1
|
Zhang G, Li Z, Chen G, Zhang L, Cai W, Deng S, Zhang H, Wu L, Li H, Liu H. Purification and characterization of the low molecular weight xylanase from Bacillus cereus L-1. Braz J Microbiol 2023; 54:2951-2959. [PMID: 37843795 PMCID: PMC10689628 DOI: 10.1007/s42770-023-01129-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/10/2023] [Indexed: 10/17/2023] Open
Abstract
Xylanase is widely used in various industries such as food processing, paper, textiles, and leather tanning. In this study, Bacillus cereus L-1 strain was isolated and identified as capable of producing low molecular weight xylanase through 16 s rRNA sequencing. Maximum xylanase yield of 15.51 ± 2.08 U/mL was achieved under optimal fermentation conditions (5% inoculum, 20 g/L xylan, pH 6.0, for 24 h). After purification via ammonium sulfate precipitation and High-S ion exchange chromatography, electrophoretic purity xylanase was obtained with a 28-fold purification and specific activity of 244.97 U/mg. Xylanase had an optimal pH of 6.5 and temperature of 60 °C and displayed thermostability at 30 °C and 40 °C with 48.56% and 45.97% remaining activity after 180 min, respectively. The xylanase retained more than 82.97% of its activity after incubation for 24 h at pH 5.0 and was sensitive to metal ions, especially Mg2+ and Li+. Purified xylanase showed a molecular weight of 23 kDa on SDS-PAGE, and partial peptide sequencing revealed homology to the endo-1,4-beta-xylanase with a molecular weight of 23.3 kDa through LC/MS-MS (liquid chromatography-tandem mass spectrometry). This study suggests that the purified xylanase is easier to purify and enriches low molecular weight xylanases from bacteria source.
Collapse
Affiliation(s)
- Ge Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zhihao Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Yichang Tobacco Company of Hubei Province, Yichang, 443000, China
| | - Guoqiang Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Liang Zhang
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Wen Cai
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Shuaijun Deng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Haibo Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Lijun Wu
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650032, China.
| | - Hongtao Li
- Technology Center of China Tobacco Shandong Industrial Co., Ltd, Qingdao, 266101, China.
| | - Haobao Liu
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
2
|
Genomic attributes of thermophilic and hyperthermophilic bacteria and archaea. World J Microbiol Biotechnol 2022; 38:135. [PMID: 35695998 DOI: 10.1007/s11274-022-03327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Thermophiles and hyperthermophiles are immensely useful in understanding the evolution of life, besides their utility in environmental and industrial biotechnology. Advancements in sequencing technologies have revolutionized the field of microbial genomics. The massive generation of data enhances the sequencing coverage multi-fold and allows to analyse the entire genomic features of microbes efficiently and accurately. The mandate of a pure isolate can also be bypassed where whole metagenome-assembled genomes and single cell-based sequencing have fulfilled the majority of the criteria to decode various attributes of microbial genomes. A boom has, therefore, been seen in analysing the extremophilic bacteria and archaea using sequence-based approaches. Due to extensive sequence analysis, it becomes easier to understand the gene flow and their evolution among the members of bacteria and archaea. For instance, sequencing unveiled that Thermotoga maritima shares around 24% of genes of archaeal origin. Comparative and functional genomics provide an analytical view to understanding the microbial diversity of thermophilic bacteria and archaea, their interactions with other microbes, their adaptations, gene flow, and evolution over time. In this review, the genomic features of thermophilic bacteria and archaea are dealt with comprehensively.
Collapse
|
3
|
Effect of Xylanase and Pentosanase Enzymes on Dough Rheological Properties and Quality of Baguette Bread. J FOOD QUALITY 2022. [DOI: 10.1155/2022/2910821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The wheat flour baguette bread is one of the most important foods throughout the world. Therefore, improving the quality of this type of white bread has always been of interest. In this study, the effect of xylanase and pentosanase enzymes on the rheological properties of dough and baguette bread characteristics was investigated. Adding xylanase and/or pentosanase had led to improve rheological properties of the dough. Using 0.2 gr pentosanase in 100 g flour significantly strengthened the gluten network of the dough. Also, this treatment had the lowest extensibility and the highest resistance ratio number. The treatment containing 0.6 g xylanase and 0.1 g pentosanase in 100 g flour had a higher moisture content on the first, third, and fifth days of storage time. Regarding the color of the crust of the produced bread, it was found that the addition of both enzymes at higher levels, especially in enzyme mixtures, decreased the brightness of the bread crust. Due to the organoleptic features of breads, adding xylanase and pentosanase enzymes could improve the volume and crumb texture of the bread, but no significant difference was observed in baking uniformity, physical shape, taste, and odor of bread crumbs. In conclusion, the findings in this study indicated that the type of enzymes added and enzyme levels affected dough rheology, bread properties, and quality of the baguette bread significantly.
Collapse
|
4
|
Cloning, expression, and characterization of a recombinant xylanase from Bacillus sonorensis T6. PLoS One 2022; 17:e0265647. [PMID: 35298551 PMCID: PMC8929556 DOI: 10.1371/journal.pone.0265647] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/05/2022] [Indexed: 11/19/2022] Open
Abstract
Xylanase is one of industrial enzymes with diverse applications including the paper-bleaching industry and feed additives. Here, a strain having xylanolytic activity and identified as Bacillus sonorensis T6 was isolated from soil. A secretory enzyme was identified by mass-spectrometry as a xylanase of glycosyl hydrolase family 11, with a molecular weight of 23.3 kDa. The xylanase gene of Bacillus sonorensis T6 was cloned and expressed in Escherichia coli (yielding an enzyme designated as rXynT6-E) and in Pichia pastoris (yielding rXynT6-P). The recombinant xylanases were found to have optimal activity at 47–55°C and pH 6.0–7.0. The recombinant xylanase expressed in P. pastoris has 40% higher thermal stability than that expressed in E. coli. The recombinant xylanases retained 100% of activity after 10 h incubation in the pH range 3–11 and 68% of activity after 1 h at pH 2.0. The xylanase activities of rXynT6-E and rXynT6-P under optimal conditions were 1030.2 and 873.8 U/mg, respectively. The good stability in a wide range of pH and moderate temperatures may make the xylanase from Bacillus sonorensis T6 useful for various biotechnological applications, e.g., as an enzyme additive in the feed industry.
Collapse
|
5
|
Paecilomyces variotii xylanase production, purification and characterization with antioxidant xylo-oligosaccharides production. Sci Rep 2021; 11:16468. [PMID: 34389757 PMCID: PMC8363652 DOI: 10.1038/s41598-021-95965-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Paecilomyces variotii xylanase was, produced in stirred tank bioreactor with yield of 760 U/mL and purified using 70% ammonium sulfate precipitation and ultra-filtration causing 3.29-fold purification with 34.47% activity recovery. The enzyme purity was analyzed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) confirming its monomeric nature as single band at 32 KDa. Zymography showed xylan hydrolysis activity at the same band. The purified enzyme had optimum activity at 60 °C and pH 5.0. The pH stability range was 5-9 and the temperature stability was up 70 °C. Fe2+and Fe3+ exhibited inhibition of xylanase enzyme while Cu2+, Ca2+, Mg2+ and Mn2+ stimulated its activity. Mercaptoethanol stimulated its activity; however, Na2-EDTA and SDS inhibited its activity. The purified xylanase could hydrolyze beechwood xylan but not carboxymethyl cellulose (CMC), avicel or soluble starch. Paecilomyces variotii xylanase Km and Vmax for beechwood were determined to be 3.33 mg/mL and 5555 U/mg, respectively. The produced xylanase enzyme applied on beech xylan resulted in different types of XOS. The antioxidant activity of xylo-oligosaccharides increased from 15.22 to 70.57% when the extract concentration was increased from 0.1 to 1.5 mg/mL. The enzyme characteristics and kinetic parameters indicated its high efficiency in the hydrolysis of xylan and its potential effectiveness in lignocellulosic hydrolysis and other industrial application. It also suggests the potential of xylanase enzyme for production of XOS from biomass which are useful in food and pharmaceutical industries.
Collapse
|
6
|
Cao L, Zhang R, Zhou J, Huang Z. Biotechnological Aspects of Salt-Tolerant Xylanases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8610-8624. [PMID: 34324332 DOI: 10.1021/acs.jafc.1c03192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
β-1,4-Xylan is the main component of hemicelluloses in land plant cell walls, whereas β-1,3-xylan is widely found in seaweed cell walls. Complete hydrolysis of xylan requires a series of synergistically acting xylanases. High-saline environments, such as saline-alkali lands and oceans, frequently occur in nature and are also involved in a broad range of various industrial processes. Thus, salt-tolerant xylanases may contribute to high-salt and marine food processing, aquatic feed production, industrial wastewater treatment, saline-alkali soil improvement, and global carbon cycle, with great commercial and environmental benefits. This review mainly introduces the definition, sources, classification, biochemical and molecular characteristics, adaptation mechanisms, and biotechnological applications of salt-tolerant xylanases. The scope of development for salt-tolerant xylanases is also discussed. It is anticipated that this review would serve as a reference for further development and utilization of salt-tolerant xylanases and other salt-tolerant enzymes.
Collapse
Affiliation(s)
- Lijuan Cao
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
7
|
Kalim B, Ali NM, Iqbal A, Zahid MT, Rehman S, Bashir N, Ali R. Modulating the production of xylanase by Bacillus pumilus BS131 through optimization using waste fiber sludge. BRAZ J BIOL 2021; 83:e243874. [PMID: 34378658 DOI: 10.1590/1519-6984.243874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
In recent days, cheapest alternative carbon source for fermentation purpose is desirable to minimize production cost. Xylanases have become attractive enzymes as their potential in bio-bleaching of pulp and paper industry. The objective of the present study was to identify the potential ability on the xylanase production by locally isolated Bacillus pumilus BS131 by using waste fiber sludge and wheat bran media under submerged fermentation. Culture growth conditions were optimized to obtain significant amount of xylanase. Maximum xylanase production was recorded after 72 hours of incubation at 30 °C and 7 pH with 4.0% substrate concentration. In the nutshell, the production of xylanase using inexpensive waste fiber sludge and wheat-bran as an alternative in place of expensive xylan substrate was more cost effective and environment friendly.
Collapse
Affiliation(s)
- B Kalim
- GC University, Department of Zoology, Microbiology Laboratories, Lahore, Punjab, Pakistan
| | - N M Ali
- GC University, Department of Zoology, Microbiology Laboratories, Lahore, Punjab, Pakistan
| | - A Iqbal
- University of Veterinary and Animal Sciences, Department of Wild Life and Ecology, Developmental Biology Laboratories, Lahore, Punjab, Pakistan
| | - M T Zahid
- GC University, Department of Zoology, Molecular Biology Laboratories, Lahore, Punjab, Pakistan
| | - S Rehman
- GC University, Department of Zoology, Microbiology Laboratories, Lahore, Punjab, Pakistan
| | - N Bashir
- GC University, Department of Chemistry, Organic Chemistry Laboratories, Lahore, Punjab, Pakistan
| | - R Ali
- University of the Punjab, Institute of Biochemistry and Biotechnology, Biochemistry Laboratories, Lahore, Punjab, Pakistan
| |
Collapse
|
8
|
Rashid R, Sohail M. Xylanolytic Bacillus species for xylooligosaccharides production: a critical review. BIORESOUR BIOPROCESS 2021; 8:16. [PMID: 38650226 PMCID: PMC10991489 DOI: 10.1186/s40643-021-00369-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
The capacity of different Bacillus species to produce large amounts of extracellular enzymes and ability to ferment various substrates at a wide range of pH and temperature has placed them among the most promising hosts for the industrial production of many improved and novel products. The global interest in prebiotics, for example, xylooligosaccharides (XOs) is ever increasing, rousing the quest for various forms with expanded productivity. This article provides an overview of xylanase producing bacilli, with more emphasis on their capacity to be used in the production of the XOs, followed by the purification strategies, characteristics and application of XOs from bacilli. The large-scale production of XOs is carried out from a number of xylan-rich lignocellulosic materials by chemical or enzymatic hydrolysis followed by purification through chromatography, vacuum evaporation, solvent extraction or membrane separation methods. Utilization of XOs in the production of functional products as food ingredients brings well-being to individuals by improving defense system and eliminating pathogens. In addition to the effects related to health, a variety of other biological impacts have also been discussed.
Collapse
Affiliation(s)
- Rozina Rashid
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
9
|
Saleh SAA, Abdel Wahab WA, El-Dein AN, Abdelwahab WA, Ahmed AAM, Helmy WA, Mostafa FA. Characterization of Aspergillus niger MK981235 xylanase with extraction of anti-hepatotoxic, antioxidant, hypocholesterolemic and prebiotic Corchorus olitorius stems xylooligosaccharides. Int J Biol Macromol 2020; 166:677-686. [PMID: 33152359 DOI: 10.1016/j.ijbiomac.2020.10.225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 10/28/2020] [Indexed: 01/17/2023]
Abstract
The object of this study was to utilize agro-industrial waste Corchorus olitorius stems (molokhia stems, MS) as substrate, for Aspergillus niger MK981235 xylanase production and as source of biologically active xylooligosaccharides (XOS). This study succeeded in utilization of Aspergillus niger MK981235 xylanase under different saccharification conditions designed by central composite design (CCD) for extraction of 15 biologically active XOS (anti-hepatotoxic, antioxidant, hypocholesterolemic and prebiotic) with different monosaccharides constituents composition and percent. A. niger MK981235 xylanase showed the highest activity 6.60 U·ml-1 at 50 °C with 1.5% xylan. The kinetics included Km and Vmax were determined to be 6.67 mg·ml-1 and 20 μmol·ml-1·min-1, respectively. Moreover, A. niger MK981235 xylanase thermodynamics Ea (activation energy) and Ed (activation energy of denaturation) were determined to be 21.95 and 39.51 KJ·mol-1, respectively. The highest prebiotic effect (growth promation) was exerted by the central MS XOS on Lactobacillus plantarum and Lactobacillus rhamnosus (125 and 135.3%, respectively). Also, the central MS XOS, exerted the highest cholesterol reduction and antioxidant activities 74.7 and 92%, respectively, showed remarkable in vivo protective role against the hepatic toxicity of lithium carbonate evaluated by changes in body weight, liver function markers (AST, ALT, Alb, total bilirubin) and tissue makers (MDA and GSH).
Collapse
Affiliation(s)
- Shireen A A Saleh
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt
| | - Walaa A Abdel Wahab
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt
| | - Asmaa Negm El-Dein
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt
| | - Wesam Abdelsalam Abdelwahab
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amal Abdel Majid Ahmed
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Wafaa A Helmy
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt
| | - Faten A Mostafa
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
10
|
Alokika, Singh B. Production, characteristics, and biotechnological applications of microbial xylanases. Appl Microbiol Biotechnol 2019; 103:8763-8784. [PMID: 31641815 DOI: 10.1007/s00253-019-10108-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 01/29/2023]
Abstract
Microbial xylanases have gathered great attention due to their biotechnological potential at industrial scale for many processes. A variety of lignocellulosic materials, such as sugarcane bagasse, rice straw, rice bran, wheat straw, wheat bran, corn cob, and ragi bran, are used for xylanase production which also solved the great issue of solid waste management. Both solid-state and submerged fermentation have been used for xylanase production controlled by various physical and nutritional parameters. Majority of xylanases have optimum pH in the range of 4.0-9.0 with optimum temperature at 30-60 °C. For biochemical, molecular studies and also for successful application in industries, purification and characterization of xylanase have been carried out using various appropriate techniques. Cloning and genetic engineering are used for commercial-level production of xylanase, to meet specific economic viability and industrial needs. Microbial xylanases are used in various biotechnological applications like biofuel production, pulp and paper industry, baking and brewing industry, food and feed industry, and deinking of waste paper. This review describes production, characteristics, and biotechnological applications of microbial xylanases.
Collapse
Affiliation(s)
- Alokika
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India. .,Department of Biotechnology, School of Interdisciplinary and Applied Life Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana, 123031, India.
| |
Collapse
|
11
|
Abdella A, Segato F, Wilkins MR. Optimization of nutrient medium components for production of a client endo-β-1,4-xylanase from Aspergillus fumigatus var. niveus using a recombinant Aspergillus nidulans strain. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Alokika, Singh D, Singh B. Utility of acidic xylanase of Bacillus subtilis subsp. subtilis JJBS250 in improving the nutritional value of poultry feed. 3 Biotech 2018; 8:503. [PMID: 30498676 DOI: 10.1007/s13205-018-1526-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022] Open
Abstract
Cane molasses has been employed as a cost-effective medium for enhanced xylanase production in submerged fermentation. Bacillus subtilis subsp. subtilis JJBS250 produced xylanase (15.16 U/ml) at pH 4.0, 35 °C and 200 rpm after 54 h using optimized basal medium by 'one variable at a time approach'. Addition of Tween 80 and PEG 4000 also enhanced xylanase production in cane molasses medium. Combined effect of yeast extract, incubation time and PEG 4000 using statistical optimization enhanced xylanase production to 38.60 U/ml, which was 2.54-fold higher than the 'one variable at a time approach'. The efficacy of xylanase from Bacillus subtilis subsp. subtilis JJBS 250 was evaluated in the improvement of poultry feed nutrition. Xylanase addition (10 IU/g feed) enhanced liberation of reducing sugars (95.540 mg/g substrate) after 48 h at 60 °C. Optimization has resulted in enhanced production of xylanase that improved the nutritional quality of poultry feed.
Collapse
|
13
|
Improvers and functional ingredients in whole wheat bread: A review of their effects on dough properties and bread quality. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.08.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Bose H, Satyanarayana T. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives. Front Microbiol 2017; 8:1615. [PMID: 28890712 PMCID: PMC5574912 DOI: 10.3389/fmicb.2017.01615] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.
Collapse
|
15
|
Boucherba N, Gagaoua M, Bouanane-Darenfed A, Bouiche C, Bouacem K, Kerbous MY, Maafa Y, Benallaoua S. Biochemical properties of a new thermo- and solvent-stable xylanase recovered using three phase partitioning from the extract of Bacillus oceanisediminis strain SJ3. BIORESOUR BIOPROCESS 2017; 4:29. [PMID: 28736694 PMCID: PMC5498614 DOI: 10.1186/s40643-017-0161-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/01/2017] [Indexed: 11/29/2022] Open
Abstract
The present study investigates the production and partial biochemical characterization of an extracellular thermostable xylanase from the Bacillus oceanisediminis strain SJ3 newly recovered from Algerian soil using three phase partitioning (TPP). The maximum xylanase activity recorded after 2 days of incubation at 37 °C was 20.24 U/ml in the presence of oat spelt xylan. The results indicated that the enzyme recovered in the middle phase of TPP system using the optimum parameters were determined as 50% ammonium sulfate saturation with 1.0:1.5 ratio of crude extract: t-butanol at pH and temperature of 8.0 and 10 °C, respectively. The xylanase was recovered with 3.48 purification fold and 107% activity recovery. The enzyme was optimally active at pH 7.0 and was stable over a broad pH range of 5.0–10. The optimum temperature for xylanase activity was 55 °C and the half-life time at this temperature was of 6 h. At this time point the enzyme retained 50% of its activity after incubation for 2 h at 95 °C. The crude enzyme resist to sodium dodecyl sulfate and β-mercaptoethanol, while all the tested ions do not affect the activity of the enzyme. The recovered enzyme is, at least, stable in tested organic solvents except in propanol where a reduction of 46.5% was observed. Further, the stability of the xylanase was higher in hydrophobic solvents where a maximum stability was observed with cyclohexane. These properties make this enzyme to be highly thermostable and may be suggested as a potential candidate for application in some industrial processes. To the best of our knowledge, this is the first report of xylanase activity and recoverey using three phase partitioning from B. oceanisediminis.
Collapse
Affiliation(s)
- Nawel Boucherba
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| | - Mohammed Gagaoua
- INATAA, Université des Frères Mentouri Constantine 1, Route de Ain El-Bey, 25000 Constantine, Algeria.,UMR1213 Herbivores, INRA, VetAgro Sup, Clermont Université, Université de Lyon, 63122 Saint-Genès-Champanelle, France
| | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences, Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Cilia Bouiche
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| | - Khelifa Bouacem
- Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences, Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Mohamed Yacine Kerbous
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| | - Yacine Maafa
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| | - Said Benallaoua
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| |
Collapse
|
16
|
Sharma M, Patel SN, Lata K, Singh U, Krishania M, Sangwan RS, Singh SP. A novel approach of integrated bioprocessing of cane molasses for production of prebiotic and functional bioproducts. BIORESOURCE TECHNOLOGY 2016; 219:311-318. [PMID: 27498012 DOI: 10.1016/j.biortech.2016.07.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
In this work, the sugar industry by-product cane molasses was investigated as feedstock for acceptor reactions by dextransucrase from Leuconostoc mesenteroides MTCC 10508, leading to the biosynthesis of oligosaccharides. The starch industry corn fiber residue was used as a source for acceptor molecules, maltose, in the reaction. Production of approximately 124g oligosaccharides (DP3-DP6) per kg of fresh molasses was achieved. Further, cane molasses based medium was demonstrated as a sole carbon source for L. mesenteroides growth and dextransucrase production. d-Fructose released by dextransucrase activity as processing by-product was transformed into the functional monosaccharide with zero caloric value, d-psicose, by inducing its epimerization. Quantitative analysis approximated 37g d-psicose per kg of fresh molasses. Thus, the study established a novel approach of integrated bioprocessing of cane molasses into prebiotic and functional food additives.
Collapse
Affiliation(s)
- Manisha Sharma
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Mohali, India
| | - Satya Narayan Patel
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Mohali, India
| | - Kusum Lata
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Mohali, India
| | - Umesh Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Mohali, India
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Mohali, India
| | - Rajender S Sangwan
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Mohali, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Mohali, India.
| |
Collapse
|
17
|
Carli S, Meleiro LP, Rosa JC, Moraes LAB, Jorge JA, Masui DC, Furriel RP. A novel thermostable and halotolerant xylanase from Colletotrichum graminicola. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Characteristics of Raw Starch-Digesting α-Amylase of Streptomyces badius DB-1 with Transglycosylation Activity and Its Applications. Appl Biochem Biotechnol 2016; 181:1283-1303. [DOI: 10.1007/s12010-016-2284-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
|
19
|
Suitability of the alkalistable carbonic anhydrase from a polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic carbon sequestration. Bioprocess Biosyst Eng 2016; 39:1515-25. [PMID: 27215773 DOI: 10.1007/s00449-016-1627-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022]
Abstract
Carbonic anhydrase (CA) was produced from the polyextremophilic (halotolerant, moderately thermophilic and alkaliphilic) bacterium Aeribacillus pallidus TSHB1 isolated from water and sediment samples of Choti Anhoni hot spring of Pipariya, Madhya Pradesh (India), is being reported to be suitable for carbon sequestration. Growth and CA production were inhibited at higher CO2 concentration (5-10 %). Under optimized culture variables (tryptone 0.8 %, yeast extract 0.08 %, glucose 1 %, micronutrient solution 1 %, inoculums size 1.10 %, agitation 200 at pH 8, and temperature 55 °C), 3.7-fold higher CA production was attained than that under unoptimized conditions. The zymogram analysis of the partially purified CA revealed an activity band corresponding to 32 kDa. The enzyme is stable in the pH range between 8.0 and 11.0 with T 1/2 of 40, 15, and 8 min at 60, 70, and 80 °C, respectively. The CA of A. pallidus displayed a marked enhancement in the rate of CaCO3 precipitation from aqueous CO2. The CA-aided formation of CaCO3 was 42.5 mg mg(-1) protein. Scanning electron microscopy revealed the formation of rhomboid calcite crystals. This is the first report on the production and applicability of CA from the polyextremophilic A. pallidus in carbon sequestration.
Collapse
|
20
|
Amore A, Parameswaran B, Kumar R, Birolo L, Vinciguerra R, Marcolongo L, Ionata E, La Cara F, Pandey A, Faraco V. Application of a new xylanase activity from Bacillus amyloliquefaciens XR44A in brewer's spent grain saccharification. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2015; 90:573-581. [PMID: 25866429 PMCID: PMC4384805 DOI: 10.1002/jctb.4589] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cellulases and xylanases are the key enzymes involved in the conversion of lignocelluloses into fermentable sugars. Western Ghat region (India) has been recognized as an active hot spot for the isolation of new microorganisms. The aim of this work was to isolate new microorganisms producing cellulases and xylanases to be applied in brewer's spent grain saccharification. RESULTS 93 microorganisms were isolated from Western Ghat and screened for the production of cellulase and xylanase activities. Fourteen cellulolytic and seven xylanolytic microorganisms were further screened in liquid culture. Particular attention was focused on the new isolate Bacillus amyloliquefaciens XR44A, producing xylanase activity up to 10.5 U mL-1. A novel endo-1,4-beta xylanase was identified combining zymography and proteomics and recognized as the main enzyme responsible for B. amyloliquefaciens XR44A xylanase activity. The new xylanase activity was partially characterized and its application in saccharification of brewer's spent grain, pretreated by aqueous ammonia soaking, was investigated. CONCLUSION The culture supernatant of B. amyloliquefaciens XR44A with xylanase activity allowed a recovery of around 43% xylose during brewer's spent grain saccharification, similar to the value obtained with a commercial xylanase from Trichoderma viride, and a maximum arabinose yield of 92%, around 2-fold higher than that achieved with the commercial xylanase. © 2014 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonella Amore
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelovia Cintia, 4, 80126, Naples, Italy
| | - Binod Parameswaran
- CSIR-National Institute for Interdisciplinary Science and Technology (NIIST)Trivandrum, 695 019, India
| | - Ramesh Kumar
- CSIR-National Institute for Interdisciplinary Science and Technology (NIIST)Trivandrum, 695 019, India
| | - Leila Birolo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelovia Cintia, 4, 80126, Naples, Italy
| | - Roberto Vinciguerra
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelovia Cintia, 4, 80126, Naples, Italy
| | - Loredana Marcolongo
- Institute of Biosciences and BioResources - National Research CouncilNapoli, Italy
| | - Elena Ionata
- Institute of Biosciences and BioResources - National Research CouncilNapoli, Italy
| | - Francesco La Cara
- Institute of Biosciences and BioResources - National Research CouncilNapoli, Italy
| | - Ashok Pandey
- CSIR-National Institute for Interdisciplinary Science and Technology (NIIST)Trivandrum, 695 019, India
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelovia Cintia, 4, 80126, Naples, Italy
- * Correspondence to: V. Faraco, Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Napoli, Italy. E-mail:
| |
Collapse
|
21
|
Bae W, Lee SH, Yoo SH, Lee S. Utilization of a maltotetraose-producing amylase as a whole wheat bread improver: dough rheology and baking performance. J Food Sci 2014; 79:E1535-40. [PMID: 25040090 DOI: 10.1111/1750-3841.12538] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 02/07/2014] [Indexed: 12/31/2022]
Abstract
A maltotetraose-producing enzyme (G4-amylase) was utilized to improve the baking performance of whole-grain wheat flour. Whole-grain bread dough prepared with G4-amylase showed reduced water absorption and increased development time, while the dough stability was not affected. Also, the G4-amylase-treated samples exhibited lower Mixolab torque values than the control upon heating and cooling. Rheological measurements showed the decreased ratio of Rmax /E and increased tan δ, clearly demonstrating that the viscous characteristics of whole-grain bread dough became dominant with increasing levels of G4-amylase. The use of G4-amylase produced whole-grain wheat breads with a variety of maltooligosaccharides, primarily maltotetraose that positively contributed to the bread volume (1.2-fold higher than the control). Moreover, G4-amylase delayed the crumb firming of whole-grain wheat bread during a 7-d storage period, showing that it can function as an antiretrogradation agent to enhance the quality attributes of whole-grain wheat bread.
Collapse
Affiliation(s)
- Woosung Bae
- Dept. of Food Science & Technology and Carbohydrate Bioproduct Research Center, Sejong Univ, 98 Gunja-dong, Gwangjin-gu, Seoul, 143-747, Korea
| | | | | | | |
Collapse
|