTIERS IN PLANT SCIENCE 2021; 12:650802. [PMID: 33927740 PMCID: PMC8076907 DOI: 10.3389/fpls.2021.650802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Climate change is predicted to affect plant growth, but also the allocation of biomass to aboveground and belowground plant parts. To date, studies have mostly focused on aboveground biomass, while belowground biomass and allocation patterns have received less attention. We investigated changes in biomass allocation along a controlled gradient of precipitation in an experiment with four plant species (Leymus chinensis, Stipa grandis, Artemisia frigida, and Potentilla acaulis) dominant in Inner Mongolia steppe. Results showed that aboveground biomass, belowground biomass and total biomass all increased with increasing growing season precipitation, as expected in this water-limited ecosystem. Biomass allocation patterns also changed along the precipitation gradient, but significant variation between species was apparent. Specifically, the belowground biomass: aboveground biomass ratio (i.e., B:A ratio) of S. grandis was not impacted by precipitation amount, while B:A ratios of the other three species changed in different ways along the gradient. Some of these differences in allocation strategies may be related to morphological differences, specifically, the presence of rhizomes or stolons, though no consistent patterns emerged. Isometric partitioning, i.e., constant allocation of biomass aboveground and belowground, seemed to occur for one species (S. grandis), but not for the three rhizome or stolon-forming ones. Indeed, for these species, the slope of the allometric regression between log-transformed belowground biomass and log-transformed aboveground biomass significantly differed from 1.0 and B:A ratios changed along the precipitation gradient. As changes in biomass allocation can affect ecosystem functioning and services, our results can be used as a basis for further studies into allocation patterns, especially in a context of environmental change.
Collapse
Affiliation(s)
- Yongjie Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mingjie Xu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Guoe Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mingxia Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhenqing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hans J. De Boeck
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
14
|
Zhang J, Shen X, Mu B, Shi Y, Yang Y, Wu X, Mu C, Wang J. Moderately prolonged dry intervals between precipitation events promote production in Leymus chinensis in a semi-arid grassland of Northeast China. BMC PLANT BIOLOGY 2021; 21:147. [PMID: 33743593 PMCID: PMC7981859 DOI: 10.1186/s12870-021-02920-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Climate change is predicted to lead to changes in the amount and distribution of precipitation during the growing seasonal. This "repackaging" of rainfall could be particularly important for grassland productivity. Here, we designed a two-factor full factorial experiment (three levels of precipitation amount and six levels of dry intervals) to investigate the effect of precipitation patterns on biomass production in Leymus chinensis (Trin.) Tzvel. (a dominant species in the Eastern Eurasian Steppe). RESULTS Our results showed that increased amounts of rainfall with prolonged dry intervals promoted biomass production in L. chinensis by increasing soil moisture, except for the longest dry interval (21 days). However, prolonged dry intervals with increased amount of precipitation per event decreased the available soil nitrogen content, especially the soil NO3--N content. For small with more frequent rainfall events pattern, L. chinensis biomass decreased due to smaller plant size (plant height) and fewer ramets. Under large quantities of rain falling during a few events, the reduction in biomass was not only affected by decreasing plant individual size and lower ramet number but also by withering of aboveground parts, which resulted from both lower soil water content and lower NO3--N content. CONCLUSION Our study suggests that prolonged dry intervals between rainfall combined with large precipitation events will dramatically change grassland productivity in the future. For certain combinations of prolonged dry intervals and increased amounts of intervening rainfall, semi-arid grassland productivity may improve. However, this rainfall pattern may accelerate the loss of available soil nitrogen. Under extremely prolonged dry intervals, the periods between precipitation events exceeded the soil moisture recharge interval, the available soil moisture became fully depleted, and plant growth ceased. This implies that changes in the seasonal distribution of rainfall due to climate change could have a major impact on grassland productivity.
Collapse
Affiliation(s)
- Jinwei Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, Changchun, 130024, P.R. China
| | - Xiangjin Shen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, P.R. China
| | - Bifan Mu
- School of Life Sciences, Northeast Normal University, Changchun, 130024, P.R. China
| | - Yujie Shi
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, Changchun, 130024, P.R. China
| | - Yuheng Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, Changchun, 130024, P.R. China
| | - Xuefeng Wu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, Changchun, 130024, P.R. China
| | - Chunsheng Mu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, Changchun, 130024, P.R. China.
| | - Junfeng Wang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, Changchun, 130024, P.R. China.
| |
Collapse
|
15
|
Yang X, Henry HAL, Zhong S, Meng B, Wang C, Gao Y, Sun W. Towards a mechanistic understanding of soil nitrogen availability responses to summer vs. winter drought in a semiarid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140272. [PMID: 32570067 DOI: 10.1016/j.scitotenv.2020.140272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
More frequent and intense drought events resulting from climate change are anticipated to become important drivers of change for terrestrial ecosystem function by affecting water and nutrient cycles. In semiarid grasslands, the responses of soil nitrogen availability to severe drought and the underlying mechanisms are largely unknown. Moreover, the responses and mechanisms may vary between summer and winter drought. We examined soil nitrogen availability responses to extreme reductions in precipitation over summer and winter using a field experiment in a semiarid grassland located in northeast China, and we explored the mechanisms by examining associated changes in abiotic factors (soil property responses) and biotic factors (plant and soil microbial responses). The results demonstrated that both the summer and winter severe drought treatments significantly reduced plant and microbial biomass, whereas summer drought also changed soil microbial community structure. Summer drought, winter drought and combined summer and winter drought decreased the resistance of soil nitrogen availability by 38.7 ± 11.1%, 43.3 ± 11.4% and 43.8 ± 6.0%, respectively. While both changes in abiotic factors (reduced soil water content and total nitrogen content) and biotic factors (reduced plant and microbial biomass) explained the resistance of soil nitrogen availability to drought over summer, only changes in biotic factors (reduced plant and microbial biomass) explained the legacy effect of winter drought. Our results highlight that severe drought can have important consequences for nitrogen cycling in semiarid grasslands, and that both the effects of summer and winter drought must be accounted for in predicting these responses.
Collapse
Affiliation(s)
- Xuechen Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Hugh A L Henry
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Shangzhi Zhong
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Bo Meng
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Chengliang Wang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Ying Gao
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, PR China.
| |
Collapse
|