1
|
Hashiba S, Nakano M, Yokoseki I, Takahashi E, Kondo M, Jimbo Y, Ishiguro N, Arakawa H, Fukami T, Nakajima M. Cytochrome P450 and UDP-Glucuronosyltransferase Expressions, Activities, and Induction Abilities in 3D-Cultured Human Renal Proximal Tubule Epithelial Cells. Drug Metab Dispos 2024; 52:949-956. [PMID: 38866474 DOI: 10.1124/dmd.124.001685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
The role of the kidney as an excretory organ for exogenous and endogenous compounds is well recognized, but there is a wealth of data demonstrating that the kidney has significant metabolizing capacity for a variety of exogenous and endogenous compounds that in some cases surpass the liver. The induction of drug-metabolizing enzymes by some chemicals can cause drug-drug interactions and intraindividual variability in drug clearance. In this study, we evaluated the expression and induction of cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) isoforms in 3D-cultured primary human renal proximal tubule epithelial cells (RPTEC) to elucidate their utility as models of renal drug metabolism. CYP2B6, CYP2E1, CYP3A4, CYP3A5, and all detected UGTs (UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7) mRNA levels in 3D-RPTEC were significantly higher than those in 2D-RPTEC and HK-2 cells and were close to the levels in the human kidney cortex. CYP1B1 and CYP2J2 mRNA levels in 3D-RPTEC were comparable to those in 2D-RPTEC, HK-2 cells, and the human kidney cortex. Midazolam 1'-hydroxylation, trifluoperazine N-glucuronidation, serotonin O-glucuronidation, propofol O-glucuronidation, and morphine 3-glucuronidation in the 3D-RPTEC were significantly higher than the 2D-RPTEC and comparable to those in the HepaRG cells, although bupropion, ebastine, and calcitriol hydroxylations were not different between the 2D- and 3D-RPTEC. Treatment with ligands of the aryl hydrocarbon receptor and farnesoid X receptor induced CYP1A1 and UGT2B4 expression, respectively, in 3D-RPTEC compared with 2D-RPTEC. We provided information on the expression, activity, and induction abilities of P450s and UGTs in 3D-RPTEC as an in vitro human renal metabolism model. SIGNIFICANCE STATEMENT: This study demonstrated that the expression of cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) in 3D-cultured primary human renal proximal tubule epithelial cells (3D-RPTEC) was higher than those in 2D-cultured primary human renal proximal tubule epithelial cells and HK-2 cells. The results were comparable to that in the human kidney cortex. 3D-RPTEC are useful for evaluating the induction of kidney P450s, UDP-glucuronosyltransferases, and human renal drug metabolism in cellulo.
Collapse
Affiliation(s)
- Shiori Hashiba
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Masataka Nakano
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Itsuki Yokoseki
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Etsushi Takahashi
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Masayuki Kondo
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Yoichi Jimbo
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Naoki Ishiguro
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Hiroshi Arakawa
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| | - Miki Nakajima
- Drug Metabolism and Toxicology (S.H., Ma.N., I.Y., T.F., Mi.N.) and Pharmaceutical and Health Sciences (H.A.), Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kanazawa, Japan (Ma.N., T.F., Mi.N.); R&D Department, Precision Engineering Center, Industrial Division, Nikkiso Co., Ltd., Kanazawa, Japan (E.T., M.K., Y.J.); and Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (N.I.)
| |
Collapse
|
2
|
Mondal A, Banerjee S, Chakraborty U, Das A, Debnath A, Majumdar R. Natural Plants in the Treatment of Renal Syndrome Caused by Viruses: Ethnopharmacology, Chemistry, and Clinical and Preclinical Studies. REFERENCE SERIES IN PHYTOCHEMISTRY 2024:835-873. [DOI: 10.1007/978-3-031-12199-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Zeng X, Zhou X, Zhou J, Zhou H, Hong X, Li D, Xiang Y, Zhong M, Chen Y, Liang D, Fu H. Limonin mitigates cisplatin-induced acute kidney injury through metabolic reprogramming. Biomed Pharmacother 2023; 167:115531. [PMID: 37741252 DOI: 10.1016/j.biopha.2023.115531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a known complication of cisplatin administration; currently, there are no effective ways to prevent it. Therefore, it largely limited the use of cisplatin in chemotherapy in the clinic. In this study, we reported that Limonin, a triterpenoid compound extracted from citrus, alleviated cisplatin-induced AKI through metabolic reprogramming in the diseased kidneys. METHODS Cisplatin was employed to induce AKI in mice. Three groups were set up: Sham, cisplatin + vehicle, and cisplatin + Limonin. Using UHPLC-TOF/MS, we conducted metabolomics to profile the kidneys' endogenous metabolites and metabolic pathways. A network pharmacological method was performed to identify the targets of Limonin on AKI. The human proximal tubular epithelial cell line (HK-2) was applied for in vitro studies. RESULTS Limonin preserved serum creatinine and blood urea nitrogen levels after cisplatin-induced AKI. Employing metabolomics, we identified 33 endogenous differentially expressed metabolites and 7 significantly disturbed metabolic pathways in the diseased kidneys within three groups. After AKI, Limonin significantly reduced linoleic acid and its downstream product, arachidonic acid, thus exerting a protective effect on the kidney. The network pharmacological method identified CYP3A4 as a key target of Limonin in treating AKI, while CYP3A4 also serve as a mediator of arachidonic acid metabolism. In vitro, Limonin markedly reduced the level of arachidonic acid and HK-2 cell apoptosis triggered by cisplatin, mainly related to the targeted inhibition of CYP3A4-mediated arachidonic acid metabolism. CONCLUSION Limonin ameliorates cisplatin-induced AKI by inhibiting CYP3A4 activity to regulate arachidonic acid metabolism, ultimately preserving kidney function.
Collapse
Affiliation(s)
- Xi Zeng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xianke Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayi Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hong Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dier Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yadie Xiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Menghua Zhong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yudan Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dongning Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Smits A, Annaert P, Cavallaro G, De Cock PAJG, de Wildt SN, Kindblom JM, Lagler FB, Moreno C, Pokorna P, Schreuder MF, Standing JF, Turner MA, Vitiello B, Zhao W, Weingberg AM, Willmann R, van den Anker J, Allegaert K. Current knowledge, challenges and innovations in developmental pharmacology: A combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper. Br J Clin Pharmacol 2022; 88:4965-4984. [PMID: 34180088 PMCID: PMC9787161 DOI: 10.1111/bcp.14958] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/22/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022] Open
Abstract
Developmental pharmacology describes the impact of maturation on drug disposition (pharmacokinetics, PK) and drug effects (pharmacodynamics, PD) throughout the paediatric age range. This paper, written by a multidisciplinary group of experts, summarizes current knowledge, and provides suggestions to pharmaceutical companies, regulatory agencies and academicians on how to incorporate the latest knowledge regarding developmental pharmacology and innovative techniques into neonatal and paediatric drug development. Biological aspects of drug absorption, distribution, metabolism and excretion throughout development are summarized. Although this area made enormous progress during the last two decades, remaining knowledge gaps were identified. Minimal risk and burden designs allow for optimally informative but minimally invasive PK sampling, while concomitant profiling of drug metabolites may provide additional insight in the unique PK behaviour in children. Furthermore, developmental PD needs to be considered during drug development, which is illustrated by disease- and/or target organ-specific examples. Identifying and testing PD targets and effects in special populations, and application of age- and/or population-specific assessment tools are discussed. Drug development plans also need to incorporate innovative techniques such as preclinical models to study therapeutic strategies, and shift from sequential enrolment of subgroups, to more rational designs. To stimulate appropriate research plans, illustrations of specific PK/PD-related as well as drug safety-related challenges during drug development are provided. The suggestions made in this joint paper of the Innovative Medicines Initiative conect4children Expert group on Developmental Pharmacology and the European Society for Developmental, Perinatal and Paediatric Pharmacology, should facilitate all those involved in drug development.
Collapse
Affiliation(s)
- Anne Smits
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Neonatal intensive Care unit, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Giacomo Cavallaro
- Neonatal intensive care unit, Fondazione IRCCS Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Pieter A J G De Cock
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium.,Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.,Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Saskia N de Wildt
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pharmacology and Toxicology, Radboud Institute Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jenny M Kindblom
- Pediatric Clinical Research Center, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florian B Lagler
- Institute for Inherited Metabolic Diseases and Department of Pediatrics, Paracelsus Medical University, Clinical Research Center Salzburg, Salzburg, Austria
| | - Carmen Moreno
- Institute of Psychiatry and Mental Health, Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Paula Pokorna
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Physiology and Pharmacology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Joseph F Standing
- UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Mark A Turner
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - Benedetto Vitiello
- Division of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, China.,Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Clinical Research Centre, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | | | | | - John van den Anker
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.,Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
6
|
Singh RD, Avadhesh A, Sharma G, Dholariya S, Shah RB, Goyal B, Gupta SC. Potential of cytochrome P450, a family of xenobiotic metabolizing enzymes, in cancer therapy. Antioxid Redox Signal 2022; 38:853-876. [PMID: 36242099 DOI: 10.1089/ars.2022.0116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Targeted cancer therapy with minimal off-target consequences has shown promise for some cancer types. Although cytochrome P450 (CYP) consists of 18 families, CYP1-4 families play key role in metabolizing xenobiotics and cancer drugs. This eventually affects the process of carcinogenesis, treatment outcome, and cancer drug resistance. Differential overexpression of CYPs in transformed cells, together with phenotypic alterations in tumors, presents a potential for therapeutic intervention. RECENT ADVANCES Recent advances in molecular tools and information technology have helped utilize CYPs as cancer targets. The precise expression in various tumors, X-ray crystal structures, improved understanding of the structure-activity relationship, and new approaches in the development of prodrugs have supported the ongoing efforts to develop CYPs-based drugs with a better therapeutic index. CRITICAL ISSUES Narrow therapeutic index, off-target effects, drug resistance, and tumor heterogeneity limit the benefits of CYP-based conventional cancer therapies. In this review, we address the CYP1-4 families as druggable targets in cancer. An emphasis is given to the CYP expression, function, and the possible mechanisms that drive expression and activity in normal and transformed tissues. The strategies that inhibit or activate CYPs for therapeutic benefits are also discussed. FUTURE DIRECTIONS Efforts are needed to develop more selective tools that will help comprehend molecular and metabolic alterations in tumor tissues with biological end-points in relation to CYPs. This will eventually translate to developing more specific CYP inhibitors/inducers.
Collapse
Affiliation(s)
- Ragini D Singh
- AIIMS Rajkot, 618032, Biochemistry, Rajkot, Gujarat, India;
| | - Avadhesh Avadhesh
- Institute of Science, Banaras Hindu University, Biochemistry, Varanasi, Uttar Pradesh, India;
| | - Gaurav Sharma
- AIIMS Rajkot, 618032, Physiology, Rajkot, Gujarat, India;
| | | | - Rima B Shah
- AIIMS Rajkot, 618032, Pharmacology, Rajkot, Gujarat, India;
| | - Bela Goyal
- AIIMS Rishikesh, 442339, Biochemistry, Rishikesh, Uttarakhand, India;
| | - Subash Chandra Gupta
- Institute of Science, Banaras Hindu University, Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India, 221005;
| |
Collapse
|
7
|
Hall AM, Trepiccione F, Unwin RJ. Drug toxicity in the proximal tubule: new models, methods and mechanisms. Pediatr Nephrol 2022; 37:973-982. [PMID: 34050397 PMCID: PMC9023418 DOI: 10.1007/s00467-021-05121-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/23/2021] [Accepted: 05/05/2021] [Indexed: 10/28/2022]
Abstract
The proximal tubule (PT) reabsorbs most of the glomerular filtrate and plays an important role in the uptake, metabolism and excretion of xenobiotics. Some therapeutic drugs are harmful to the PT, and resulting nephrotoxicity is thought to be responsible for approximately 1 in 6 of cases of children hospitalized with acute kidney injury (AKI). Clinically, PT dysfunction leads to urinary wasting of important solutes normally reabsorbed by this nephron segment, leading to systemic complications such as bone demineralization and a clinical scenario known as the renal Fanconi syndrome (RFS). While PT defects can be diagnosed using a combination of blood and urine markers, including urinary excretion of low molecular weight proteins (LMWP), standardized definitions of what constitutes clinically significant toxicity are lacking, and identifying which patients will go on to develop progressive loss of kidney function remains a major challenge. In addition, much of our understanding of cellular mechanisms of drug toxicity is still limited, partly due to the constraints of available cell and animal models. However, advances in new and more sophisticated in vitro models of the PT, along with the application of high-content analytical methods that can provide readouts more relevant to the clinical manifestations of nephrotoxicity, are beginning to extend our knowledge. Such technical progress should help in discovering new biomarkers that can better detect nephrotoxicity earlier and predict its long-term consequences, and herald a new era of more personalized medicine.
Collapse
Affiliation(s)
- Andrew M. Hall
- grid.7400.30000 0004 1937 0650Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland ,grid.412004.30000 0004 0478 9977Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Francesco Trepiccione
- grid.9841.40000 0001 2200 8888Department of Translational Medical Science, University of Campania ‘Luigi Vanvitelli’, Naples, Italy ,grid.428067.f0000 0004 4674 1402Biogem Research Institute, Ariano Irpino, Italy
| | - Robert J. Unwin
- grid.83440.3b0000000121901201Department of Renal Medicine, University College London, London, UK
| |
Collapse
|
8
|
Investigation of Ifosfamide Toxicity Induces Common Upstream Regulator in Liver and Kidney. Int J Mol Sci 2021; 22:ijms222212201. [PMID: 34830083 PMCID: PMC8617928 DOI: 10.3390/ijms222212201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023] Open
Abstract
Ifosfamide is an alkylating agent, a synthetic analogue of cyclophosphamide, used to treat various solid cancers. In this study, the toxicity of ifosfamide was evaluated using single-and multiple-dose intraperitoneal administration in rats under Good Laboratory Practice guidelines, and an additional microarray experiment was followed to support toxicological findings. A single dose of ifosfamide (50 mg/kg) did not induce any pathological changes. Meanwhile, severe renal toxicity was observed in the 7 and 28 days consecutively administered groups, with significant increases in blood urea nitrogen and creatinine levels. In the tox-list analysis, cholesterol synthesis-related genes were mostly affected in the liver and renal failure-related genes were affected in the kidney after ifosfamide administration. Moreover, interferon regulatory factor 7 was selected as the main upstream regulator that changed in both the liver and kidney, and was found to interact with other target genes, such as ubiquitin specific peptidase 18, radical S-adenosyl methionine domain containing 2, and interferon-stimulated gene 15, which was further confirmed by real-time RT-PCR analysis. In conclusion, we confirmed kidney-biased ifosfamide organ toxicity and identified identically altered genes in both the liver and kidney. Further comprehensive toxicogenomic studies are required to reveal the exact relationship between ifosfamide-induced genes and organ toxicity.
Collapse
|
9
|
Sri Laasya T, Thakur S, Poduri R, Joshi G. Current insights toward kidney injury: Decrypting the dual role and mechanism involved of herbal drugs in inducing kidney injury and its treatment. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
10
|
Allegaert K, van den Anker J. Ontogeny of Phase I Metabolism of Drugs. J Clin Pharmacol 2020; 59 Suppl 1:S33-S41. [PMID: 31502685 DOI: 10.1002/jcph.1483] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Capturing ontogeny of enzymes involved in phase I metabolism is crucial to improve prediction of dose-concentration and concentration-effect relationships throughout infancy and childhood. Once captured, these patterns can be integrated in semiphysiologically or physiology-based pharmacokinetic models to support predictions in specific pediatric settings or to support pediatric drug development. Although these translational efforts are crucial, isoenzyme-specific ontogeny-based models should also incorporate data on variability of maturational and nonmaturational covariates (eg, disease, treatment modalities, pharmacogenetics). Therefore, this review provides a summary of the ontogeny of phase I drug-metabolizing enzymes, indicating current knowledge gaps and recent progresses. Furthermore, we tried to illustrate that straightforward translation of isoenzyme-specific ontogeny to predictions does not allow full exploration of scenarios of potential variability related to maturational (non-age-related variability, other isoenzymes or transporters) or nonmaturational (disease, pharmacogenetics) covariates, and necessitates integration in a "systems" concept.
Collapse
Affiliation(s)
- Karel Allegaert
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Health System, Washington, DC, USA
- Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
- Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Bueters R, Bael A, Gasthuys E, Chen C, Schreuder MF, Frazier KS. Ontogeny and Cross-species Comparison of Pathways Involved in Drug Absorption, Distribution, Metabolism, and Excretion in Neonates (Review): Kidney. Drug Metab Dispos 2020; 48:353-367. [PMID: 32114509 DOI: 10.1124/dmd.119.089755] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/04/2020] [Indexed: 02/13/2025] Open
Abstract
The kidneys play an important role in many processes, including urine formation, water conservation, acid-base equilibrium, and elimination of waste. The anatomic and functional development of the kidney has different maturation time points in humans versus animals, with critical differences between species in maturation before and after birth. Absorption, distribution, metabolism, and excretion (ADME) of drugs vary depending on age and maturation, which will lead to differences in toxicity and efficacy. When neonate/juvenile laboratory animal studies are designed, a thorough knowledge of the differences in kidney development between newborns/children and laboratory animals is essential. The human and laboratory animal data must be combined to obtain a more complete picture of the development in the kidneys around the neonatal period and the complexity of ADME in newborns and children. This review examines the ontogeny and cross-species differences in ADME processes in the developing kidney in preterm and term laboratory animals and children. It provides an overview of insights into ADME functionality in the kidney by identifying what is currently known and which gaps still exist. Currently important renal function properties such as glomerular filtration rate, renal blood flow, and ability to concentrate are generally well known, while detailed knowledge about transporter and metabolism maturation is growing but is still lacking. Preclinical data in those properties is limited to rodents and generally covers only the expression levels of transporter or enzyme-encoding genes. More knowledge on a functional level is needed to predict the kinetics and toxicity in neonate/juvenile toxicity and efficacy studies. SIGNIFICANCE STATEMENT: This review provides insight in cross-species developmental differences of absorption, distribution, metabolism, and excretion properties in the kidney, which should be considered in neonate/juvenile study interpretation, hypotheses generation, and experimental design.
Collapse
Affiliation(s)
- Ruud Bueters
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - An Bael
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Elke Gasthuys
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Connie Chen
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Michiel F Schreuder
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Kendall S Frazier
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| |
Collapse
|
12
|
Ensergueix G, Pallet N, Joly D, Levi C, Chauvet S, Trivin C, Augusto JF, Boudet R, Aboudagga H, Touchard G, Nochy D, Essig M, Thervet E, Lazareth H, Karras A. Ifosfamide nephrotoxicity in adult patients. Clin Kidney J 2019; 13:660-665. [PMID: 32897279 PMCID: PMC7467602 DOI: 10.1093/ckj/sfz183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 02/01/2023] Open
Abstract
Background Ifosfamide, a widely prescribed antineoplasic agent, is frequently associated with kidney dysfunction. Its nephrotoxicity is well documented in children, but data are lacking in adult patients. Methods The aim of this retrospective study was to describe the clinical, biological and histological characteristics of ifosfamide nephrotoxicity. Results We report 34 patients (median age: 41 years) admitted in six French nephrology departments for kidney failure and/or tubular dysfunction. Fifteen patients (44.1%) received cisplatin as part of their chemotherapy. In 6 patients (17.7%), ifosfamide nephrotoxicity was revealed by a proximal tubular dysfunction (PTD), in 5 patients (14.4%) by an acute kidney injury (AKI), in 6 patients (17.7%) by a chronic kidney disease (CKD) and in 17 patients (49.7%) by an association of PTD and AKI. Fourteen renal biopsies (41.2%) were performed and revealed acute tubular necrosis (85.7%), vacuolation (78.6%) and nuclear atypias (71.4%) of renal epithelial cells, interstitial inflammation (71.4%) and fibrosis (57.1%). Electron microscopy showed mitochondrial enlargement and dysmorphic changes suggestive of mitochondrial toxicity. Ten patients (29.4%) progressed to Stage 5 CKD, six (17.6%) required haemodialysis and six patients died during a median follow-up period of 31 months. Risk factors for Stage 5 CKD were age and cisplatin co-administration.
Collapse
Affiliation(s)
- Gaël Ensergueix
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| | - Nicolas Pallet
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| | - Dominique Joly
- Department of Nephrology, Dialysis, Necker Hospital, Paris, France
| | - Charlène Levi
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| | - Sophie Chauvet
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| | - Claire Trivin
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| | - Jean-Francois Augusto
- Department of Nephrology, Dialysis, Transplantation, Angers University Hospital, Paris, France
| | - Rémi Boudet
- Department of Nephrology, Dialysis, Brive-La-Gaillarde General Hospital, Paris, France
| | - Hail Aboudagga
- Department of Pharmacology, Georges Pompidou European Hospital, Paris, France
| | - Guy Touchard
- Department of Nephrology, Dialysis, Transplantation, Poitiers University Hospital, Paris, France
| | - Dominique Nochy
- Department of Anatomopathology, Georges Pompidou European Hospital, Paris, France
| | - Marie Essig
- Department of Nephrology, Dialysis, Transplantation, Limoges University Hospital, Paris, France
| | - Eric Thervet
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| | - Hélène Lazareth
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| | - Alexandre Karras
- Department of Nephrology, Dialysis, Transplantation, Georges Pompidou European Hospital, Paris, France
| |
Collapse
|
13
|
Circulating Extracellular Vesicles Containing Xenobiotic Metabolizing CYP Enzymes and Their Potential Roles in Extrahepatic Cells Via Cell-Cell Interactions. Int J Mol Sci 2019; 20:ijms20246178. [PMID: 31817878 PMCID: PMC6940889 DOI: 10.3390/ijms20246178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
The cytochrome P450 (CYP) family of enzymes is known to metabolize the majority of xenobiotics. Hepatocytes, powerhouses of CYP enzymes, are where most drugs are metabolized into non-toxic metabolites. Additional tissues/cells such as gut, kidneys, lungs, blood, and brain cells express selective CYP enzymes. Extrahepatic CYP enzymes, especially in kidneys, also metabolize drugs into excretable forms. However, extrahepatic cells express a much lower level of CYPs than hepatocytes. It is possible that the liver secretes CYP enzymes, which circulate via plasma and are eventually delivered to extrahepatic cells (e.g., brain cells). CYP circulation likely occurs via extracellular vesicles (EVs), which carry important biomolecules for delivery to distant cells. Recent studies have revealed an abundance of several CYPs in plasma EVs and other cell-derived EVs, and have demonstrated the role of CYP-containing EVs in xenobiotic-induced toxicity via cell–cell interactions. Thus, it is important to study the mechanism for packaging CYP into EVs, their circulation via plasma, and their role in extrahepatic cells. Future studies could help to find novel EV biomarkers and help to utilize EVs in novel interventions via CYP-containing EV drug delivery. This review mainly covers the abundance of CYPs in plasma EVs and EVs derived from CYP-expressing cells, as well as the potential role of EV CYPs in cell–cell communication and their application with respect to novel biomarkers and therapeutic interventions.
Collapse
|
14
|
Abstract
Patients are exposed to numerous prescribed and over-the-counter medications. Unfortunately, drugs remain a relatively common cause of acute and chronic kidney injury. A combination of factors including the innate nephrotoxicity of drugs, underlying patient characteristics that increase their risk for kidney injury, and the metabolism and pathway of excretion by the kidneys of the various agents administered enhance risk for drug-induced nephrotoxicity. This paper will review these clinically relevant aspects of drug-induced nephrotoxicity for the clinical nephrologist.
Collapse
Affiliation(s)
- Mark A Perazella
- Section of Nephrology, Department of Medicine, Yale University, New Haven, Connecticut and Veterans Affairs Medical Center, West Haven, Connecticut
| |
Collapse
|
15
|
Zink D. Comment on Sjögren et al. (2018) A novel multi-parametric high-content screening assay in ciPTEC-OAT1 to predict drug-induced nephrotoxicity in drug discovery. Arch Toxicol 92(10):3175-3190. Arch Toxicol 2018; 93:221-223. [PMID: 30328497 DOI: 10.1007/s00204-018-2327-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/08/2018] [Indexed: 11/27/2022]
Abstract
Rapid progress is made in the development of high-content screening assays for the prediction of nephrotoxicity. The findings from different laboratories are consistent with respect to endpoints and concentration ranges screened. Discrepancies regarding compound annotation and the predictive performance analysis are discussed.
Collapse
Affiliation(s)
- Daniele Zink
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 138669, Singapore, Singapore.
| |
Collapse
|
16
|
Ensergueix G, Karras A. [Ifosphamide nephrotoxicity]. Nephrol Ther 2018; 14 Suppl 1:S125-S131. [PMID: 29606257 DOI: 10.1016/j.nephro.2018.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/01/2018] [Indexed: 02/01/2023]
Abstract
Ifosfamide is a cytotoxic drug usually used in malignant sarcomas. The nephrotoxicity of this agent has been described essentially among children, revealed by renal failure and proximal tubulopathy. We recently conducted a retrospective multicentre study, describing 34 adult patients admitted for ifosfamide nephrotoxicity. More than 80% of them presented with renal failure, diagnosed up to 48 months after ifosfamide administration. A Fanconi syndrome with hypophosphoremia, hypokaliemia, glucosuria and low-molecular weight proteinuria, was present in two third of all cases. Median estimated glomerular filtration rate was 31mL/min 1 month and 38mL/min 3 months after ifosfamide infusion, versus 67mL/min at baseline. Renal biopsy, performed in 14 of these patients, showed acute tubular necrosis with vacuolization of proximal tubular epithelial cells with marked nuclear modifications, whereas electron microscopy revealed major changes of mitochondrial structure inside those cells, suggesting a tenofovir-like mechanism of nephrotoxicity. After a median follow-up of 31 months, ten patients out of 34 reached stage 5 chronic kidney disease, requiring dialysis in five cases. Poor renal prognosis was associated with concomitant cisplatin use (P=0.02) and with older age at presentation (P=0.04). In conclusion, ifosfamide nephrotoxicity is often severe and irreversible, leading to proximal tubulopathy and sometimes-severe chronic kidney failure, that can be immediate or delayed, sometimes diagnosed months after chemotherapy completion.
Collapse
Affiliation(s)
- Gaël Ensergueix
- Service de néphrologie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France.
| | - Alexandre Karras
- Service de néphrologie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France; Faculté de médecine, université Paris-Descartes, 20, rue Leblanc, 75015 Paris, France.
| |
Collapse
|
17
|
van den Anker J, Reed MD, Allegaert K, Kearns GL. Developmental Changes in Pharmacokinetics and Pharmacodynamics. J Clin Pharmacol 2018; 58 Suppl 10:S10-S25. [DOI: 10.1002/jcph.1284] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/21/2018] [Indexed: 12/22/2022]
Affiliation(s)
- John van den Anker
- Division of Clinical Pharmacology; Children's National Health System; Washington DC USA
- Division of Paediatric Pharmacology and Pharmacometrics; University of Basel Children's Hospital; Basel Switzerland
- Intensive Care and Department of Pediatric Surgery; Erasmus Medical Center-Sophia Children's Hospital; Rotterdam the Netherlands
| | - Michael D. Reed
- Emeritus Professor of Pediatrics; School of Medicine; Case Western Reserve University; Cleveland OH USA
| | - Karel Allegaert
- Intensive Care and Department of Pediatric Surgery; Erasmus Medical Center-Sophia Children's Hospital; Rotterdam the Netherlands
- Department of Pediatrics; Division of Neonatology; Erasmus Medical Center-Sophia Children's Hospital; Rotterdam the Netherlands
- Department of Development and Regeneration; KU Leuven; Leuven Belgium
| | | |
Collapse
|
18
|
Lee Y, Park HG, Kim V, Cho MA, Kim H, Ho TH, Cho KS, Lee IS, Kim D. Inhibitory effect of α-terpinyl acetate on cytochrome P450 2B6 enzymatic activity. Chem Biol Interact 2018; 289:90-97. [PMID: 29723517 DOI: 10.1016/j.cbi.2018.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
Abstract
Human cytochrome P450 2B6 is an important hepatic enzyme for the metabolism of xenobiotics and clinical drugs. Recently, more attention has been paid to P450 2B6 because of the increasing number of drugs it metabolizes. It has been known to interact with terpenes, the major constituents of the essential oils used for various medicinal purposes. In this study, the effect of monoterpenes on P450 2B6 catalytic activity was investigated. Recombinant P450 2B6 was expressed in Escherichia coli and purified using Ni-affinity chromatography. The purified P450 2B6 enzyme displayed bupropion hydroxylation activity in gas-mass spectrometry (GC-MS) analysis with a kcat of 0.5 min-1 and a Km of 47 μM. Many terpenes displayed the type I binding spectra to purified P450 2B6 enzyme and α-terpinyl acetate showed strong binding affinity with a Kd value of 5.4 μM. In GC-MS analysis, P450 2B6 converted α-terpinyl acetate to a putative oxidative product. The bupropion hydroxylation activity of P450 2B6 was inhibited by α-terpinyl acetate and its IC50 value was 10.4 μM α-Terpinyl acetate was determined to be a competitive inhibitor of P450 2B6 with a Ki value of 7.6 μM. The molecular docking model of the binding site of the P450 2B6 complex with α-terpinyl acetate was constructed. It showed the tight binding of α-terpinyl acetate in the active site of P450 2B6, which suggests that it could be a competitive substrate for P450 2B6.
Collapse
Affiliation(s)
- Yejin Lee
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Hyoung-Goo Park
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Myung-A Cho
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Harim Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Thien-Hoang Ho
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea.
| |
Collapse
|
19
|
Hole K, Størset E, Olastuen A, Haslemo T, Kro GB, Midtvedt K, Åsberg A, Molden E. Recovery of CYP3A Phenotype after Kidney Transplantation. Drug Metab Dispos 2017; 45:1260-1265. [PMID: 28928137 DOI: 10.1124/dmd.117.078030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/15/2017] [Indexed: 11/22/2022] Open
Abstract
End-stage renal disease impairs drug metabolism via cytochrome P450 CYP3A; however, it is unclear whether CYP3A activity recovers after kidney transplantation. Therefore, the aim of this study was to evaluate the change in CYP3A activity measured as 4β-hydroxycholesterol (4βOHC) concentration after kidney transplantation. In total, data from 58 renal transplant recipients with 550 prospective 4βOHC measurements were included in the study. One sample per patient was collected before transplantation, and 2-12 samples per patient were collected 1-82 days after transplantation. The measured pretransplant 4βOHC concentrations ranged by >7-fold, with a median value of 22.8 ng/ml. Linear mixed-model analysis identified a 0.16-ng/ml increase in 4βOHC concentration per day after transplantation (P < 0.001), indicating a regain in CYP3A activity. Increasing estimated glomerular filtration rate after transplantation was associated with increasing 4βOHC concentration (P < 0.001), supporting that CYP3A activity increases with recovering uremia. In conclusion, this study indicates that CYP3A activity is regained subsequent to kidney transplantation.
Collapse
Affiliation(s)
- Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Elisabet Størset
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Ane Olastuen
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Grete Birkeland Kro
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Karsten Midtvedt
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Anders Åsberg
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| |
Collapse
|
20
|
Marsousi N, Desmeules JA, Rudaz S, Daali Y. Usefulness of PBPK Modeling in Incorporation of Clinical Conditions in Personalized Medicine. J Pharm Sci 2017; 106:2380-2391. [DOI: 10.1016/j.xphs.2017.04.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022]
|
21
|
Frazier KS. Species Differences in Renal Development and Associated Developmental Nephrotoxicity. Birth Defects Res 2017; 109:1243-1256. [DOI: 10.1002/bdr2.1088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 12/19/2022]
|
22
|
Abstract
The majority of medications in children are administered in an unlicensed or off-label manner. Paediatricians are obliged to prescribe using the limited evidence available. The 2007 EU regulation on the use of paediatric drugs means pharmaceutical companies are now obliged to (and receive incentives for) contributing to paediatric drug data and carrying out paediatric clinical trials. This is important, as the efficacy and adverse effect profiles of medicines vary across childhood. Additionally, there are significant age-related changes in the pharmacodynamic and pharmacokinetic activity of many drugs. This may be related to physiological (differential expressions of cytochrome P450 enzymes or variable glomerular filtration rates at different ages for example) and psychological (increasing autonomy and risk perception in teenage years) changes. Increasing numbers of children are surviving life-threatening childhood conditions due to medical advances. This means there is an increasing population who are at risk of the consequences of the long-term, early exposure to nephrotoxic agents. The kidney is an organ that is particularly vulnerable to damage as a consequence of drugs. Drug-induced acute kidney injury (AKI) episodes in children and babies are principally due to non-steroidal anti-inflammatory drugs, antibiotics or chemotherapeutic agents. The renal tubules are vulnerable to injury because of their concentrating ability and high-energy hypoxic environment. This review focuses on drug-induced AKI and the methods to minimise its effect, including general management plus the role of child-specific pharmacokinetic data, the use of pharmacogenomics and early detection of AKI using urinary biomarkers and electronic triggers.
Collapse
|
23
|
Hosohata K. Role of Oxidative Stress in Drug-Induced Kidney Injury. Int J Mol Sci 2016; 17:ijms17111826. [PMID: 27809280 PMCID: PMC5133827 DOI: 10.3390/ijms17111826] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 02/02/2023] Open
Abstract
The kidney plays a primary role in maintaining homeostasis and detoxification of numerous hydrophilic xenobiotics as well as endogenous compounds. Because the kidney is exposed to a larger proportion and higher concentration of drugs and toxins than other organs through the secretion of ionic drugs by tubular organic ion transporters across the luminal membranes of renal tubular epithelial cells, and through the reabsorption of filtered toxins into the lumen of the tubule, these cells are at greater risk for injury. In fact, drug-induced kidney injury is a serious problem in clinical practice and accounts for roughly 20% of cases of acute kidney injury (AKI) among hospitalized patients. Therefore, its early detection is becoming more important. Usually, drug-induced AKI consists of two patterns of renal injury: acute tubular necrosis (ATN) and acute interstitial nephritis (AIN). Whereas AIN develops from medications that incite an allergic reaction, ATN develops from direct toxicity on tubular epithelial cells. Among several cellular mechanisms underlying ATN, oxidative stress plays an important role in progression to ATN by activation of inflammatory response via proinflammatory cytokine release and inflammatory cell accumulation in tissues. This review provides an overview of drugs associated with AKI, the role of oxidative stress in drug-induced AKI, and a biomarker for drug-induced AKI focusing on oxidative stress.
Collapse
Affiliation(s)
- Keiko Hosohata
- Education and Reseearch Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan.
| |
Collapse
|
24
|
Hedrich WD, Hassan HE, Wang H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B 2016; 6:413-425. [PMID: 27709010 PMCID: PMC5045548 DOI: 10.1016/j.apsb.2016.07.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 01/11/2023] Open
Abstract
Mounting evidence demonstrates that CYP2B6 plays a much larger role in human drug metabolism than was previously believed. The discovery of multiple important substrates of CYP2B6 as well as polymorphic differences has sparked increasing interest in the genetic and xenobiotic factors contributing to the expression and function of the enzyme. The expression of CYP2B6 is regulated primarily by the xenobiotic receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) in the liver. In addition to CYP2B6, these receptors also mediate the inductive expression of CYP3A4, and a number of important phase II enzymes and drug transporters. CYP2B6 has been demonstrated to play a role in the metabolism of 2%–10% of clinically used drugs including widely used antineoplastic agents cyclophosphamide and ifosfamide, anesthetics propofol and ketamine, synthetic opioids pethidine and methadone, and the antiretrovirals nevirapine and efavirenz, among others. Significant inter-individual variability in the expression and function of the human CYP2B6 gene exists and can result in altered clinical outcomes in patients receiving treatment with CYP2B6-substrate drugs. These variances arise from a number of sources including genetic polymorphism, and xenobiotic intervention. In this review, we will provide an overview of the key players in CYP2B6 expression and function and highlight recent advances made in assessing clinical ramifications of important CYP2B6-mediated drug–drug interactions.
Collapse
Key Words
- 4-OH-CPA, 4-hydroxycyclophosphamide
- C/EBP, CCAAT/enhancer-binding protein
- CAR
- CAR, constitutive androstane receptor
- CHOP, cyclophosphamide–doxorubicin–vincristine–prednisone
- CITCO, (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime)
- COUP-TF, chicken ovalbumin upstream promoter-transcription factor
- CPA, cyclophosphamide
- CYP, cytochrome P450
- CYP2B6
- Cyclophosphamide
- DDI, drug–drug interaction
- DEX, dexamethasone
- Drug–drug interaction
- E2, estradiol
- EFV, efavirenz
- ERE, estrogen responsive element
- Efavirenz
- GR, glucocorticoid receptor
- GRE, glucocorticoid responsive element
- HAART, highly active antiretroviral therapy
- HNF, hepatocyte nuclear factor
- IFA, Ifosfamide
- MAOI, monoamine oxidase inhibitor
- NNRTI, non-nucleotide reverse-transcriptase inhibitor
- NR1/2, nuclear receptor binding site 1/2
- NVP, nevirapine
- PB, phenobarbital
- PBREM, phenobarbital-responsive enhancer module
- PCN, pregnenolone 16 alpha-carbonitrile
- PXR
- PXR, pregnane X receptor
- Polymorphism
- RIF, rifampin
- SNP, single nucleotide polymorphism
- TCPOBOP, 1,4-bis[3,5-dichloropyridyloxy]benzene
- UGT, UDP-glucuronosyl transferase
Collapse
Affiliation(s)
| | | | - Hongbing Wang
- Corresponding author at: Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA. Tel.: +1 410 706 1280; fax: +1 410 706 5017.
| |
Collapse
|
25
|
Arga M, Oguz A, Pinarli FG, Karadeniz C, Citak EC, Emeksiz HC, Duran EA, Soylemezoglu O. Risk factors for cisplatin-induced long-term nephrotoxicity in pediatric cancer survivors. Pediatr Int 2015; 57:406-13. [PMID: 25441241 DOI: 10.1111/ped.12542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 09/29/2014] [Accepted: 11/17/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of this study was to compare the nephrotoxicity risk of cisplatin (CPL) and ifosfamide (IFO) combination treatment (CT) with that of CPL alone and to evaluate the prevalence of CPL-induced long-term nephrotoxicity in pediatric cancer survivors (CS). METHODS A total of 33 patients with pediatric solid tumors who have been cured of their disease were included in the study. They were divided into two groups based on the type of chemotherapeutics, either CPL (n = 21) or CT (n = 12), given during cancer treatment and were evaluated for glomerular and tubular function using the Skinner grading system. RESULTS Nephrotoxicity was found in 15 CS (45.4%): seven (21.3%) of those had moderate, six (18.2%) had mild, and two (6.1%) had severe nephrotoxicity. Neither the rates of overall nephrotoxicity, glomerular toxicity and tubular toxicity, nor the mean overall, glomerular and tubular toxicity scores differed significantly among the CPL and CT groups (P > 0.05 for all parameters). Cumulative IFO dose and age at treatment were found to be independent risk factors for both development and severity of CPL-induced nephrotoxicity (P = 0.025 and P = 0.036 for development of nephrotoxicity; P = 0.004 and P = 0.050 for severity of nephrotoxicity, respectively). CONCLUSIONS Although CPL-induced long-term nephrotoxicity was found in half of the pediatric CS of solid tumors, clinically significant nephrotoxicity was detected only in a minority of them. Both higher cumulative IFO dose and younger age at treatment were found to be independent risk factors for both development and severity of CPL-induced nephrotoxicity.
Collapse
Affiliation(s)
- Mustafa Arga
- Department of Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Aynur Oguz
- Department of Pediatric Oncology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Faruk Guclu Pinarli
- Department of Pediatric Oncology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ceyda Karadeniz
- Department of Pediatric Oncology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Elvan Caglar Citak
- Department of Pediatric Oncology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Hamdi Cihan Emeksiz
- Department of Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Esra Akdeniz Duran
- Department of Statistics, Istanbul Medeniyet University, Istanbul, Turkey
| | - Oguz Soylemezoglu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
26
|
Schreuder MF, Bueters RRG, Allegaert K. The interplay between drugs and the kidney in premature neonates. Pediatr Nephrol 2014; 29:2083-91. [PMID: 24217783 DOI: 10.1007/s00467-013-2651-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 02/06/2023]
Abstract
The kidney plays a central role in the clearance of drugs. However, renal drug handling entails more than glomerular filtration and includes tubular excretion and reabsorption, and intracellular metabolization by cellular enzyme systems, such as the Cytochrome P450 isoenzymes. All these processes show maturation from birth onwards, which is one of the reasons why drug dosing in children is not simply similar to dosing in small adults. As kidney development normally finishes around the 36th week of gestation, being born prematurely will result in even more immature renal drug handling. Environmental effects, such as extra-uterine growth restriction, sepsis, asphyxia, or drug treatments like caffeine, aminoglycosides, or non-steroidal anti-inflammatory drugs, may further hamper drug handling in the kidney. Dosing in preterm neonates is therefore dependent on many factors that need to be taken into account. Drug treatment may significantly hamper postnatal kidney development in preterm neonates, just like renal immaturity has an impact on drug handling. The restricted kidney development results in a lower number of nephrons that may have several long-term sequelae, such as hypertension, albuminuria, and renal failure. This review focuses on the interplay between drugs and the kidney in premature neonates.
Collapse
Affiliation(s)
- Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands,
| | | | | |
Collapse
|
27
|
Application of RPTEC/TERT1 cells for investigation of repeat dose nephrotoxicity: A transcriptomic study. Toxicol In Vitro 2014; 30:106-16. [PMID: 25450743 DOI: 10.1016/j.tiv.2014.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 12/14/2022]
Abstract
The kidney is a major target organ for toxicity. Incidence of chronic kidney disease (CKD) is increasing at an alarming rate due to factors such as increasing population age and increased prevalence of heart disease and diabetes. There is a major effort ongoing to develop superior predictive models of renal injury and early renal biomarkers that can predict onset of CKD. In the EU FP7 funded project, Predict-IV, we investigated the human renal proximal tubule cells line, RPTEC/TERT1 for their applicability to long term nephrotoxic mechanistic studies. To this end, we used a tiered strategy to optimise dosing regimes for 9 nephrotoxins. Our final testing protocol utilised differentiated RPTEC/TERT1 cells cultured on filter inserts treated with compounds at both the apical and basolateral side, at concentrations not exceeding IC10, for 14 days in a 24 h repeat application. Transepithelial electrical resistance and supernatant lactate were measured over the duration of the experiments and genome wide transcriptomic profiles were assayed at day 1, 3 and 14. The effect of hypoxia was investigated for a subset of compounds. The transcriptomic data were analysed to investigate compound-specific effects, global responses and mechanistically informative signatures. In addition, several potential clinically useful renal injury biomarkers were identified.
Collapse
|
28
|
PharmGKB summary: ifosfamide pathways, pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 2014; 24:133-8. [PMID: 24401834 DOI: 10.1097/fpc.0000000000000019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Wang C, Wang C, Liu Q, Meng Q, Cang J, Sun H, Peng J, Ma X, Huo X, Liu K. Aspirin and probenecid inhibit organic anion transporter 3-mediated renal uptake of cilostazol and probenecid induces metabolism of cilostazol in the rat. Drug Metab Dispos 2014; 42:996-1007. [PMID: 24692216 DOI: 10.1124/dmd.113.055194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
This study aimed to evaluate the transporter-mediated renal excretion mechanism for cilostazol and to characterize the mechanism of drug-drug interaction (DDI) between cilostazol and aspirin or probenecid. Concentrations of cilostazol and its metabolites OPC-13015 [6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-2(1H)-quinolinone] and OPC-13213 [3,4-dihydro-6-[4-[1-(trans-4-hydroxycyclohexyl)-1H-tetrazol-5-yl]butoxy]-2-(1H)-quinolinone] in rat biologic or cell samples were measured by liquid chromatography-tandem mass spectrometry. Coadministration with probenecid, benzylpenicillin, or aspirin decreased the cumulative urinary excretion of cilostazol and renal clearance. Concentrations of cilostazol and OPC-13213 in plasma decreased, and the concentration of OPC-13015 increased in the presence of probenecid. By contrast, rat plasma cilostazol, in combination with benzylpenicillin or aspirin, sharply increased, and concentrations of OPC-13015 and OPC-13213 did not change. In urine, OPC-13015 was below the level of detection. The cumulative urinary excretion of OPC-13213 decreased in the presence of probenecid, benzylpenicillin, or aspirin. Cilostazol was distributed in the kidney and liver, with tissue to plasma partition coefficient (Kp) values of 8.4 ml/g and 16.3 ml/g, respectively. Probenecid and aspirin reduced cilostazol distribution in the kidney. Probenecid did not affect cilostazol metabolism in the kidney but increased cilostazol metabolism in the liver, and aspirin had no effect on cilostazol metabolism. Benzylpenicillin, aspirin, and cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) reduced cilostazol uptake in kidney slices and human organic anion transporter 3 (hOAT3)-human embryonic kidney 293 (HEK293) cells, whereas p-aminohippuric acid did not. Compared with the vector, hOAT3-HEK293 cells accumulated more cilostazol, whereas hOAT1-HEK293 cells did not. OAT3 and Oat3 play a major role in cilostazol renal excretion, whereas OAT1 and Oat1 do not. Oat3 and Cyp3a are both targets of the DDI between cilostazol and probenecid. Aspirin inhibits OAT3-mediated uptake of cilostazol and does not influence cilostazol metabolism.
Collapse
Affiliation(s)
- Chong Wang
- Department of Clinical Pharmacology, College of Pharmacy (Cho.W., Cha.W., Q.L., Q.M., J.C., H.S., J.P., X.M., K.L.), and China Provincial Key Laboratory for Pharmacokinetics and Transport (Cha.W., Q.L., Q.M., J.C., H.S., J.P., X.M., X.H., K.L.), Dalian Medical University, Dalian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Knights KM, Rowland A, Miners JO. Renal drug metabolism in humans: the potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br J Clin Pharmacol 2014; 76:587-602. [PMID: 23362865 DOI: 10.1111/bcp.12086] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/23/2013] [Indexed: 12/28/2022] Open
Abstract
Although knowledge of human renal cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes and their role in xenobiotic and endobiotic metabolism is limited compared with hepatic drug and chemical metabolism, accumulating evidence indicates that human kidney has significant metabolic capacity. Of the drug metabolizing P450s in families 1 to 3, there is definitive evidence for only CYP 2B6 and 3A5 expression in human kidney. CYP 1A1, 1A2, 1B1, 2A6, 2C19, 2D6 and 2E1 are not expressed in human kidney, while data for CYP 2C8, 2C9 and 3A4 expression are equivocal. It is further known that several P450 enzymes involved in the metabolism of arachidonic acid and eicosanoids are expressed in human kidney, CYP 4A11, 4F2, 4F8, 4F11 and 4F12. With the current limited evidence of drug substrates for human renal P450s drug-endobiotic interactions arising from inhibition of renal P450s, particularly effects on arachidonic acid metabolism, appear unlikely. With respect to the UGTs, 1A5, 1A6, 1A7, 1A9, 2B4, 2B7 and 2B17 are expressed in human kidney, whereas UGT 1A1, 1A3, 1A4, 1A8, 1A10, 2B10, 2B11 and 2B15 are not. The most abundantly expressed renal UGTs are 1A9 and 2B7, which play a significant role in the glucuronidation of drugs, arachidonic acid, prostaglandins, leukotrienes and P450 derived arachidonic acid metabolites. Modulation by drug substrates (e.g. NSAIDs) of the intrarenal activity of UGT1A9 and UGT2B7 has the potential to perturb the metabolism of renal mediators including aldosterone, prostaglandins and 20-hydroxyeicosatetraenoic acid, thus disrupting renal homeostasis.
Collapse
Affiliation(s)
- Kathleen M Knights
- Department of Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
31
|
Gundert-Remy U, Bernauer U, Blömeke B, Döring B, Fabian E, Goebel C, Hessel S, Jäckh C, Lampen A, Oesch F, Petzinger E, Völkel W, Roos PH. Extrahepatic metabolism at the body's internal–external interfaces. Drug Metab Rev 2014; 46:291-324. [DOI: 10.3109/03602532.2014.900565] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Shirali AC, Perazella MA. Tubulointerstitial injury associated with chemotherapeutic agents. Adv Chronic Kidney Dis 2014; 21:56-63. [PMID: 24359987 DOI: 10.1053/j.ackd.2013.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 12/21/2022]
Abstract
Chemotherapy holds tremendous potential in improving the survival of patients with cancer. However, the side effects of these drugs, including those that affect the kidney, can adversely affect patient outcomes. Prompt recognition of these adverse kidney effects allows early intervention that can minimize or prevent patient morbidity. In this review, we examine the nephrotoxic potential of chemotherapy drugs. In concentrating on tubulointerstitial injury, we will review common agents that result in acute kidney injury due to acute tubular necrosis, tubulopathies, crystal nephropathy, acute interstitial nephritis, and chronic interstitial nephritis, and we will present preventive and management strategies.
Collapse
|
33
|
Gelboin HV, Krausz K. Monoclonal Antibodies and Multifunctional Cytochrome P450: Drug Metabolism as Paradigm. J Clin Pharmacol 2013; 46:353-72. [PMID: 16490812 DOI: 10.1177/0091270005285200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Monoclonal antibodies are reagents par excellence for analyzing the role of individual cytochrome P450 isoforms in multifunctional biological activities catalyzed by cytochrome P450 enzymes. The precision and utility of the monoclonal antibodies have heretofore been applied primarily to studies of human drug metabolism. The unique and precise specificity and high inhibitory activity toward individual cytochrome P450s make the monoclonal antibodies extraordinary tools for identifying and quantifying the role of each P450 isoform in the metabolism of a drug or nondrug xenobiotic. The monoclonal antibodies identify drugs metabolized by individual, several, or polymorphic P450s. A comprehensive collection of monoclonal antibodies has been isolated to human P450s: 1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C family, 2C19, 2D6, 2E1, 3A4/5, and 2J2. The monoclonal antibodies can also be used for identifying drugs and/or metabolites useful as markers for in vivo phenotyping. Clinical identification of a patient's phenotype, coupled with precise knowledge of a drug's metabolism, should lead to a reduction of adverse drug reactions and improved drug therapeutics, thereby promoting advances in drug discovery.
Collapse
Affiliation(s)
- Harry V Gelboin
- Laboratory of Metabolism, National Institutes of Health, Building 37, Room 3106, Bethesda, MD 20892-0001, USA
| | | |
Collapse
|
34
|
Developmental Changes in the Expression and Function of Cytochrome P450 3A Isoforms: Evidence from In Vitro and In Vivo Investigations. Clin Pharmacokinet 2013; 52:333-45. [DOI: 10.1007/s40262-013-0041-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013; 138:103-41. [PMID: 23333322 DOI: 10.1016/j.pharmthera.2012.12.007] [Citation(s) in RCA: 2644] [Impact Index Per Article: 220.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 02/06/2023]
Abstract
Cytochromes P450 (CYP) are a major source of variability in drug pharmacokinetics and response. Of 57 putatively functional human CYPs only about a dozen enzymes, belonging to the CYP1, 2, and 3 families, are responsible for the biotransformation of most foreign substances including 70-80% of all drugs in clinical use. The highest expressed forms in liver are CYPs 3A4, 2C9, 2C8, 2E1, and 1A2, while 2A6, 2D6, 2B6, 2C19 and 3A5 are less abundant and CYPs 2J2, 1A1, and 1B1 are mainly expressed extrahepatically. Expression of each CYP is influenced by a unique combination of mechanisms and factors including genetic polymorphisms, induction by xenobiotics, regulation by cytokines, hormones and during disease states, as well as sex, age, and others. Multiallelic genetic polymorphisms, which strongly depend on ethnicity, play a major role for the function of CYPs 2D6, 2C19, 2C9, 2B6, 3A5 and 2A6, and lead to distinct pharmacogenetic phenotypes termed as poor, intermediate, extensive, and ultrarapid metabolizers. For these CYPs, the evidence for clinical significance regarding adverse drug reactions (ADRs), drug efficacy and dose requirement is rapidly growing. Polymorphisms in CYPs 1A1, 1A2, 2C8, 2E1, 2J2, and 3A4 are generally less predictive, but new data on CYP3A4 show that predictive variants exist and that additional variants in regulatory genes or in NADPH:cytochrome P450 oxidoreductase (POR) can have an influence. Here we review the recent progress on drug metabolism activity profiles, interindividual variability and regulation of expression, and the functional and clinical impact of genetic variation in drug metabolizing P450s.
Collapse
|
36
|
Abstract
Despite dramatic improvements in patient survival and drug tolerability, nephrotoxicity remains an important complication of chemotherapy. Adverse renal effects occur because of innate drug toxicity and a number of patient- and drug-related factors. To provide cutting edge care for these patients, nephrologists and oncologists must be familiar with the nephrotoxicity of these drugs, particularly their associated clinical and laboratory manifestations. Rapid diagnosis, targeted treatment, and supportive care are critical to improving care for these patients. Unfortunately, some patients who develop nephrotoxicity will be left with long-term complications such as chronic tubulopathies and CKD. Onco-Nephrology is a new area that is rapidly expanding and requires a close working relationship between oncologists and nephrologists.
Collapse
Affiliation(s)
- Mark A Perazella
- Section of Nephrology, Department of Medicine, Yale University, 330 Cedar Street, New Haven, CT 06520-8029, USA.
| |
Collapse
|
37
|
Nem D, Baranyai D, Qiu H, Gödtel-Armbrust U, Nestler S, Wojnowski L. Pregnane X receptor and yin yang 1 contribute to the differential tissue expression and induction of CYP3A5 and CYP3A4. PLoS One 2012; 7:e30895. [PMID: 22292071 PMCID: PMC3264657 DOI: 10.1371/journal.pone.0030895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/23/2011] [Indexed: 11/19/2022] Open
Abstract
The hepato-intestinal induction of the detoxifying enzymes CYP3A4 and CYP3A5 by the xenosensing pregnane X receptor (PXR) constitutes a key adaptive response to oral drugs and dietary xenobiotics. In contrast to CYP3A4, CYP3A5 is additionally expressed in several, mostly steroidogenic organs, which creates potential for induction-driven disturbances of the steroid homeostasis. Using cell lines and mice transgenic for a CYP3A5 promoter we demonstrate that the CYP3A5 expression in these organs is non-inducible and independent from PXR. Instead, it is enabled by the loss of a suppressing yin yang 1 (YY1)-binding site from the CYP3A5 promoter which occurred in haplorrhine primates. This YY1 site is conserved in CYP3A4, but its inhibitory effect can be offset by PXR acting on response elements such as XREM. Taken together, the loss of YY1 binding site from promoters of the CYP3A5 gene lineage during primate evolution may have enabled the utilization of CYP3A5 both in the adaptive hepato-intestinal response to xenobiotics and as a constitutively expressed gene in other organs. Our results thus constitute a first description of uncoupling induction from constitutive expression for a major detoxifying enzyme. They also suggest an explanation for the considerable tissue expression differences between CYP3A5 and CYP3A4.
Collapse
Affiliation(s)
- Dieudonné Nem
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dorothea Baranyai
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Huan Qiu
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ute Gödtel-Armbrust
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Nestler
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
38
|
de Wildt SN. Profound changes in drug metabolism enzymes and possible effects on drug therapy in neonates and children. Expert Opin Drug Metab Toxicol 2011; 7:935-48. [PMID: 21548840 DOI: 10.1517/17425255.2011.577739] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION There are profound changes that take place in drug metabolism enzymes during fetal and postnatal development. These changes may significantly impact drug therapy in children. AREAS COVERED A combination of focused and comprehensive literature searches using PubMed and reference lists (from inception to 7 November 2009) is undertaken to identify reports on in vitro and in vivo development of drug metabolism enzymes as well disposition of selected drugs and their effect in children. The article provides an update on development of drug metabolism enzymes and their impact on drug substrate disposition and disease, which may aid to improve clinical practice and optimally design clinical trials in children. EXPERT OPINION Drug metabolism enzyme activity changes profoundly throughout the continuum of postnatal development and often results in different disposition pathways than in adults. Genetics and co-morbidity interact significantly with these developmental changes. Translation of existing knowledge into age-adjusted dosing guidelines and clinical trial design is highly needed for there to be an improvement in drug therapy in children.
Collapse
Affiliation(s)
- Saskia N de Wildt
- Erasmus MC Sophia Children's Hospital, Pediatric Surgery & Intensive Care, GJ Rotterdam, The Netherlands.
| |
Collapse
|
39
|
Perazella MA, Moeckel GW. Nephrotoxicity from chemotherapeutic agents: clinical manifestations, pathobiology, and prevention/therapy. Semin Nephrol 2011; 30:570-81. [PMID: 21146122 DOI: 10.1016/j.semnephrol.2010.09.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nephrotoxicity remains a vexing complication of chemotherapeutic agents. A number of kidney lesions can result from these drugs, including primarily tubular-limited dysfunction, glomerular injury with proteinuria, full-blown acute kidney injury, and long-term chronic kidney injury. In most cases, these kidney lesions develop from innate toxicity of these medications, but underlying host risk factors and the renal handling of these drugs clearly increase the likelihood of nephrotoxicity. This article reviews some of the classic nephrotoxic chemotherapeutic agents and focuses on examples of the clinical and histopathologic kidney lesions they cause as well as measures that may prevent or treat drug-induced nephrotoxicity.
Collapse
Affiliation(s)
- Mark A Perazella
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
40
|
Ciarimboli G, Holle SK, Vollenbröcker B, Hagos Y, Reuter S, Burckhardt G, Bierer S, Herrmann E, Pavenstädt H, Rossi R, Kleta R, Schlatter E. New clues for nephrotoxicity induced by ifosfamide: preferential renal uptake via the human organic cation transporter 2. Mol Pharm 2010; 8:270-9. [PMID: 21077648 DOI: 10.1021/mp100329u] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anticancer treatment with ifosfamide but not with its structural isomer cyclophosphamide is associated with development of renal Fanconi syndrome leading to diminished growth in children and bone problems in adults. Since both cytotoxics share the same principal metabolites, we investigated whether a specific renal uptake of ifosfamide is the basis for this differential effect. First we studied the interaction of these cytotoxics using cells transfected with organic anion or cation transporters and freshly isolated murine and human proximal tubules with appropriate tracers. Next we determined changes in membrane voltage in proximal tubular cells to understand their differentiated nephrotoxicity. Ifosfamide but not cyclophosphamide was significantly transported into cells expressing human organic cation transporter 2 (hOCT2) while both did not interact with organic anion transporters. This points toward a specific interaction of ifosfamide with hOCT2, which is the main OCT isoform in human kidney. In isolated human proximal tubules ifosfamide also interacted with organic cation transport. This interaction was also seen in isolated mouse proximal tubules; however, it was absent in tubules from OCT-deficient mice, illustrating the biological importance of this selective transport. Ifosfamide decreased the viability of cells expressing hOCT2, but not that of control cells. Coadministration of cimetidine, a known competitive substrate of hOCT2, completely prevented this ifosfamide-induced toxicity. Finally, ifosfamide but not cyclophosphamide depolarized proximal tubular cells. We propose that the nephrotoxicity of ifosfamide is due to its selective uptake by hOCT2 into renal proximal tubular cells, and that coadministration of cimetidine may be used to prevent ifosfamide-induced nephrotoxicity.
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Medizinische Klinik und Poliklinik D, Experimentelle Nephrologie, Universitätsklinikum Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gunness P, Aleksa K, Kosuge K, Ito S, Koren G. Comparison of the novel HK-2 human renal proximal tubular cell line with the standard LLC-PK1 cell line in studying drug-induced nephrotoxicity. Can J Physiol Pharmacol 2010; 88:448-55. [PMID: 20555413 DOI: 10.1139/y10-023] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Established cell lines are widely used as in vitro models in toxicology studies. The choice of an appropriate cell line is critical when performing studies to elucidate drug-induced toxicity in humans. The porcine renal proximal tubular cell line LLC-PK1 is routinely used to study the nephrotoxic effects of drugs in humans. However, there are significant interspecies differences in drug pharmacokinetics and pharmacodynamics. The objective of this study was to determine whether the human renal proximal tubular cell line HK-2 is an acceptable model to use when performing in vitro toxicity studies to predict effects in humans. We examined 2 nephrotoxic agents, ifosfamide (IFO) and acyclovir, that exhibit different clinical nephrotoxic patterns. HK-2 cells metabolized IFO to its nephrotoxic metabolite, chloroacetaldehyde (CAA). Acyclovir induced a concentration-dependent decrease in HK-2 cell viability, suggesting that acyclovir may induce direct insult to renal proximal tubular cells. The results support clinical pathology data in humans and suggest that HK-2 cells are a suitable model to use in in vitro toxicity studies to determine drug-induced nephrotoxicity in humans.
Collapse
Affiliation(s)
- Patrina Gunness
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
42
|
Krämer S, Testa B. The Biochemistry of Drug Metabolism - An Introduction. Chem Biodivers 2009; 6:1477-660, table of contents. [DOI: 10.1002/cbdv.200900233] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Aleksa K, Nava-Ocampo A, Koren G. Detection and quantification of (R) and (S)-dechloroethylifosfamide metabolites in plasma from children by enantioselective LC/MS/MS. Chirality 2009; 21:674-80. [DOI: 10.1002/chir.20662] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
|
45
|
Allegaert K, Vancraeynest J, Rayyan M, de Hoon J, Cossey V, Naulaers G, Verbesselt R. Urinary propofol metabolites in early life after single intravenous bolus. Br J Anaesth 2008; 101:827-831. [DOI: 10.1093/bja/aen276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
46
|
Wang H, Tompkins LM. CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab 2008; 9:598-610. [PMID: 18781911 DOI: 10.2174/138920008785821710] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human CYP2B6 has been thought to account for a minor portion (<1%) of total hepatic cytochrome P450 (CYP) content and to have a minor function in human drug metabolism. Recent studies, however, indicate that the average relative contribution of CYP2B6 to total hepatic CYP content ranges from 2% to 10%. An increased interest in CYP2B6 research has been stimulated by the identification of an ever-increasing substrate list for this enzyme, polymorphic and ethnic variations in expression levels, and evidence for cross-regulation with CYP3A4, UGT1A1 and several hepatic drug transporters by the nuclear receptors pregnane X receptor and constitutive androstane receptor. Moreover, 20- to 250-fold interindividual variation in CYP2B6 expression has been demonstrated, presumably due to transcriptional regulation and polymorphisms. These individual differences may result in variable systemic exposure to drugs metabolized by CYP2B6, including the antineoplastics cyclophosphamide and ifosfamide, the antiretrovirals nevirapine and efavirenz, the anesthetics propofol and ketamine, the synthetic opioid methadone, and the anti-Parkinsonian selegiline. The potential clinical significance of CYP2B6 further enforces the need for a comprehensive review of this xenobiotic metabolizing enzyme. This communication summarizes recent advances in our understanding of this traditionally neglected enzyme and provides an overall picture of CYP2B6 with respect to expression, localization, substrate-specificity, inhibition, regulation, polymorphisms and clinical significance. Emphasis is given to nuclear receptor mediated transcriptional regulation, genetic polymorphisms, and their clinical significance.
Collapse
Affiliation(s)
- Hongbing Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, 20 Penn Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
47
|
Woodland C, Huang TT, Gryz E, Bendayan R, Fawcett JP. Expression, Activity and Regulation of CYP3A in Human and Rodent Brain. Drug Metab Rev 2008; 40:149-68. [DOI: 10.1080/03602530701836712] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
48
|
de Wildt SN, Ito S, Koren G. Challenges for drug studies in children: CYP3A phenotyping as example. Drug Discov Today 2008; 14:6-15. [PMID: 18721895 DOI: 10.1016/j.drudis.2008.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/20/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
A paucity of data exists on the disposition and effect of drugs in young children. This information gap can be reduced by elucidating developmental principles of absorption, distribution, metabolism and excretion (ADME) in vivo. Such knowledge might enable the prediction of the disposition of individual drugs in children over the whole pediatric age range. CYP3A, the most abundant human drug metabolizing enzyme, is involved in the metabolism of more than 50% of all marketed drugs. Hence, elucidating the developmental pattern of CYP3A in relation to genetic background, disease and comedications might greatly enhance our knowledge on drug disposition in children. Several methods have been used to determine in vivo CYP3A activity in human adults, while similar studies in children face several ethical, practical and scientific challenges. The aim of this review is to identify these challenges and offer feasible solutions for studying drugs in young children, with an emphasis on CYP3A phenotyping as an example.
Collapse
Affiliation(s)
- Saskia N de Wildt
- Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
49
|
Abstract
Ifosfamide (IF), a potent chemotherapeutic agent for solid tumors, is known to cause high rates of nephrotoxicity, which is most likely due to the renal production of the metabolite chloroacetaldehyde. Enantioselective oxidation of IF has been shown in the liver but has never been reported in the kidney. Using porcine and human kidney samples, as well as the renal porcine cell line LLCPK-1, we document enantioselective metabolism of IF with prevalent production of the N-dechloroethylifosfamide (DCEIF) metabolites from the (S)-IF enantiomer compared to the amount of N-DCEIF metabolites produced from the (R)-IF enantiomers. Since IF enantiomers appear to be equally effective in chemotherapy, these results suggest that replacing the clinically standard racemic mixture of IF with (R)-IF may decrease renal metabolism of the drug and hence may decrease nephrotoxicity.
Collapse
Affiliation(s)
- Katarina Aleksa
- Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
50
|
Hansen RJ, Ludeman SM, Paikoff SJ, Pegg AE, Dolan ME. Role of MGMT in protecting against cyclophosphamide-induced toxicity in cells and animals. DNA Repair (Amst) 2007; 6:1145-54. [PMID: 17485251 PMCID: PMC1989758 DOI: 10.1016/j.dnarep.2007.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
O(6)-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that protects cells from the biological consequences of alkylating agents by removing alkyl groups from the O(6)-position of guanine. Cyclophosphamide and ifosfamide are oxazaphosphorines used clinically to treat a wide variety of cancers; however, the role of MGMT in recognizing DNA damage induced by these agents is unclear. In vitro evidence suggests that MGMT may protect against the urotoxic oxazaphosphorine metabolite, acrolein. Here, we demonstrate that Chinese hamster ovary cells transfected with MGMT are protected against cytotoxicity following treatment with chloroacetaldehyde (CAA), a neuro- and nephrotoxic metabolite of cyclophosphamide and ifosfamide. The mechanism by which MGMT recognizes damage induced by acrolein and CAA is unknown. CHO cells expressing a mutant form of MGMT (MGMT(R128A)), known to have >1000-fold less repair activity towards alkylated DNA while maintaining full active site transferase activity towards low molecular weight substrates, exhibited equivalent CAA- and acrolein-induced cytotoxicity to that of CHO cells transfected with plasmid control. These results imply that direct reaction of acrolein or CAA with the active site cysteine residue of MGMT, i.e. scavenging, is unlikely a mechanism to explain MGMT protection from CAA and acrolein-induced toxicity. In vivo, no difference was detected between Mgmt-/- and Mgmt+/+ mice in the lethal effects of cyclophosphamide. While MGMT may be important at the cellular level, mice deficient in MGMT are not significantly more susceptible to cyclophosphamide, acrolein or CAA. Thus, our data does not support targeting MGMT to improve oxazaphosphorine therapy.
Collapse
Affiliation(s)
- Ryan J. Hansen
- Committee on Cancer Biology, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637
| | - Susan M. Ludeman
- Duke Comprehensive Cancer Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Sari J. Paikoff
- Duke Comprehensive Cancer Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Anthony E. Pegg
- Departments of Cellular and Molecular Physiology and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - M. Eileen Dolan
- Committee on Cancer Biology, Department of Medicine and Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637
| |
Collapse
|