1
|
Salem PPO, Silva DO, Silva PRS, Costa LPDM, Nicácio KJ, Murgu M, Caldas IS, Leite FB, Paula ACCD, Dias DF, Soares MG, Chagas-Paula DA. Bioguided isolation of anti-inflammatory and anti-urolithiatic active compounds from the decoction of Cissus gongylodes leaves. JOURNAL OF ETHNOPHARMACOLOGY 2024:118950. [PMID: 39419303 DOI: 10.1016/j.jep.2024.118950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Cissus gongylodes has traditionally been used in the diet of indigenous people in Brazil and in traditional medicine for kidney stone removal and inflammatory diseases. The active compounds responsible for these pharmacological activities are unknown. AIM OF THE STUDY This study aims to isolate, for the first time, the compounds in the decoction of C. gongylodes leaves responsible for their anti-inflammatory and anti-urolithiatic ethnopharmacological properties. MATERIALS AND METHODS The most active fractions of the C. gongylodes leaf decoction were fractionated using SPE-C18 and the compounds were purified through HPLC-UV-DAD. The decoction fractions and isolated compounds were evaluated for their anti-inflammatory and anti-urolithiatic activities. The anti-inflammatory activity was assessed using an ex vivo assay in human blood induced by LPS and calcium ionophore, measuring inflammatory mediators, PGE2 and LTB4. The anti-urolithiatic activity was evaluated using an in vitro experimental model with human urine to determine the dissolution of the most recurrent calcium oxalate (CaOx) crystals. Additionally, the decoction was chemically characterized through metabolomic analysis using UHPLC-ESI-HRMS. RESULTS The isolated compounds from the decoction of C. gongylodes, including rutin, eriodictyol 3'-O-glycoside, and isoquercetin, have demonstrated significant multi-target actions. These components act as anti-inflammatory agents by inhibiting the release of main inflammatory mediators, PGE2 and LTB4. Additionally, they exhibit anti-urolithiatic properties, promoting the dissolution of calcium oxalate (CaOx) crystals. Furthermore, the characterization of the decoction by UHPLC-ESI-HRMS revealed a high content of flavonoids, mainly glycosylated flavonoids. CONCLUSIONS The results support the traditional use of C. gongylodes decoction, identifying the compounds responsible for its anti-inflammatory and anti-urolithiatic effects. The decoction fractions and isolated compounds exhibited dual anti-inflammatory activity, effectively inhibiting key inflammatory pathways and potentially presenting fewer adverse effects while also promoting the dissolution of CaOx crystals associated with urolithiasis. The multi-target action displayed by C. gongylodes is particularly desirable in the treatment of urolithiasis, as inflammation and PGE2 production precede and contribute to the formation of CaOx crystals in the kidneys. Based on these actions, C. gongylodes emerges as a potent source of active compounds for the development of new treatments for urolithiasis.
Collapse
Affiliation(s)
- Paula P O Salem
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Daniele O Silva
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Paulo R S Silva
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Lara P D M Costa
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Karen J Nicácio
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, MT 78060-900, Brazil
| | | | - Ivo S Caldas
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Fernanda Brito Leite
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora MG 36036-900, Brazil
| | - Ana Claudia Chagas de Paula
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora MG 36036-900, Brazil
| | - Danielle F Dias
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Marisi G Soares
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Daniela A Chagas-Paula
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics. Chemistry Institute University of Alfenas, Alfenas, MG 37130-001, Brazil.
| |
Collapse
|
2
|
Haque Z, Taleuzzaman M, Jamal R, Al-Qahtani NH, Haque A. Targeting protein receptors and enzymes for precision management of urolithiasis: A comprehensive review. Eur J Pharmacol 2024; 981:176904. [PMID: 39153649 DOI: 10.1016/j.ejphar.2024.176904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Urolithiasis, characterized by the formation of solid crystalline structures within the urinary tract, presents a significant global health burden with high recurrence rates and limited treatment efficacy. Recent research has identified various protein receptors and enzymes implicated in the pathogenesis of urolithiasis, offering potential targets for therapeutic intervention. Protein receptors such as the calcium-sensing receptor and vasopressin V2 receptor play crucial roles in regulating urinary calcium excretion and water reabsorption, respectively, influencing stone formation. Additionally, modulation of receptors like the angiotensin II receptor and aldosterone receptor can impact renal function and electrolyte balance, contributing to stone prevention. Furthermore, enzymes such as urease inhibitors and xanthine oxidase inhibitors offer targeted approaches to prevent the formation of specific stone types. This review discusses the potential of targeting these receptors and enzymes for the treatment of urolithiasis, exploring associated drugs and their mechanisms of action. Despite promising avenues for personalized and precision medicine approaches, challenges such as the need for robust clinical evidence and ensuring cost-effectiveness must be addressed for the translation of these interventions into clinical practice. By overcoming these challenges, receptor-targeted therapies and enzyme inhibitors hold promise for revolutionizing the management of urolithiasis and reducing its global burden.
Collapse
Affiliation(s)
- Ziyaul Haque
- Anjumane-I-Islam Kalsekar Technical Campus (AIKTC), School of Pharmacy, Plot No: 2&3, Sector:16, Near Thana Naka, Khandagaon, New Panvel, Mumbai, Maharashtra 410206, India; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, Rajasthan, 342802, India
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, Rajasthan, 342802, India.
| | - Ruqaiya Jamal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, Rajasthan, 342802, India
| | - Noora H Al-Qahtani
- Central Laboratories Unit (CLU), Qatar University, Doha P.O. Box 2713, Qatar; Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Anzarul Haque
- Central Laboratories Unit (CLU), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
3
|
Yang C, Li S, Yang Y, Huang C, Li Y, Tan C, Bao J. Heatwave and upper urinary tract stones morbidity: effect modification by heatwave definitions, disease subtypes, and vulnerable populations. Urolithiasis 2024; 52:134. [PMID: 39361149 DOI: 10.1007/s00240-024-01619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024]
Abstract
As heatwave occurs with increased frequency and intensity, the disease burden for urolithiasis, a heat-specific disease, will increase. However, heatwave effect on urolithiasis subtypes morbidity and optimal heatwave definition for urolithiasis remain unclear. Distributed lagged linear models were used to assess the associations between 32 defined heatwave and upper urinary tract stones morbidity. Relative risk (RR) and attributable fraction (AF) of upper urinary tract stone morbidity associated with heatwave of different intensities (low, middle, and high) were pooled by meta-analysis. Optimal heatwave definition was selected based on the combined score of AF, RR, and quasi-Akaike Information Criterion (QAIC) value. Stratified analyses were conducted to investigate the modification effects of gender, age, and disease subtypes. Association between heatwave and upper urinary tract stones morbidity was mainly for ureteral calculus, and AF was highest for low-intensity heatwave. This study's optimal heatwave was defined as average temperature > 93rd percentile for ≥ 2 consecutive days, with AF of 7.40% (95% CI: 2.02%, 11.27%). Heatwave was associated with ureteral calculus morbidity in males and middle-aged adults. While heatwave effect was statistically insignificant in females and other age groups. Managers should develop appropriate definitions to address heatwave based on regional characteristics and focus on heatwave effects on urolithiasis.
Collapse
Affiliation(s)
- Chenlu Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shi Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yunmeng Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China
| | - Yike Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chaoming Tan
- Nanjing Social Insurance Management Center, Nanjing, 210008, China
| | - Junzhe Bao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Paluchamy T, Rani ND, Bhuvaneswari G, Tamilselvi S. Risk factors of urolithiasis: A hospital-based retrospective study. J Family Med Prim Care 2024; 13:3902-3905. [PMID: 39464976 PMCID: PMC11504827 DOI: 10.4103/jfmpc.jfmpc_353_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 10/29/2024] Open
Abstract
Aim Urolithiasis is the most prevalent urinary tract disease, posing a global public health concern. The escalating prevalence and recurrence rates of urolithiasis are attributed to lifestyle modifications, such as reduced physical activity and dietary habits. This retrospective study aims to explore the risk factors associated with urolithiasis among individuals diagnosed with this condition. Method A retrospective hospital-based study involving 60 participants meeting the inclusion criteria was conducted. The participants were selected through convenience sampling from the urology, nephrology, and medical wards at Saveetha Medical College and Hospital. Demographic variables were collected, and the risk factors were assessed using a checklist on one-to-one interviews. Results The study unveiled that most participants (68%) were male. Eighty percent of participants had the risk factor of decreased water intake, 74% consumed excess tomatoes, 56% had a history of recurrent urinary tract infections, 64% consumed an excessive amount of salt daily, 72% experienced a decreased urine output, 53% had a habit of alcohol consumption, and 45% included milk and milk products in their daily diet. A small percentage (5%) had a family history of urolithiasis. Additionally, 6% were undergoing Siddha treatment. Conclusion The findings from this study underscore the significant factors contributing to urolithiasis. They can inform public health campaigns to raise awareness about lifestyle modifications, dietary changes, and hydration protocols contributing to kidney stone formation.
Collapse
Affiliation(s)
- Thenmozhi Paluchamy
- Department of Medical Surgical Nursing, Saveetha College of Nursing, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - N Dilli Rani
- Department of Medical Surgical Nursing, Saveetha College of Nursing, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - G Bhuvaneswari
- Department of Community Health Nursing, Saveetha College of Nursing, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - S Tamilselvi
- Department of Community Health Nursing, Saveetha College of Nursing, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Zhu W, Zhou Z, Wu C, Huang Z, Zhao R, Wang X, Luo L, Liu Y, Zhong W, Zhao Z, Ai G, Zhong J, Liu S, Liu W, Pang X, Sun Y, Zeng G. miR-148b-5p regulates hypercalciuria and calcium-containing nephrolithiasis. Cell Mol Life Sci 2024; 81:369. [PMID: 39182194 PMCID: PMC11345353 DOI: 10.1007/s00018-024-05408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
Calcium-containing stones represent the most common form of kidney calculi, frequently linked to idiopathic hypercalciuria, though their precise pathogenesis remains elusive. This research aimed to elucidate the molecular mechanisms involved by employing urinary exosomal microRNAs as proxies for renal tissue analysis. Elevated miR-148b-5p levels were observed in exosomes derived from patients with kidney stones. Systemic administration of miR-148b-5p in rat models resulted in heightened urinary calcium excretion, whereas its inhibition reduced stone formation. RNA immunoprecipitation combined with deep sequencing identified miR-148b-5p as a suppressor of calcitonin receptor (Calcr) expression, thereby promoting urinary calcium excretion and stone formation. Mice deficient in Calcr in distal epithelial cells demonstrated elevated urinary calcium excretion and renal calcification. Mechanistically, miR-148b-5p regulated Calcr through the circRNA-83536/miR-24-3p signaling pathway. Human kidney tissue samples corroborated these results. In summary, miR-148b-5p regulates the formation of calcium-containing kidney stones via the circRNA-83536/miR-24-3p/Calcr axis, presenting a potential target for novel therapeutic interventions to prevent calcium nephrolithiasis.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Zhen Zhou
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Chengjie Wu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
- Department of General Surgery, Breast Center, Southern Medical University Nanfang Hospital, Guangzhou, 510230, Guangdong, China
| | - Zhicong Huang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Lianmin Luo
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Yang Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Wen Zhong
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Zhijian Zhao
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Guoyao Ai
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Jian Zhong
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Shusheng Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Weijie Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Xuliang Pang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
| | - Yin Sun
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14646, USA
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China.
| |
Collapse
|
6
|
Rizzo M, Pennisi M, Macrì F, Falcone A, Di Pietro S, Mhalhel K, Giudice E. Bilateral Global Nephrocalcinosis in a Uremic Puppy. Vet Sci 2024; 11:338. [PMID: 39195792 PMCID: PMC11359828 DOI: 10.3390/vetsci11080338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
This study explores kidney disease in young dogs, focusing on early diagnosis, management, and the importance of staging for effective treatment. Highlighting mineral metabolism imbalances and complications such as nephrocalcinosis, the study presents a case of severe renal failure with uremic syndrome and bilateral nephrocalcinosis in a 50-day-old puppy. Despite intensive care, the puppy's condition deteriorated rapidly, leading to euthanasia. The study underscores the challenges in diagnosing and managing canine nephrocalcinosis in young animals. It emphasizes the need for further research to improve the understanding and treatment outcomes in such cases, ultimately enhancing the quality of life for animals suffering from this rare condition.
Collapse
Affiliation(s)
- Maria Rizzo
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (M.R.); (M.P.); (F.M.); (K.M.); (E.G.)
| | - Melissa Pennisi
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (M.R.); (M.P.); (F.M.); (K.M.); (E.G.)
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (M.R.); (M.P.); (F.M.); (K.M.); (E.G.)
| | - Annastella Falcone
- Veterinary Teaching Hospital, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy;
| | - Simona Di Pietro
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (M.R.); (M.P.); (F.M.); (K.M.); (E.G.)
| | - Kamel Mhalhel
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (M.R.); (M.P.); (F.M.); (K.M.); (E.G.)
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (M.R.); (M.P.); (F.M.); (K.M.); (E.G.)
| |
Collapse
|
7
|
Demirtas F, Çakar N, Özçakar ZB, Akıncı A, Burgu B, Yalçınkaya F. Risk factors for recurrence in pediatric urinary stone disease. Pediatr Nephrol 2024; 39:2105-2113. [PMID: 38273078 PMCID: PMC11147915 DOI: 10.1007/s00467-024-06300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Children's urinary system stones may develop from environmental, metabolic, anatomical, and other causes. Our objective is to determine the recurrence and prognosis, demographic, clinical, and etiological characteristics of children with urolithiasis. METHODS Medical records of patients were evaluated retrospectively. Patients' demographic data and medical history, serum/urine biochemical and metabolic analysis, blood gas analysis, stone analysis, imaging findings, and medical/surgical treatments were recorded. RESULTS The study included 364 patients (male 187). Median age at diagnosis was 2.83 (IQR 0.83-8.08) years. The most common complaints were urinary tract infection (23%) and urine discoloration (12%). Sixty-two percent had a family history of stone disease. At least one metabolic disorder was found in 120 (88%) of 137 patients having all metabolic analyses: hypercalciuria was found in 45%, hypocitraturia in 39%, and hyperoxaluria in 37%. Anatomical abnormalities were detected in 18% of patients. Of 58 stones analyzed, 65.5% were calcium and 20.6% were cystine stones. Stone recurrence rate was 15% (55/364). Older age (> 5 years), family history of stone disease, stone size (≥ 5 mm), and urinary system anatomical abnormalities were significantly associated with stone recurrence (p = 0.027, p = 0.031, p < 0.001, and p < 0.001, respectively). In adjusted logistic regression analysis, stone size ≥ 5 mm (OR 4.85, 95% CI 2.53-9.3), presence of urinary system anatomical abnormalities (OR 2.89, 95% CI 1.44-5.78), and family history of stone disease (OR 2.41, 95% CI 1.19-4.86) had increased recurrence rate. CONCLUSIONS All children with urolithiasis should be evaluated for factors affecting stone recurrence. Children at higher risk of recurrence need to be followed carefully.
Collapse
Affiliation(s)
- Ferhan Demirtas
- Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey.
| | - Nilgün Çakar
- Division of Pediatric Nephrology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Zeynep Birsin Özçakar
- Division of Pediatric Nephrology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Aykut Akıncı
- Department of Pediatric Urology, Ankara University School of Medicine, Ankara, Turkey
| | - Berk Burgu
- Department of Pediatric Urology, Ankara University School of Medicine, Ankara, Turkey
| | - Fatoş Yalçınkaya
- Division of Pediatric Nephrology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
8
|
Chen WC, Chen YC, Chen YH, Liu TY, Tsai CH, Tsai FJ. Identification of novel genetic susceptibility loci for calcium-containing kidney stone disease by genome-wide association study and polygenic risk score in a Taiwanese population. Urolithiasis 2024; 52:94. [PMID: 38896256 DOI: 10.1007/s00240-024-01577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/04/2024] [Indexed: 06/21/2024]
Abstract
Approximately 80% of kidney stone diseases contain calcium. Inherited genetic factors are among the variables that influence the development of calcium-containing kidney stone diseases (CKSD). Previous genome-wide association studies (GWAS) on stone diseases have been reported worldwide; however, these are not focused on calcium-containing stones. We conducted a GWAS to identify germline genetic polymorphisms associated with CKSD in a Medical Center in Taiwan; hence, this study was based primarily on a hospital-based database. CKSD was diagnosed using the chart records. Patients infected with urea-splitting-microorganisms and those with at least two urinary pH value below 5.5 were excluded. None of the patients had cystic stones based on stone analysis. Those over 40 years of age with no history of CKSD and no microscopic hematuria on urinalysis were considered as controls. The DNA isolated from the blood of 14,934 patients (63.7% male and 36.3% female) with CKSD and 29,868 controls (10,830 men and 19,038 women) at a medical center was genotyped for approximately 714,457 single nucleotide polymorphisms (SNPs) with minor allele frequency of ≥ 0.05. We used PLINK 1.9 to calculate the polygenic risk score (PRS) to investigate the association between CKSD and controls. The accuracy of the PRS was verified by dividing it into the training and testing groups. The statistical analyses were calculated with the area under the curve (AUC) using IBM SPSS version 22. We identified 432 susceptibility loci that reached a genome-wide threshold of P < 1.0 × 10- 5. A total of 132 SNPs reached a threshold of P < 5 × 10- 8 using a stricter definition of significance on chromosomes 4, 13, 16, 17, and 18. At the top locus of our study, SNPs in DGKH, PDILT, BCAS3, and ABCG2 have been previously reported. RN7SKP27, HDAC4, PCDH15, AP003068.2, and NFATC1 were novel findings in this study. PRS was adjusted for sex and age, resulting in an AUC of 0.65. The number of patients in the top quartile of PRS was 1.39 folds in the risk of CKSD than patients in the bottom quartile. Our data identified the significance of GWAS for patients with CKSD in a hospital-based study. The PRS also had a high AUC for discriminating patients with CKSD from controls. A total of 132 SNP loci of SNPs significantly associated with the development of CKSD. This first survey, which focused on patients with CKSD, will provide novel insights specific to CKSD and its potential clinical biomarkers.
Collapse
Affiliation(s)
- Wen-Chi Chen
- Department of Urology, Department of Medical Research, Department of Medical Genetics, Million-Person Precision Medicine Initiative, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chia Chen
- Department of Urology, Department of Medical Research, Department of Medical Genetics, Million-Person Precision Medicine Initiative, China Medical University Hospital, Taichung, Taiwan
| | - Yung-Hsiang Chen
- Department of Urology, Department of Medical Research, Department of Medical Genetics, Million-Person Precision Medicine Initiative, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Ting-Yuan Liu
- Department of Urology, Department of Medical Research, Department of Medical Genetics, Million-Person Precision Medicine Initiative, China Medical University Hospital, Taichung, Taiwan
| | - Chang-Hai Tsai
- Department of Urology, Department of Medical Research, Department of Medical Genetics, Million-Person Precision Medicine Initiative, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Urology, Department of Medical Research, Department of Medical Genetics, Million-Person Precision Medicine Initiative, China Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan.
| |
Collapse
|
9
|
Alaqabani H, Omar H, Barham SY, Al Zuaini HH, Ugorenko A, Khaleel A. The awareness of renal stones amongst Syrian refugees in northern Jordan. PLoS One 2024; 19:e0300999. [PMID: 38875284 PMCID: PMC11178229 DOI: 10.1371/journal.pone.0300999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/09/2024] [Indexed: 06/16/2024] Open
Abstract
Kidney Stone Disease (KSD) is a globally prevalent condition that can be effectively addressed through proper education. This study investigated the awareness of kidney stones among refugees residing in northern Jordan. A questionnaire was administered to 487 refugees of diverse ages and socioeconomic backgrounds. Notably, 97.3% of the respondents had not attended university, and 30.8% held unskilled jobs. Upon familiarizing themselves with the signs and symptoms of kidney stones, 16.22% of men and 12.32% of women reported experiencing such symptoms. This revealed a significant association, suggesting that men might be more susceptible to developing kidney stones than women due to a lack of medical follow-up and examination for men in the camp. However, 38.77% of individuals were uncertain whether they had kidney stones. Furthermore, 38.96% of refugees were unsure about which healthcare professional to consult when experiencing kidney stone symptoms. This report highlights a serious issue with refugees' knowledge of the symptoms, causes, and treatments for kidney stones. The results indicate that Syrian refugees face challenges in acquiring adequate disease awareness, potentially related to issues of migration and war, including low levels of education, limited income, living in camps, and difficulties accessing treatments when needed. Implementing additional policies is necessary to address these challenges among Syrian refugees; however, further studies are needed to validate these findings.
Collapse
Affiliation(s)
- Hakam Alaqabani
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
- Department of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Hani Omar
- Faculty of Information Technology, Zarqa University, Zarqa, Jordan
| | - Sara Yaser Barham
- Department of Molecular Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Hashim H Al Zuaini
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Agata Ugorenko
- Department of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Anas Khaleel
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
10
|
Tian Y, Han G, Zhang S, Ding Z, Qu R. The key role of major and trace elements in the formation of five common urinary stones. BMC Urol 2024; 24:114. [PMID: 38816700 PMCID: PMC11138091 DOI: 10.1186/s12894-024-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Urolithiasis has emerged as a global affliction, recognized as one of the most excruciating medical issues. The elemental composition of stones provides crucial information, aiding in understanding the causes, mechanisms, and individual variations in stone formation. By understanding the interactions between elements in various types of stones and exploring the key role of elements in stone formation, insights are provided for the prevention and treatment of urinary stone disease. METHODS This study collected urinary stone samples from 80 patients in Beijing. The chemical compositions of urinary stones were identified using an infrared spectrometer. The concentrations of major and trace elements in the urinary stones were determined using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), respectively. The data were processed using correlation analysis and Principal Component Analysis (PCA) methods. RESULTS Urinary stones are categorized into five types: the calcium oxalate (CO) stone, carbonate apatite (CA) stone, uric acid (UA) stone, mixed CO and CA stone, and mixed CO and UA stone. Ca is the predominant element, with an average content ranging from 2.64 to 27.68% across the five stone groups. Based on geochemical analysis, the high-content elements follow this order: Ca > Mg > Na > K > Zn > Sr. Correlation analysis and PCA suggested significant variations in the interactions between elements for different types of urinary stones. Trace elements with charges and ionic structures similar to Ca may substitute for Ca during the process of stone formation, such as Sr and Pb affecting the Ca in most stone types except mixed stone types. Moreover, the Mg, Zn and Ba can substitute for Ca in the mixed stone types, showing element behavior dependents on the stone types. CONCLUSION This study primarily reveals distinct elemental features associated with five types of urinary stones. Additionally, the analysis of these elements indicates that substitutions of trace elements with charges and ion structures similar to Ca (such as Sr and Pb) impact most stone types. This suggests a dependence of stone composition on elemental behavior. The findings of this study will enhance our ability to address the challenges posed by urinary stones to global health and improve the precision of interventions for individuals with different stone compositions.
Collapse
Affiliation(s)
- Yu Tian
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China
| | - Guilin Han
- Institute of Earth Sciences, China University of Geosciences, No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
- Frontiers Science Center for Deep-time Digital Earth, Institute of Earth Sciences, China University of Geosciences, Beijing, 100083, China.
| | - Shudong Zhang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China.
| | - Ziyang Ding
- Institute of Earth Sciences, China University of Geosciences, No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
- Frontiers Science Center for Deep-time Digital Earth, Institute of Earth Sciences, China University of Geosciences, Beijing, 100083, China
| | - Rui Qu
- Institute of Earth Sciences, China University of Geosciences, No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
- Frontiers Science Center for Deep-time Digital Earth, Institute of Earth Sciences, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
11
|
Huang L, Chen W, Tan Z, Huang Y, Gu X, Liu L, Zhang H, Shi Y, Ding J, Zheng C, Guo Z, Yu B. Mrc1 + macrophage-derived IGF1 mitigates crystal nephropathy by promoting renal tubule cell proliferation via the AKT/Rb signaling pathway. Theranostics 2024; 14:1764-1780. [PMID: 38389846 PMCID: PMC10879870 DOI: 10.7150/thno.89174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: The present understanding of the cellular characteristics and communications in crystal nephropathy is limited. Here, molecular and cellular studies combined with single-cell RNA sequencing (scRNA-seq) were performed to investigate the changes in cell components and their interactions in glyoxylate-induced crystallized kidneys to provide promising treatments for crystal nephropathy. Methods: The transcriptomes of single cells from mouse kidneys treated with glyoxylate for 0, 1, 4, or 7 days were analyzed via 10× Genomics, and the single cells were clustered and characterized by the Seurat pipeline. The potential cellular interactions between specific cell types were explored by CellChat. Molecular and cellular findings related to macrophage-to-epithelium crosstalk were validated in sodium oxalate (NaOx)-induced renal tubular epithelial cell injury in vitro and in glyoxylate-induced crystal nephropathy in vivo. Results: Our established scRNA atlas of glyoxylate-induced crystalline nephropathy contained 15 cell populations with more than 40000 single cells, including relatively stable tubular cells of different segments, proliferating and injured proximal tubular cells, T cells, B cells, and myeloid and mesenchymal cells. In this study, we found that Mrc1+ macrophages, as a subtype of myeloid cells, increased in both the number and percentage within the myeloid population as crystal-induced injury progresses, and distinctly express IGF1, which induces the activation of a signal pathway to dominate a significant information flow towards injured and proliferating tubule cells. IGF1 promoted the repair of damaged tubular epithelial cells induced by NaOx in vitro, as well as the repair of damaged tubular epithelial cells and the recovery of disease outcomes in glyoxylate-induced nephrolithic mice in vivo. Conclusion: After constructing a cellular atlas of glyoxylate-induced crystal nephropathy, we found that IGF1 derived from Mrc1+ macrophages attenuated crystal nephropathy through promoting renal tubule cell proliferation via the AKT/Rb signaling pathway. These findings could lead to the identification of potential therapeutic targets for the treatment of crystal nephropathy.
Collapse
Affiliation(s)
- Linxi Huang
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Nephrology, PLA Navy No.905 Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhuojing Tan
- Department of Nephrology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Yunxiao Huang
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xinji Gu
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lantian Liu
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hongxia Zhang
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yihan Shi
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiarong Ding
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chengjian Zheng
- Faculty of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
12
|
Steely A, Worcester E, Prochaska M. Contrasting Response of Urine Stone Risk to Medical Treatment in Calcium Oxalate versus Calcium Phosphate Stone Formers. KIDNEY360 2024; 5:228-236. [PMID: 38251931 PMCID: PMC10914189 DOI: 10.34067/kid.0000000000000362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Key Points Thiazide treatment successfully lowered urine calcium and both calcium oxalate and calcium phosphate supersaturations in both types of stone formers (SFs). Alkali therapy may not confer the same benefits on calcium phosphate SFs as it does on calcium oxalate SFs. Background Randomized controlled trials have shown that both thiazide diuretics and potassium citrate (K-Cit) can prevent calcium stone recurrence, but most participants formed calcium oxalate (CaOx) stones. While thiazides are expected to lower risk of calcium phosphate (CaP) stone formation, the effect of K-Cit on risk of CaP stone formation is unclear. Methods To study the effect of common calcium stone treatments, we analyzed the 24-hour urines of CaOx and CaP stone formers (SFs) by four treatment types: Lifestyle, K-Cit, Thiazide, or Both medications. Results Patients treated with thiazides reduced urine calcium in both CaOx (M =−74.4, SD =94.6 mg/d) and CaP (M =−102, SD =99.7 mg/d) SFs while those on K-Cit had no change in urine calcium. Among CaOx SFs, urine citrate rose in patients administered K-Cit with or without thiazide, but citrate did not rise significantly in CaP SFs. Urine pH rose in all CaOx SFs, but among CaP SFs, only rose in patients receiving K-Cit. CaOx supersaturation (SS) decreased in all patients who received Thiazide, and decreased among CaOx SFs treated with K-Cit. CaP SS decreased in both CaOx SFs (M =−0.46, SD =0.86) and CaP SFs (M =−0.76, SD =0.85) treated with Thiazide, except CaOx SFs who received Both. Patients treated with K-Cit alone increased CaP SS in CaOx SFs (M =0.25, SD =0.79). Conclusions Patients treated with Thiazide lowered urine calcium and SS in both stone groups. Patients treated with K-Cit had no significant changes in urine calcium and had a decrease in CaOx SS in CaOx SFs. The study raises questions about the best preventive treatment for patients with CaP stones and suggests that K-Cit may not confer the same benefits on CaP SFs as it does on CaOx SFs.
Collapse
Affiliation(s)
- Audrey Steely
- Department of Medicine, University of Chicago, Chicago, Illinois
| | | | | |
Collapse
|
13
|
Zhang Y, Guo X, Zhou X, Yang E, Li P, Jiang J, Zhang L, Zhang Y, Wang Z. Association of dietary carotenoid intake with the prevalence kidney stones among the general adult population. Int Urol Nephrol 2024; 56:423-431. [PMID: 37740155 DOI: 10.1007/s11255-023-03810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
PURPOSE This study was to examine whether higher dietary carotenoid intake levels were associated with a lower prevalence of kidney stones. MATERIALS AND METHODS This study analyzed data from 2007 to 2018 National Health and Nutrition Examination Survey (NHANES) project. Dietary carotenoid intake (α-carotene, β-carotene, β-cryptoxanthin, lycopene, and lutein/zeaxanthin) was assessed using two 24-h dietary recall interviews. Multiple logistic regression and weighted quantile sum (WQS) regression were applied to examine the associations between five dietary carotenoids alone, compounds, and the prevalence of kidney stones. The dose-response relationships were analyzed by restricted cubic spline regression. RESULTS A total of 30,444 adults (2909 participants with kidney stones) were included in the analysis. The mean age of the participants was 49.95 years and 49.2% of the participants were male. Compared with the first quartile, the fourth quartile of α-carotene (odds ratio [OR] = 0.82 [0.73-0.92]), β-carotene (OR = 0.79 [0.70-0.89]), β-cryptoxanthin (OR = 0.88 [0.79-0.99]), and lutein/zeaxanthin (OR = 0.80 [0.71-0.91]) were significantly and inversely associated with the prevalence of kidney stones after adjusting for confounders. The dose-response analysis showed a linear relationship between five dietary carotenoid intake levels and the prevalence of kidney stones. Further WQS analysis revealed that the combination of all five dietary carotenoids was negatively associated with and the prevalence of kidney stones, with the largest effect coming from β-carotene (weight = 0.538). CONCLUSION Our findings indicated that higher dietary carotenoid intake levels were associated with decreased prevalence of kidney stones, and increasing the intake of foods rich in β-carotene may prevent the development of kidney stones.
Collapse
Affiliation(s)
- Yuanfeng Zhang
- Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
- Department of Urology, Shantou Central Hospital, Shantou, 515031, People's Republic of China
| | - Xiangyan Guo
- Department of Urology, Southern University of Science and Technology Yantian Hospital, Shenzhen, 518000, People's Republic of China
| | - Xinye Zhou
- Centre for Reproductive Medicine, Shantou Central Hospital, Shantou, 515031, People's Republic of China
| | - Enguang Yang
- Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Pan Li
- Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jingqi Jiang
- Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Luyang Zhang
- Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Yonghai Zhang
- Department of Urology, Shantou Central Hospital, Shantou, 515031, People's Republic of China
| | - Zhiping Wang
- Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
14
|
Elagamy SH, Sommer AJ, Williams JC. Sample preparation and analysis protocols for the elucidation of structure and chemical distribution in kidney stones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123561. [PMID: 37866258 PMCID: PMC11265603 DOI: 10.1016/j.saa.2023.123561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Examining intact kidney stones both qualitatively and quantitatively can be difficult due to their size and fragility. Many modern analysis methods often lead to the destruction of the stone's structure during sample preparation. Preserving the structural integrity is crucial for accurately determining the chemical distribution of the components of kidney stones, which, in turn, improves our understanding of the disease's etiology. Infrared microspectroscopy and imaging play a vital role in revealing the stone's microstructure and component distribution. Consequently, this research focuses on investigating the impact of different sample preparation techniques on kidney stone analysis using infrared microspectroscopy. Specifically, it explores how polishing the surface of cross-sectioned stones influences the results. The polishing was performed utilizing abrasive discs and lapping films. A polishing device was also designed for the optimization of sample preparation. Additionally, this work involved a comparison of reflection infrared imaging with Attenuated Total Internal Reflection (ATR) infrared microspectroscopic imaging for the analysis of the microstructure of urinary stones.
Collapse
Affiliation(s)
- Samar H Elagamy
- Department of Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - André J Sommer
- Molecular Microspectroscopy Laboratory, Miami University, Oxford, USA
| | - James C Williams
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
He J, Cao Y, Zhu Q, Wang X, Cheng G, Wang Q, He R, Lu H, Weng Y, Mao G, Bao Y, Wang J, Liu X, Han F, Shi P, Shen XZ. Renal macrophages monitor and remove particles from urine to prevent tubule obstruction. Immunity 2024; 57:106-123.e7. [PMID: 38159573 DOI: 10.1016/j.immuni.2023.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
When the filtrate of the glomerulus flows through the renal tubular system, various microscopic sediment particles, including mineral crystals, are generated. Dislodging these particles is critical to ensuring the free flow of filtrate, whereas failure to remove them will result in kidney stone formation and obstruction. However, the underlying mechanism for the clearance is unclear. Here, using high-resolution microscopy, we found that the juxtatubular macrophages in the renal medulla constitutively formed transepithelial protrusions and "sampled" urine contents. They efficiently sequestered and phagocytosed intraluminal sediment particles and occasionally transmigrated to the tubule lumen to escort the excretion of urine particles. Mice with decreased renal macrophage numbers were prone to developing various intratubular sediments, including kidney stones. Mechanistically, the transepithelial behaviors of medulla macrophages required integrin β1-mediated ligation to the tubular epithelium. These findings indicate that medulla macrophages sample urine content and remove intratubular particles to keep the tubular system unobstructed.
Collapse
Affiliation(s)
- Jian He
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangyang Cao
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinge Wang
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guo Cheng
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rukun He
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoran Lu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, China
| | - Yuancheng Weng
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Liu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Shi
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiao Z Shen
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Liu WR, Li MT, Zhou Q, Gao SY, Hou JB, Yang GB, Liu NM, Jia-Yan, Yu JP, Cheng J, Guo ZY. Study on Fu-Fang-Jin-Qian-Cao Inhibiting Autophagy in Calcium Oxalate-induced Renal Injury by UHPLC/Q-TOF-MS-based Metabonomics and Network Pharmacology Approaches. Comb Chem High Throughput Screen 2024; 27:90-100. [PMID: 37190798 DOI: 10.2174/1386207326666230515151302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/26/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Fu-Fang-Jin-Qian-Cao is a Chinese herbal preparation used to treat urinary calculi. Fu-Fang-Jin-Qian-Cao can protect renal tubular epithelial cells from calcium oxalateinduced renal injury by inhibiting ROS-mediated autopathy. The mechanism still needs further exploration. Metabonomics is a new subject; the combination of metabolomics and network pharmacology can find pathways for drugs to act on targets more efficiently. METHODS Comprehensive metabolomics and network pharmacology to study the mechanism of Fu-Fang-Jin-Qian-Cao inhibiting autophagy in calcium oxalate-induced renal injury. Based on UHPLC-Q-TOF-MS, combined with biochemical analysis, a mice model of Calcium oxalateinduced renal injury was established to study the therapeutic effect of Fu-Fang-Jin-Qian-Cao. Based on the network pharmacology, the target signaling pathway and the protective effect of Fu- Fang-Jin-Qian-Cao on Calcium oxalate-induced renal injury by inhibiting autophagy were explored. Autophagy-related proteins LC3-II, BECN1, ATG5, and ATG7 were studied by immunohistochemistry. RESULTS Combining network pharmacology and metabolomics, 50 differential metabolites and 2482 targets related to these metabolites were found. Subsequently, the targets enriched in PI3KAkt, MAPK and Ras signaling pathways. LC3-II, BECN1, ATG5 and ATG7 were up-regulated in Calcium oxalate-induced renal injury. All of them could be reversed after the Fu-Fang-Jin-Qian- Cao treatment. CONCLUSIONS Fu-Fang-Jin-Qian-Cao can reverse ROS-induced activation of the MAPK signaling pathway and inhibition of the PI3K-Akt signaling pathway, thereby reducing autophagy damage of renal tubular epithelial cells in Calcium oxalate-induced renal injury.
Collapse
Affiliation(s)
- Wen-Rui Liu
- Department of Nephrology, Changhai Hospital, Navy Medical University, Shanghai, China
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mao-Ting Li
- Department of Nephrology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Qi Zhou
- Department of Nephrology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Song-Yan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jie-Bin Hou
- Department of Nephrology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guo-Bin Yang
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nan-Mei Liu
- International Medicine III (Nephrology & Endocrinology), Navy Medical Center of PLA, Navy Medical University, Shanghai, China
| | - Jia-Yan
- Department of Nephrology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Jian-Peng Yu
- Department of Nephrology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Jin Cheng
- International Medicine III (Nephrology & Endocrinology), Navy Medical Center of PLA, Navy Medical University, Shanghai, China
| | - Zhi-Yong Guo
- Department of Nephrology, Changhai Hospital, Navy Medical University, Shanghai, China
| |
Collapse
|
17
|
Liu L, Lin C, Li X, Cheng Y, Wang R, Luo C, Zhao X, Jiang Z. Protective Effect of Alkaline Mineral Water on Calcium Oxalate-Induced Kidney Injury in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4559802. [PMID: 37920186 PMCID: PMC10620026 DOI: 10.1155/2023/4559802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/17/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Background Kidney stone disease induces chronic renal insufficiency by crystal-induced renal tubular epithelial cell injury. It has been reported that the prevalence of kidney stone disease is increasing, accompanied by the high recurrence rate. Alkaline mineral water has been reported to possess beneficial effects to attenuate inflammation. Here, we explored the potential protective effects and underlying mechanisms of alkaline mineral water against calcium oxalate-induced kidney injury. Methods We performed the mice kidney stone model by administering glyoxylate at 100 mg/kg once daily for 7 days. To assess the effects of alkaline mineral water on oxalate-induced kidney injury, mice drank different water (distilled water, natural mineral water at pH = 8.0, as well as natural mineral water at pH = 9.3) for 7 days, respectively, followed by glyoxylate exposure. After collection, crystal formation, kidney injury and cell apoptosis, fibrosis, oxidative stress, as well as inflammation were measured. Results Our results showed that glyoxylate treatment led to kidney crystal formation and fibrosis, which can be attenuated by drinking alkaline mineral water. Furthermore, alkaline mineral water also reduced kidney injury and cell apoptosis, oxidative stress, and inflammation. Conclusion Alkaline mineral water supplement prevents progression of glyoxylate-induced kidney stones through alleviating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chen Lin
- Vectors and Parasitosis Control and Prevention Section, Center of Disease Prevention and Control in Pudong New Area of Shanghai, Shanghai, China
| | - Xiu Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yulan Cheng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Chao Luo
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Zhitao Jiang
- College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, China
| |
Collapse
|
18
|
Sofińska-Chmiel W, Goliszek M, Drewniak M, Nowicka A, Kuśmierz M, Adamczuk A, Malinowska P, Maciejewski R, Tatarczak-Michalewska M, Blicharska E. Chemical Studies of Multicomponent Kidney Stones Using the Modern Advanced Research Methods. Molecules 2023; 28:6089. [PMID: 37630341 PMCID: PMC10458485 DOI: 10.3390/molecules28166089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Defining the kidney stone composition is important for determining a treatment plan, understanding etiology and preventing recurrence of nephrolithiasis, which is considered as a common, civilization disease and a serious worldwide medical problem. The aim of this study was to investigate the morphology and chemical composition of multicomponent kidney stones. The identification methods such as infrared spectroscopy (FTIR), X-ray diffraction (XRD), and electron microscopy with the EDX detector were presented. The studies by the X-ray photoelectron spectroscopy (XPS) were also carried out for better understanding of their chemical structure. The chemical mapping by the FTIR microscopy was performed to show the distribution of individual chemical compounds that constitute the building blocks of kidney stones. The use of modern research methods with a particular emphasis on the spectroscopic methods allowed for a thorough examination of the subject of nephrolithiasis.
Collapse
Affiliation(s)
- Weronika Sofińska-Chmiel
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University, Maria Curie Skłodowska Sq. 2, 20-031 Lublin, Poland
| | - Marta Goliszek
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University, Maria Curie Skłodowska Sq. 2, 20-031 Lublin, Poland
| | - Marek Drewniak
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University, Maria Curie Skłodowska Sq. 2, 20-031 Lublin, Poland
| | - Aldona Nowicka
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University, Maria Curie Skłodowska Sq. 2, 20-031 Lublin, Poland
| | - Marcin Kuśmierz
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University, Maria Curie Skłodowska Sq. 2, 20-031 Lublin, Poland
| | - Agnieszka Adamczuk
- Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4 Str., 20-290 Lublin, Poland
| | - Paulina Malinowska
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University, Maria Curie Skłodowska Sq. 2, 20-031 Lublin, Poland
| | - Ryszard Maciejewski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4 Str., 20-090 Lublin, Poland
- Institute of Health Sciences, The John Paul II Catholic University of Lublin, Kostantynów 1 H Str., 20-708 Lublin, Poland
| | - Małgorzata Tatarczak-Michalewska
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Eliza Blicharska
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| |
Collapse
|
19
|
Bayne D, Maru J, Srirangapatanam S, Hicks C, Neuhaus J, Scales C, Chi T, Stoller M. Effects of Delayed Surgical Intervention Following Emergency Department Presentation on Stone Surgery Complexity. J Endourol 2023; 37:729-737. [PMID: 37158820 PMCID: PMC10280210 DOI: 10.1089/end.2022.0843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Introduction and Objective: Prior literature had demonstrated increased stone burden and higher rates of staged surgery in individuals of lower socioeconomic status (SES). Low SES individuals are more likely to experience delays in definitive stone surgery after initial presentation to the emergency department (ED) for kidney stones. This study aims to investigate the relationship between delays in definitive kidney stone surgery and the subsequent need for percutaneous nephrolithotomy (PNL) and/or staged surgical procedures using a statewide data set. Methods: This retrospective cohort study gathered longitudinal data from 2009 to 2018 using the California Department of Health Care Access and Information data set. Patient demographic characteristics, comorbidities, diagnosis/procedure codes, and distance were analyzed. Complex stone surgery was defined as initial PNL and/or undergoing more than one procedure within 365 days of initial intervention. Results: A total of 1,816,093 billing encounters from 947,798 patients were screened, resulting in 44,835 patients with ED visits for kidney stones followed by a urologic stone procedure. Multivariable analysis revealed that relative to patients who underwent surgery within 1 month of initial ED visit for stone disease, patients were at increased odds of undergoing complex surgery if waiting ≥6 months (odds ratio [OR] 1.18, p = 0.022), ≥1 year (OR 1.29, p < 0.001), and ≥3 years (OR 1.43, p < 0.001). Conclusions: Delays in definitive stone surgery after initial ED encounter for stone disease were associated with increased likelihood of undergoing a complex stone treatment.
Collapse
Affiliation(s)
- David Bayne
- Department of Urology, University of California San Francisco, San Francisco, California, USA
| | - Johsias Maru
- School of Medicine, University of California San Francisco, San Francisco, California, USA
| | | | - Cameron Hicks
- School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - John Neuhaus
- Division of Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Charles Scales
- Department of Urology, Duke University, Durham, North Carolina, USA
| | - Thomas Chi
- Department of Urology, University of California San Francisco, San Francisco, California, USA
| | - Marshall Stoller
- Department of Urology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Bawari S, Sah AN, Gupta P, Zengin G, Tewari D. Himalayan Citrus jambhiri juice reduced renal crystallization in nephrolithiasis by possible inhibition of glycolate oxidase and matrix metalloproteinases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116157. [PMID: 36646157 DOI: 10.1016/j.jep.2023.116157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Citrus fruits are a very rich source of electrolytes and citric acid. They have been used traditionally for treating urinary ailments and renal stones. Citrus jambhiri is indigenously used as a diuretic. AIM OF THE STUDY Present study aimed at establishing the antiurolithiatic potential of the juice of Citrus jambhiri fruits along with the elucidation of the mechanism involved in the urolithiasis disease defying activity. METHODS The antiurolithiatic activity was established by means of nucleation, growth and aggregation assay in the in vitro settings and by means of ethylene glycol mediated calcium oxalate urolithiasis in the male Wistar rats. Docking studies were performed in an attempt to determine the mechanism of the antiurolithiatic action. RESULTS Present study revealed the role of C. jambhiri fruit juice in reducing nucleation, growth and aggregation of calcium oxalate crystals by possible reduction in the urinary supersaturation relative to calcium oxalate and raising the zeta potential of the calcium oxalate crystals. C. jambhiri fruit juice treatment in experimental rats produced significant amelioration of hypercalciuria, hyperoxaluria, hyperphosphaturia, hyperproteinuria, hyperuricosuria, hypocitraturia and hypomagnesiuria and ion activity product of calcium oxalate. It exhibited nephroprotection against calcium oxalate crystals induced renal tubular dilation and renal tissue deterioration. Docking studies further revealed high binding potential of the phytoconstituents of C. jambhiri viz. narirutin, neohesperidin, hesperidin, rutin and citric acid with glycolate oxidase and matrix metalloproteinase-9. CONCLUSION C. jambhiri fruit juice possesses excellent antiurolithiatic activity. The study reveals antiurolithiatic mechanism that involves restoration of equilibrium between the promoters and inhibitors of stone formation; and inhibition of matrix metalloproteinases and glycolate oxidase.
Collapse
Affiliation(s)
- Sweta Bawari
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201313, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Archana N Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal, Kumaun University, Nainital, Uttarakhand, 263136, India.
| | - Pawan Gupta
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Gökhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India.
| |
Collapse
|
21
|
Eren E, Karabulut YY, Eren M, Kadir S. Mineralogy, geochemistry, and micromorphology of human kidney stones (urolithiasis) from Mersin, the southern Turkey. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01525-8. [PMID: 36934357 DOI: 10.1007/s10653-023-01525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
This study describes the primary characteristics of the selected kidney stones surgically removed from the patients at the Mersin University Hospital in the southern Turkey and interprets their formation via petrographic, geochemical, XRD, SEM-EDX, and ICP-MS/OES analyses. The analytical results revealed that the kidney stones are composed of the minerals whewellite, struvite, hydroxyapatite, and uric acid alone or in different combinations. The samples occur in staghorn, bean-shaped composite, and individual rounded particle shapes, which are controlled by the shape of the nucleus and the site of stone formation. The cross-section of the samples shows concentric growth layers due to variations in saturation, characterizing the metastable phase. Kidney stone formation includes two main stages: (i) nucleation and (ii) aggregation and/or growth. Nucleation was either Randall plaque of hydroxyapatite in tissue on the surface of the papilla or a coating of whewellite on the plaque, or crystallization as free particles in the urine. Subsequently, aggregation or growth occurs by precipitation of stone-forming materials around the plaque or coating carried into the urine, or around the nucleus formed in situ in the urine. Urinary supersaturation is the main driving force of crystallization processes; and is controlled by many factors including bacterially induced supersaturation.
Collapse
Affiliation(s)
- Elif Eren
- Faculty of Medicine, San Raffaele University, Milan, Italy.
| | | | - Muhsin Eren
- Department of Geological Engineering, Mersin University, Mersin, Turkey
| | - Selahattin Kadir
- Department of Geological Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
22
|
Khan A, Gilani AH. An insight investigation to the antiurolithic activity of Trachyspermum ammi using the in vitro and in vivo experiments. Urolithiasis 2023; 51:43. [PMID: 36867274 DOI: 10.1007/s00240-023-01415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/18/2023] [Indexed: 03/04/2023]
Abstract
The crude extract of Trachyspermum ammi seeds (Ta.Cr) was studied for its antiurolithic activity using the in vivo and in vitro experiments. In the in vivo experiments, Ta.Cr treatment showed a diuretic activity at the dose of 30 and 100 mg/kg and exhibited curative effect in male hyperoxaluric Wistar rats, which received 0.75% ethylene glycol (EG) in drinking water given for 3 weeks, with 1% ammonium chloride (AC) for initial three days. In the in vitro experiments, Ta.Cr delayed the slopes of nucleation and inhibited the calcium oxalate (CaOx) crystal aggregation in a concentration-dependent manner like that of potassium citrate. Ta.Cr also inhibited DPPH free radicals like standard antioxidant drug butylated hydroxytoluene (BHT), and significantly reduced cell toxicity and LDH release in Madin-Darby canine kidney (MDCK) cells, exposed to oxalate (0.5 mM) and COM (66 µg/cm2) crystals. In isolated rabbit urinary bladder strips, Ta.Cr relaxed high K+ (80 mM) and CCh (1 µM)-induced contractions, showing antispasmodic activity. The findings of this study suggest that the antiurolithic activity of crude extract of Trachyspermum ammi seeds may be mediated by a number of mechanisms, including a diuretic, an inhibitor of CaOx crystal aggregation, an antioxidant, renal epithelial cell protection, and an antispasmodic, thus, showing the therapeutic potential in urolithiasis, for which there is no viable non-invasive option in modern medicine.
Collapse
Affiliation(s)
- Aslam Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 13 KM Raiwind Road, Lahore, Pakistan. .,Department of Biological and Biomedical Sciences, Aga Khan University Medical College, Karachi, 74800, Pakistan.
| | - Anwar H Gilani
- Department of Biological and Biomedical Sciences, Aga Khan University Medical College, Karachi, 74800, Pakistan. .,Pakistan Academy of Sciences, Constitution Avenue, G-5, Islamabad, Pakistan.
| |
Collapse
|
23
|
Biomarkers in Urolithiasis. Urol Clin North Am 2023; 50:19-29. [DOI: 10.1016/j.ucl.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Tian H, Liang Q, Shi Z, Zhao H. Hyperoside Ameliorates Renal Tubular Oxidative Damage and Calcium Oxalate Deposition in Rats through AMPK/Nrf2 Signaling Axis. J Renin Angiotensin Aldosterone Syst 2023; 2023:5445548. [PMID: 36942317 PMCID: PMC10024623 DOI: 10.1155/2023/5445548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 03/13/2023] Open
Abstract
Background Nephrolithiasis is a common disease that seriously affects the health and life quality of patients. Despite the reported effect of hyperoside (Hyp) against nephrolithiasis, the specific mechanism has not been clarified. Therefore, this study is aimed at investigating the effect and potential mechanism of Hyp on renal injury and calcium oxalate (CaOx) crystal deposition. Methods Rat and cell models of renal calculi were constructed by ethylene glycol (EG) and CaOx induction, respectively. The renal histopathological damage, CaOx crystal deposition, and renal function damage of rats were assessed by HE staining, Pizzolato staining, and biochemical detection of blood and urine parameters. MTT and crystal-cell adhesion assays were utilized to determine the activity of HK-2 cells and crystal adhesion ability, biochemical detection and enzyme-linked immunosorbent assay (ELISA) to measure the levels of oxidative stress-related substances and inflammatory factors, and western blot to test the expression levels of proteins related to the AMPK/Nrf2 signaling pathway. Results Briefly speaking, Hyp could improve the renal histopathological injury and impaired renal function, reduce the deposition of CaOx crystals in the renal tissue of rats with renal calculi, and decrease the adhesion of crystals to CaOx-treated HK-2 cells. Besides, Hyp also significantly inhibited oxidative stress response. Furthermore, Hyp was associated with the downregulation of malondialdehyde, lactate dehydrogenase, and reactive oxygen species and upregulation of superoxide dismutase activity. Additionally, Hyp treatment also suppressed inflammatory response and had a correlation with declined levels of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor. Further exploration of mechanism manifested that Hyp might play a protective role through promoting AMPK phosphorylation and nuclear translation of Nrf2 to activate the AMPK/Nrf2 signaling pathway. Conclusion Hyp can improve renal pathological and functional damage, decrease CaOx crystal deposition, and inhibit oxidative stress and inflammatory response. Such effects may be achieved by activating the AMPK/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Hongyang Tian
- 1Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Qi Liang
- 2Department of Urology Surgery, Dalinghe Hospital Affiliated to Medical College of Jinzhou Medical University, Jinzhou 121000, China
| | - Zhen Shi
- 2Department of Urology Surgery, Dalinghe Hospital Affiliated to Medical College of Jinzhou Medical University, Jinzhou 121000, China
| | - Hang Zhao
- 3Department of Hepatobiliary Diseases, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
25
|
Liu Q, Tang J, Chen Z, Wei L, Chen J, Xie Z. Polyunsaturated fatty acids ameliorate renal stone-induced renal tubular damage via miR-93-5p/Pknox1 axis. Nutrition 2023; 105:111863. [PMID: 36356379 DOI: 10.1016/j.nut.2022.111863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/28/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Polyunsaturated fatty acids (PUFAs) can decrease the risk of calcium oxalate stone formation, which accounts for 80% of all renal stones. This study aimed to investigate the protective mechanisms of PUFAs against renal stones. METHODS Urine samples of patients with renal stones and biopsy tissue samples from patients with nephrocalcinosis were tested for miR-93-5p expression. A renal stone mouse model was established with intraperitoneal injection of glyoxylic acid, during which mice were treated with PUFAs and/or an miR-93-5p inhibitor adenovirus. Periodic acid-Schiff staining, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling staining, oil red O staining, triacylglycerol assay, and colorimetry testing were performed to assess glycogen deposition, apoptosis, lipid accumulation, blood urea nitrogen, and serum creatinine levels, respectively. Renal proximal tubular epithelial cells (human kidney 2 [HK-2]) were subjected to gain- and loss-of-function assays before calcium-oxalate monohydrate (COM) induction and PUFA treatment. Cell counting kit 8, flow cytometry, and lactate dehydrogenase activity assays were used to examine cell viability, apoptosis, and damage. A luciferase reporter gene assay verified the interaction between miR-93-5p and Pknox1, and miR-93-5p and Pknox1 levels were assessed using a reverse transcription-quantitative polymerase chain reaction and Western blot analysis. RESULTS miR-93-5p was downregulated in clinical samples with renal stones and negatively targeted Pknox1. PUFAs increased miR-93-5p expression and reduced apoptosis, glycogen deposition, and lipid accumulation in mice with renal stones, which were annulled by miR-93-5p downregulation. PUFAs increased proliferation and diminished apoptosis, lipid accumulation, and lactate dehydrogenase activity in COM-induced HK-2 cells, which were negated by miR-93-5p inhibition. Pknox1 overexpression reversed the effect of miR-93-5p upregulation on COM-induced HK-2 cells. CONCLUSIONS PUFAs repressed renal stone-induced renal tubular damage via the miR-93-5p/Pknox1 axis.
Collapse
Affiliation(s)
- Qin Liu
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Jun Tang
- Department of Emergency, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Zhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Lanji Wei
- Health Management Center, The Affiliated Nanhua Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Jianying Chen
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (Mawangdui Hospital), Changsha, Hunan, China
| | - Zhijuan Xie
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China.
| |
Collapse
|
26
|
Donelan W, Li S, Dominguez-Gutierrez PR, Anderson Iv A, Yang LJ, Nguyen C, Canales BK. Expression and secretion of glycosylated barley oxalate oxidase in Pichia pastoris. PLoS One 2023; 18:e0285556. [PMID: 37167324 PMCID: PMC10174515 DOI: 10.1371/journal.pone.0285556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
Oxalate oxidase is an enzyme that degrades oxalate and is used in commercial urinary assays to measure oxalate levels. The objective of this study was to establish an enhanced expression system for secretion and purification of oxalate oxidase using Pichia pastoris. A codon optimized synthetic oxalate oxidase gene derived from Hordeum vulgare (barley) was generated and cloned into the pPICZα expression vector downstream of the N-terminal alpha factor secretion signal peptide sequence and used for expression in P. pastoris X-33 strain. A novel chimeric signal peptide consisting of the pre-OST1 sequence fused to pro-αpp8 containing several amino acid substitutions was also generated to enhance secretion. Active enzyme was purified to greater than 90% purity using Q-Sepharose anion exchange chromatography. The purified oxalate oxidase enzyme had an estimated Km value of 256μM, and activity was determined to be 10U/mg. We have developed an enhanced oxalate oxidase expression system and method for purification.
Collapse
Affiliation(s)
- William Donelan
- Department of Urology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - ShiWu Li
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Paul R Dominguez-Gutierrez
- Department of Urology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Augustus Anderson Iv
- Department of Urology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Li-Jun Yang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Cuong Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Benjamin K Canales
- Department of Urology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
27
|
AbdelRazek M, Fathi A, Mohamed M, Abdel-Kader MS. Primary versus deferred ureteroscopy for the management of obstructive anuria secondary to ureteric urolithiasis in children: a prospective randomized study. Urolithiasis 2022; 51:6. [PMID: 36459265 PMCID: PMC9718699 DOI: 10.1007/s00240-022-01389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
To compare the role of primary and deferred ureteroscopy (URS) in the management of obstructive anuria secondary to ureteric urolithiasis in pediatric patients. This prospective randomized study included 120 children aged ≤ 12 years who presented with obstructive anuria secondary to ureteric urolithiasis between March 2019 and January 2021. The children were subdivided into group A, which included children who had undergone primary URS without pre-stenting, and group B, which included children who had undergone URS after ureteric stenting. All children were clinically compensated and sepsis-free. Patients with underlying urological structural abnormalities were excluded. The operative time, improvement of renal functions, stone-free rate, and complications were compared between the two groups. At the 1-month follow-up, urine analysis; kidney, ureter, and bladder radiography; and ultrasonography were performed. The patient characteristics of both groups did not show any significant difference. Primary URS had failed in ten children (16.6%) in group A. Moreover, failure of stenting was noted in six patients (11%) in group B. The mean operative time for group B was significantly lower than that for group A (p ≤ 0.001). The stone-free rate was significantly higher in group B (p ≤ 0.001). The rate of overall complications was higher in group A. Deferred URS is preferable over primary URS in the management of obstructive anuria secondary to ureteric urolithiasis". In children because of the lower need for ureteric dilatation, higher stone- free rate, shorter procedure time, and lower complication rate.
Collapse
Affiliation(s)
- Mostafa AbdelRazek
- Department of Urology, Qena University Hospital, South Valley University, Qena, Egypt.
| | - Atef Fathi
- Department of Urology, Qena University Hospital, South Valley University, Qena, Egypt
| | - Mostafa Mohamed
- Department of Urology, Qena University Hospital, South Valley University, Qena, Egypt
| | | |
Collapse
|
28
|
Pooyesh S, Foshati S, Sabeti M, Parvin H, Aminsharifi A. Predicting outcomes in kidney stone endoscopic surgery by rotation forest algorithm. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2022. [DOI: 10.1080/21681163.2022.2131629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shima Pooyesh
- Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| | - Saghar Foshati
- Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| | - Malihe Sabeti
- Department of Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Parvin
- Department of Computer Engineering, Nourabad Branch, Islamic Azad University, Noorabad, Iran
| | - Alireza Aminsharifi
- Department of Urology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Urology and Surgery, Pennsylvannia State University, Hershey, PA, USA
| |
Collapse
|
29
|
Tamosaityte S, Pucetaite M, Zelvys A, Varvuolyte S, Hendrixson V, Sablinskas V. Raman spectroscopy as a non-destructive tool to determine the chemical composition of urinary sediments. CR CHIM 2022. [DOI: 10.5802/crchim.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Two independent modes of kidney stone suppression achieved by AIM/CD5L and KIM-1. Commun Biol 2022; 5:783. [PMID: 35922481 PMCID: PMC9349198 DOI: 10.1038/s42003-022-03750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
The prevalence of kidney stones is increasing and its recurrence rate within the first 5 years is over 50%. No treatments that prevent the occurrence/recurrence of stones have reached the clinic. Here, we show that AIM (also called CD5L) suppresses stone development and improves stone-associated physical damages. The N-terminal domain of AIM associates with calcium oxalate crystals via charge-based interaction to impede the development of stones, whereas the 2nd and C-terminal domains capture the inflammatory DAMPs to promote their phagocytic removal. Accordingly, when stones were induced by glyoxylate in mice, recombinant AIM (rAIM) injection dramatically reduced stone development. Expression of injury molecules and inflammatory cytokines in the kidney and overall renal dysfunction were abrogated by rAIM. Among various negatively charged substances, rAIM was most effective in stone prevention due to its high binding affinity to crystals. Furthermore, only AIM was effective in improving the physical complaints including bodyweight-loss through its DAMPs removal effect. We also found that tubular KIM-1 may remove developed stones. Our results could be the basis for the development of a comprehensive therapy against kidney stone disease. The circulating protein apoptosis inhibitor of macrophage (AIM) reduces kidney stone development and prevents build up, providing the basis for kidney stone disease therapy.
Collapse
|
31
|
Jing GH, Liu YD, Liu JN, Jin YS, Yu SL, An RH. Puerarin prevents calcium oxalate crystal-induced renal epithelial cell autophagy by activating the SIRT1-mediated signaling pathway. Urolithiasis 2022; 50:545-556. [PMID: 35913552 DOI: 10.1007/s00240-022-01347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Calcium oxalate (CaOx) crystals can activate autophagy, causing damage to renal tubular epithelial cells (TECs). Puerarin has been shown to have protective and therapeutic effects against a variety of diseases by inhibiting autophagy activation. However, the protective effect of puerarin against CaOx crystals and the underlying molecular mechanisms are unclear. Cell Counting Kit-8 (CCK-8) assays were used to evaluate the effects of puerarin on cell viability. Intracellular reactive oxygen species (ROS) levels were measured by the cell-permeable fluorogenic probe 2,7-dichlorofluorescein diacetate (DCFH-DA). Immunofluorescence, immunohistochemistry, and western blotting were used to examine the expression of SIRT1, Beclin1, p62, and LC3, and explore the underlying molecular mechanisms in vivo and in vitro. Puerarin treatment significantly attenuated CaOx crystal-induced autophagy of TECs and CaOx cytotoxicity to TECs by altering SIRT1 expression in vitro and in vivo, whereas the SIRT1-specific inhibitor EX527 exerted contrasting effects. In addition, we found that the protective effect of puerarin was related to the SIRT1/AKT/p38 signaling pathway. The findings suggest that puerarin regulates CaOx crystal-induced autophagy by activating the SIRT1-mediated signaling pathway, and they suggest a series of potential therapeutic targets and strategies for treating nephrolithiasis.
Collapse
Affiliation(s)
- Guan-Hua Jing
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ya-Dong Liu
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Nan Liu
- Department of Urology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yin-Shan Jin
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi-Liang Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Rui-Hua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
32
|
Li MT, Liu LL, Zhou Q, Huang LX, Shi YX, Hou JB, Lu HT, Yu B, Chen W, Guo ZY. Phyllanthus Niruri L. Exerts Protective Effects Against the Calcium Oxalate-Induced Renal Injury via Ellgic Acid. Front Pharmacol 2022; 13:891788. [PMID: 36034880 PMCID: PMC9400657 DOI: 10.3389/fphar.2022.891788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Urolithiasis or kidney stones is a common and frequently occurring renal disease; calcium oxalate (CaOx) crystals are responsible for 80% of urolithiasis cases. Phyllanthus niruri L. (PN) has been used to treat urolithiasis. This study aimed to determine the potential protective effects and molecular mechanism of PN on calcium oxalate-induced renal injury.Methods: Microarray data sets were generated from the calcium oxalate-induced renal injury model of HK-2 cells and potential disease-related targets were identified. Network pharmacology was employed to identify drug-related targets of PN and construct the active ingredient-target network. Finally, the putative therapeutic targets and active ingredients of PN were verified in vitro and in vivo.Results: A total of 20 active ingredients in PN, 2,428 drug-related targets, and 127 disease-related targets were identified. According to network pharmacology analysis, HMGCS1, SQLE, and SCD were identified as predicted therapeutic target and ellagic acid (EA) was identified as the active ingredient by molecular docking analysis. The increased expression of SQLE, SCD, and HMGCS1 due to calcium oxalate-induced renal injury in HK-2 cells was found to be significantly inhibited by EA. Immunohistochemical in mice also showed that the levels of SQLE, SCD, and HMGCS1 were remarkably restored after EA treatment.Conclusion: EA is the active ingredient in PN responsible for its protective effects against CaOx-induced renal injury. SQLE, SCD, and HMGCS1 are putative therapeutic targets of EA.
Collapse
Affiliation(s)
- Mao-Ting Li
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lu-Lu Liu
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qi Zhou
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lin-Xi Huang
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu-Xuan Shi
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie-Bin Hou
- Department of Nephrology, the Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hong-Tao Lu
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University, Shanghai, China
| | - Wei Chen
- Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Wei Chen, ; Zhi-Yong Guo,
| | - Zhi-Yong Guo
- Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Wei Chen, ; Zhi-Yong Guo,
| |
Collapse
|
33
|
Elghouizi A, Al-Waili N, Elmenyiy N, Elfetri S, Aboulghazi A, Al-Waili A, Lyoussi B. Protective effect of bee pollen in acute kidney injury, proteinuria, and crystalluria induced by ethylene glycol ingestion in rats. Sci Rep 2022; 12:8351. [PMID: 35589738 PMCID: PMC9120035 DOI: 10.1038/s41598-022-12086-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays a role in hyperoxaluria-induced kidney injury and crystallization. Bee pollen is a hive product with a high content of antioxidants. The antioxidant content and protective effect of bee pollen extract (BPE) against ethylene glycol (EG) induced crystalluria, and acute kidney injury (AKI) were investigated. The effect of BPE on the EG-induced liver injury and proteinuria was also examined. Ten groups of male Wister rats were treated daily with vehicle, cystone, BPE (100, 250, and 500 mg/kg b.wt.), and group 6-9 treated with EG, EG + BPE (100, 250, and 500 mg/kg b.wt.) and group 10 EG + cystone. The dose of EG was 0.75% v/v, and the dose of cystone was 500 mg/kg b.wt. On day 30, blood and urine samples were collected for analysis. Kidneys were removed for histopathological study. The antioxidant activity of BPE was assessed, and its total phenols and flavonoids were determined. EG significantly increased urine parameters (pH, volume, calcium, phosphorus, uric acid, and protein), blood urea, creatinine, and liver enzymes (P < 0.05). EG decreased creatinine clearance and urine magnesium and caused crystalluria. Treatment with BPE or cystone mitigates EG's effect; BPE was more potent than cystone (P < 0.05). BPE increases urine volume, sodium, and magnesium compared to the control and EG treated groups. BPE reduces proteinuria and prevents AKI, crystalluria, liver injury, and histopathological changes in the kidney tissue caused by EG. BPE might have a protective effect against EG-induced AKI, crystalluria, proteinuria, and stone deposition, most likely by its antioxidant content and activity.
Collapse
Affiliation(s)
- Asmae Elghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco
| | - Noori Al-Waili
- New York Medical Care for Nephrology, Queens, NY, 11418, USA.
| | - Nawal Elmenyiy
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco
| | - Salma Elfetri
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco
| | - Abderrazak Aboulghazi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco
| | - Ahmed Al-Waili
- New York Medical Care for Nephrology, Queens, NY, 11418, USA
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco
| |
Collapse
|
34
|
Spradling K, Ganesan C, Conti S. Medical Treatment and Prevention of Urinary Stone Disease. Urol Clin North Am 2022; 49:335-344. [PMID: 35428438 DOI: 10.1016/j.ucl.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pathophysiology underlying urinary stone formation remains an area of active investigation. There are many pharmacotherapies aimed at optimizing metabolic factors and reducing urinary supersaturation of stone components that play an important role in urinary stone prevention. In addition, medical expulsive therapy for ureteral stones and medical dissolution therapy for uric acid-based urinary stones are helpful treatment tools and are used alongside surgical treatments in the management of urinary stones.
Collapse
Affiliation(s)
- Kyle Spradling
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Calyani Ganesan
- Division of Nephrology, Stanford University School of Medicine, Stanford, CA, USA
| | - Simon Conti
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
35
|
Singh P, Harris PC, Sas DJ, Lieske JC. The genetics of kidney stone disease and nephrocalcinosis. Nat Rev Nephrol 2022; 18:224-240. [PMID: 34907378 DOI: 10.1038/s41581-021-00513-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Kidney stones (also known as urinary stones or nephrolithiasis) are highly prevalent, affecting approximately 10% of adults worldwide, and the incidence of stone disease is increasing. Kidney stone formation results from an imbalance of inhibitors and promoters of crystallization, and calcium-containing calculi account for over 80% of stones. In most patients, the underlying aetiology is thought to be multifactorial, with environmental, dietary, hormonal and genetic components. The advent of high-throughput sequencing techniques has enabled a monogenic cause of kidney stones to be identified in up to 30% of children and 10% of adults who form stones, with ~35 different genes implicated. In addition, genome-wide association studies have implicated a series of genes involved in renal tubular handling of lithogenic substrates and of inhibitors of crystallization in stone disease in the general population. Such findings will likely lead to the identification of additional treatment targets involving underlying enzymatic or protein defects, including but not limited to those that alter urinary biochemistry.
Collapse
Affiliation(s)
- Prince Singh
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Division of Molecular Biology and Biochemistry, Mayo Clinic, Rochester, MN, USA
| | - David J Sas
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA. .,Division of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
36
|
Beldar VG, Sidat PS, Jadhaoa MM. Ethnomedicinal Plants Used for Treatment of Urolithiasis in India: A Review. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220222100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The kidney stone is the most commonly observed and painful disease of the urinary tract in human being. Numerous intrinsic and extrinsic factors are responsible for the formation of kidney stone, for instance, age, sex, heredity (intrinsic factors) and climate, dietary, geography, mineral composition, and water intake (extrinsic factors). The kidney stones are categorized into calcium, struvite or magnesium ammonium phosphate, uric acid or urate, cystine and other types of stones based on chemical composition and pathogenesis. Due to the multifactorial nature of kidney stone disease, the patient may need to rely on complex synthetic medication. However, in ancient Indian history, there are several pieces of evidence where natural resources such as plants were used to remediation this lethal disease.
Objective:
The present review attempts to provide exhaustive information of ethnomedicinal and ethnopharmacological information of medicinal plants used for kidney stone in India.
Result:
Hitherto, there are a total of 258 ethnomedicinal plants from 90 different families reported using for kidney stone application. The majority of the plant species are associated with three important families: Asteraceae, Amaranthaceae, and Fabaceae. Most of the plants are from Andhra Pradesh (43 plants), followed by East Bengal (38), Jammu & Kashmir (36), Uttarakhand (31), Panjab (27), Mizoram (23), Karnataka (20), Maharashtra (20) and Assam (18). The commonly used plant parts for the herbal preparation are roots (21.22 %) followed by leaves/leaf (20.15 %), and sometimes complete plant (17.77 %) is used. The most commonly used method for the formulation is decoction (46.41 %) followed by powder (18.66 %) and then extracts (15.78 %) of different aerial and non-aerial parts of the plant. To date, the in-vitro and in-vivo activities against the kidney stone assessed for more than sixty ethnomedicinal plants.
Conclusion:
The present review epitomizes the ethnomedicinal information of medicinal plants used for kidney stone and pharmacological evidence for anti-urolithiasis activity. Most reported medicinal plants are not yet scientifically explored and need immediate attention before we lose some important species due to excessive deforestation for farming and industrial needs.
Collapse
Affiliation(s)
- Vishal Gokul Beldar
- Institute of Chemical Technology Mumbai Marathwada Campus, Jalna-431203, India
| | | | | |
Collapse
|
37
|
Ushijima-Fuchino K, Koga Y, Umino S, Nishioka J, Araki J, Yatsuga S, Yamashita Y. Urinary stone in a 12-year-old adolescent with new-onset type 1 diabetes and diabetic ketoacidosis. Clin Pediatr Endocrinol 2022; 31:199-204. [PMID: 35928383 PMCID: PMC9297177 DOI: 10.1297/cpe.2021-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Dehydration and acidosis increase the risk for urinary stone formation. Urinary stones
have been reported in three pediatric cases of diabetic ketoacidosis (DKA). A 24-h urine
collection was performed for two of the three children. One patient had high urine sodium
levels, while the other had low urine citrate excretion. We report the case of a 12-yr-old
adolescent boy with urinary stones, new-onset type 1 diabetes mellitus (T1D), and DKA,
excluding other metabolic disorders. After DKA was diagnosed, the patient received a 0.9%
saline bolus and continuous insulin infusion. Hyperglycemia and ketoacidosis were
well-controlled on the third day after admission. However, the patient developed abdominal
pain radiating to the back. Urinary stones were suspected, and a urinalysis was performed.
The patient’s urine revealed significant elevation in red blood cells and calcium oxalate
crystals. Computed tomography revealed a high-density left ureteric mass, suggestive of a
urinary stone. Although both the previously reported pediatric cases involved metabolic
diseases, additional tests in this patient excluded metabolic diseases other than T1D. DKA
may be related to the formation of calcium oxalate crystals owing to dehydration and
acidosis. Therefore, physicians should consider urinary stone formation in DKA
patients.
Collapse
Affiliation(s)
- Kikumi Ushijima-Fuchino
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Yuko Koga
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Satoko Umino
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Junko Nishioka
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Junichiro Araki
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Shuichi Yatsuga
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Yushiro Yamashita
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| |
Collapse
|
38
|
Shen C, Zhu Q, Dong F, Wang W, Fan B, Li K, Chen J, Hu S, He Z, Li X. Identifying Two Novel Clusters in Calcium Oxalate Stones With Urinary Tract Infection Using 16S rDNA Sequencing. Front Cell Infect Microbiol 2021; 11:723781. [PMID: 34869053 PMCID: PMC8635737 DOI: 10.3389/fcimb.2021.723781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 02/01/2023] Open
Abstract
Urinary stones and urinary tract infection (UTI) are the most common diseases in urology and they are characterized by high incidence and high recurrence rate in China. Previous studies have shown that urinary stones are closely associated with gut or urine microbiota. Calcium oxalate stones are the most common type of urinary stones. However, the profile of urinary tract microorganisms of calcium oxalate stones with UTI is not clear. In this research, we firstly found two novel clusters in patients with calcium oxalate stones (OA) that were associated with the WBC/HP (white blood cells per high-power field) level in urine. Two clusters in the OA group (OA1 and OA2) were distinguished by the key microbiota Firmicutes and Enterobacteriaceae. We found that Enterobacteriaceae enriched in OA1 cluster was positively correlated with several infection-related pathways and negatively correlated with a few antibiotics-related pathways. Meantime, some probiotics with higher abundance in OA2 cluster such as Bifidobacterium were positively correlated with antibiotics-related pathways, and some common pathogens with higher abundance in OA2 cluster such as Enterococcus were positively correlated with infection-related pathways. Therefore, we speculated that as a sub-type of OA disease, OA1 was caused by Enterobacteriaceae and the lack of probiotics compared with OA2 cluster. Moreover, we also sequenced urine samples of healthy individuals (CK), patients with UTI (I), patients with uric acid stones (UA), and patients with infection stones (IS). We identified the differentially abundant taxa among all groups. We hope the findings will be helpful for clinical treatment and diagnosis of urinary stones.
Collapse
Affiliation(s)
- Chen Shen
- Departmant of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qianhui Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fan Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Departmant of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Fan
- Departmant of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kexin Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zilong He
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| | - Xiancheng Li
- Departmant of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
39
|
Huang JL, Mo ZY, Li ZY, Liang GY, Liu HL, Aschner M, Ou SY, Zhou B, Chen ZM, Jiang YM. Association of lead and cadmium exposure with kidney stone incidence: A study on the non-occupational population in Nandan of China. J Trace Elem Med Biol 2021; 68:126852. [PMID: 34508950 DOI: 10.1016/j.jtemb.2021.126852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Environmental lead (Pb) and cadmium (Cd) pollution has been considered a risk factor in the etiology of kidney stones. However, the association between Pb and Cd exposure and kidney stone incidence has yet to be determined. OBJECTIVES This study aimed to determine a possible the association between kidney stones with Pb and Cd exposure (alone or combined) in a non-occupational population. METHODS Pb and Cd contaminations in soil-plant system were determined by flame atomic absorption spectrophotometry. Health risk assessment of dietary Pb or Cd intake from rice and vegetables were calculated. Kidney stones were diagnosed with urinary tract ultrasonography. Urinary cadmium (UCd) and blood lead (BPb) levels were determined by graphite-furnace atomic absorption spectrometry. Multivariate logistic regression models were constructed. RESULTS The hazard indexes (HI) of Pb and Cd were 7.91 and 7.31. The odds ratio (OR) was 2.83 (95 %CI:1.38-5.77) in males with high BPb (BPb ≥ 100 μg/L), compared with those with low BPb (BPb<100 μg/L). Compared to those with low BPb and low UCd (BPb<100 μg/L and UCd<2 μg/g creatinine), the ORs were 2.58 (95 % CI:1.17-5.70) and 3.43 (95 % CI:1.21-9.16) in females and males with high BPb and high UCd (BPb ≥100 μg/L and UCd ≥2 μg/g creatinine), respectively. The OR was 3.16 (95 % CI:1.26-7.88) in males with high BPb and low UCd (BPb ≥ 100 μg/L and UCd <2 μg/g creatinine), compared to those with low BPb and low UCd. CONCLUSIONS Kidney stones incidence was increased by high Pb exposure in males, and by Pb and Cd co-exposure in males and females.
Collapse
Affiliation(s)
- Jiong-Li Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Zhao-Yu Mo
- Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhong-You Li
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Gui-Yun Liang
- Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Hui-Lin Liu
- Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Bin Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhi-Ming Chen
- Atmospheric Environment Research Center, Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China.
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
40
|
Anushya G, Mahesh R, Freeda TH, Ramachandran R, Raju G. Effect of Aegle marmelos on the growth of brushite crystals. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The urinary stone formation is a very common health problem due to the prolonged medication. Calcium Hydrogen Phosphate Dihydrate (CaHPO4.2H2O, CHPD and Brushite) is one of the major constituent of urinary stone crystals. The formation and deposition of brushite crystals is the central cause of recurrent kidney stone disease among the global population. The present study aims to investigate the effect of Aegle marmelos leaves on the growth of brushite crystals to explicate the inhibitory effect of urinary stones from a different point of view.
Methods
The CHPD crystals were grown by the Single Diffusion Gel growth technique. In order to inhibit the formation of urinary stones, CHPD crystals are grown in the laboratory in the pure form and by adding the prolonged medicine A. marmelos taken especially by diabetic patients. A comparative study of the pure and A. marmelos leaves added crystals has been carried out using the Growth factor, Powder X-ray diffraction, Microstructural parameters, FTIR and SEM-EDAX.
Results
Total mass of the grown crystals is found to decrease with increasing concentrations of leaf extract of the A. marmelos. On comparing with undoped, crystalline size of the A. marmelos doped samples is reduced. Disappearance of absorption band and peak shift in the FTIR shows the incorporation of functional groups of A. marmelos. The morphology changes of the treated crystals are assessed in SEM.
Conclusions
The result shows that herbal extracts prepared from A. marmelos have good inhibitory effect on the growth of the brushite urinary stone crystals considered.
Collapse
|
41
|
Zhu Z, Ruan S, Jiang Y, Huang F, Xia W, Chen J, Cui Y, He C, Zeng F, Li Y, Chen Z, Chen H. α-Klotho released from HK-2 cells inhibits osteogenic differentiation of renal interstitial fibroblasts by inactivating the Wnt-β-catenin pathway. Cell Mol Life Sci 2021; 78:7831-7849. [PMID: 34724098 PMCID: PMC11071709 DOI: 10.1007/s00018-021-03972-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023]
Abstract
Randall's plaques (RP) are well established as precursor lesions of idiopathic calcium oxalate (CaOx) stones, and the process of biomineralization driven by osteogenic-like cells has been highlighted in RP formation, but the mechanism is poorly understood. Given the inhibitory role of α-Klotho (KL), an aging suppressor protein with high expression in kidneys, in ectopic calcification and the close association between KL gene polymorphisms and urolithiasis susceptibility, we determined the potential role of KL in RP formation. This study found that both soluble KL (s-KL) and transmembrane KL (m-KL) were downregulated, and that s-KL but not m-KL was inversely correlated with upregulation of osteogenic markers in RP tissues. Additionally, s-KL expression was markedly suppressed in human renal interstitial fibroblasts (hRIFs) and slightly suppressed in HK-2 cells after osteogenic induction, intriguingly, which was echoed to the greater osteogenic capability of hRIFs than HK-2 cells. Further investigations showed the inhibitory effect of s-KL on hRIF osteogenic differentiation in vitro and in vivo. Moreover, coculture with recombinant human KL (r-KL) or HK-2 cells suppressed osteogenic differentiation of hRIFs, and this effect was abolished by coculture with KL-silenced HK-2 cells or the β-catenin agonist SKL2001. Mechanistically, s-KL inactivated the Wnt-β-catenin pathway by directly binding to Wnt2 and upregulating SFRP1. Further investigations identified activation of the Wnt-β-catenin pathway and downregulation of SFRP1 and DKK1 in RP tissues. In summary, this study identified s-KL deficiency as a pathological feature of RP and revealed that s-KL released from HK-2 cells inhibited osteogenic differentiation of hRIFs by inactivating the Wnt-β-catenin pathway, not only providing in-depth insight into the role of s-KL in renal interstitial biomineralization but also shedding new light on the interaction of renal tubular epithelial cells with interstitial cells to clarify RP formation.
Collapse
Affiliation(s)
- Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuhao Ruan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yingcheng Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cheng He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Feng Zeng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhiyong Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
42
|
Xie Z, Chen J, Chen Z. MicroRNA-204 attenuates oxidative stress damage of renal tubular epithelial cells in calcium oxalate kidney-stone formation via MUC4-mediated ERK signaling pathway. Urolithiasis 2021; 50:1-10. [PMID: 34783868 DOI: 10.1007/s00240-021-01286-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Oxalate-induced oxidative stress causes damage to cells, accompanied with renal deposition of calcium oxalate crystals. Recent studies have highlighted the extensive functions of microRNAs (miRNAs) in various processes, including cellular responses to oxidative stress. Hence, this study was intended to analyze the role of miR-204 in the calcium oxalate kidney-stone formation and the underlying mechanism. In silico analysis was performed to determine the miRNA/mRNA interaction involved in calculus, while dual-luciferase reporter assay was conducted for validation. A calcium oxalate kidney-stone model was established by H2O2 induction in RTEC HK-2 cells, in which the expression of miR-204 was examined. Gain- and loss-of-function approaches were employed to alter the expression of miR-204/MUC4 so as to assess the detailed role of miR-204 in oxidative stress injury in renal tubular epithelial cells (RTECs) and calcium oxalate kidney-stone formation. MUC4, an up-regulated gene in H2O2-induced HK-2 cells, was a target of MUC4. miR-204 functionally targeted MUC4 and blocked the ERK pathway activation. Furthermore, up-regulated miR-204 contributed to promotion of RTEC proliferation and suppression of ROS levels, RTEC apoptosis as well as formation of calcium oxalate crystal. Taken together, miR-204 impairs MUC4-dependent activation of the ERK signaling pathway and consequently ameliorates oxidative stress damage to RTECs and prevents calcium oxalate kidney-stone formation.
Collapse
Affiliation(s)
- Zhijuan Xie
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Jianying Chen
- Department of Rheumatology and Immunology, Hunan Province Mawangdui Hospital, Changsha, 410016, People's Republic of China
| | - Zhong Chen
- The First Affiliated Hospital, Department of Nuclear Medicine, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
43
|
XIST Inhibition Attenuates Calcium Oxalate Nephrocalcinosis-Induced Renal Inflammation and Oxidative Injury via the miR-223/NLRP3 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1676152. [PMID: 34512861 PMCID: PMC8429007 DOI: 10.1155/2021/1676152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
The roles of the lncRNA X inactive specific transcript (XIST) in many diseases, including cancers and inflammatory sickness, have been previously elucidated. However, renal calculus remained poorly understood. In this study, we revealed the potential effects of XIST on kidney stones that were exerted via inflammatory response and oxidative stress mechanisms. We established a glyoxylate-induced calcium oxalate (CaOx) stone mouse model and exposed HK-2 cells to calcium oxalate monohydrate (COM). The interactions among XIST, miR-223-3p, and NOD-like receptor protein 3 (NLRP3) and their respective effects were determined by RNAs and protein expression, luciferase activity, and immunohistochemistry (IHC) assays. Cell necrosis, reactive oxygen species (ROS) generation, and inflammatory responses were detected after silencing XIST, activating and inhibiting miR-223-3p, and both knocking down XIST and activating miR-223-3p in vitro and in vivo. The XIST, NLRP3, caspase-1, and IL-1β levels were notably increased in kidney samples from glyoxylate-induced CaOx stone model mice. XIST knockdown significantly suppressed the inflammatory damage and ROS production and further attenuated oxalate crystal deposition. miRNA-223-3p mimics also exerted the same effects. Moreover, we verified the interactions among XIST, miRNA-223-3p and NLRP3, and the subsequent effects. Our results suggest that the lncRNA XIST participates in the formation and progression of renal calculus by interacting with miR-223-3p and the NLRP3/Caspase-1/IL-1β pathway to mediate the inflammatory response and ROS production.
Collapse
|
44
|
Sivaguru M, Saw JJ, Wilson EM, Lieske JC, Krambeck AE, Williams JC, Romero MF, Fouke KW, Curtis MW, Kear-Scott JL, Chia N, Fouke BW. Human kidney stones: a natural record of universal biomineralization. Nat Rev Urol 2021; 18:404-432. [PMID: 34031587 DOI: 10.1038/s41585-021-00469-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/04/2023]
Abstract
GeoBioMed - a new transdisciplinary approach that integrates the fields of geology, biology and medicine - reveals that kidney stones composed of calcium-rich minerals precipitate from a continuum of repeated events of crystallization, dissolution and recrystallization that result from the same fundamental natural processes that have governed billions of years of biomineralization on Earth. This contextual change in our understanding of renal stone formation opens fundamentally new avenues of human kidney stone investigation that include analyses of crystalline structure and stratigraphy, diagenetic phase transitions, and paragenetic sequences across broad length scales from hundreds of nanometres to centimetres (five Powers of 10). This paradigm shift has also enabled the development of a new kidney stone classification scheme according to thermodynamic energetics and crystalline architecture. Evidence suggests that ≥50% of the total volume of individual stones have undergone repeated in vivo dissolution and recrystallization. Amorphous calcium phosphate and hydroxyapatite spherules coalesce to form planar concentric zoning and sector zones that indicate disequilibrium precipitation. In addition, calcium oxalate dihydrate and calcium oxalate monohydrate crystal aggregates exhibit high-frequency organic-matter-rich and mineral-rich nanolayering that is orders of magnitude higher than layering observed in analogous coral reef, Roman aqueduct, cave, deep subsurface and hot-spring deposits. This higher frequency nanolayering represents the unique microenvironment of the kidney in which potent crystallization promoters and inhibitors are working in opposition. These GeoBioMed insights identify previously unexplored strategies for development and testing of new clinical therapies for the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Mayandi Sivaguru
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carl Zeiss Labs@Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Jessica J Saw
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Elena M Wilson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Amy E Krambeck
- Department of Urology, Mayo Clinic, Rochester, MN, USA.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James C Williams
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael F Romero
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kyle W Fouke
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - Matthew W Curtis
- Carl Zeiss Microscopy LLC, One North Broadway, White Plains, NY, USA
| | | | - Nicholas Chia
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bruce W Fouke
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carl Zeiss Labs@Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
45
|
Gosmanova EO, Houillier P, Rejnmark L, Marelli C, Bilezikian JP. Renal complications in patients with chronic hypoparathyroidism on conventional therapy: a systematic literature review : Renal disease in chronic hypoparathyroidism. Rev Endocr Metab Disord 2021; 22:297-316. [PMID: 33599907 PMCID: PMC8087595 DOI: 10.1007/s11154-020-09613-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
A systematic literature review was performed to summarize the frequency and nature of renal complications in patients with chronic hypoparathyroidism managed with conventional therapy. Methodology was consistent with the recommendations outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Peer-reviewed journal articles with specified medical subject heading terms were identified using the PubMed, EMBASE, and Cochrane databases. Data were extracted from eligible articles based on prespecified parameters for clinical outcomes of renal calcifications and disease. Because of the heterogeneity of the data, a meta-analysis could not be conducted. From 1200 potentially relevant articles, data were extracted from 13 manuscripts that reported data for ≥1 of the 19 predefined renal outcomes for ≥10 adult patients (n = 11 manuscripts) or pediatric patients (n = 2 manuscripts). The collective data provide evidence that adult and pediatric patients with chronic hypoparathyroidism and treated with conventional therapy (oral calcium and active vitamin D) had an increased risk of renal complications. The reported rate of nephrolithiasis was up to 36%, with the lowest rates in studies reporting shorter duration of disease. The rate of nephrocalcinosis was up to 38%. Some studies reported a combined nephrolithiasis/nephrocalcinosis outcome of 19% to 31%. Data for renal disease that encompassed a range of renal insufficiency to chronic kidney disease were reported in 10 articles; the reported rates ranged from 2.5% to 41%. In patients who receive long-term treatment with oral calcium and active vitamin D, chronic hypoparathyroidism may be associated with an increased risk of renal complications compared with the general population.
Collapse
Affiliation(s)
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lars Rejnmark
- Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Claudio Marelli
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - John P Bilezikian
- Division of Endocrinology, College of Physicians and Surgeons, Columbia University, 630 W 168th Street, Room 864, New York, NY, 10032, USA.
| |
Collapse
|
46
|
Study of risk factor of urinary calculi according to the association between stone composition with urine component. Sci Rep 2021; 11:8723. [PMID: 33888737 PMCID: PMC8062512 DOI: 10.1038/s41598-021-87733-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/30/2021] [Indexed: 01/22/2023] Open
Abstract
Urolithiasis is a common urinary disease with high recurrence. The risk factor for the recurrence of calculi is not very clear. The object of the present study was to evaluate the association between calculi composition and urine component and analyse the risk factor for the recurrence of urolithiasis. In this study, a total of 223 patients with calculi and healthy control were enrolled, and the components of the calculi and urina sanguinis collected before surgery were analysed. Of the 223 patients, 157 were males and 66 were females. According to the stone composition, the case group was subdivided into three groups. 129 patients had single calcium oxalate stones, 72 had calcium oxalate stones mixed with other stones and 22 had other type of stones excluding calcium oxalate stones. Urine biochemicals were analysed and the associations were found between the chemicals in each group. Multivariate logistic analysis demonstrated that reduced urinary magnesium and uric oxalic acid were independent risk factors when comparing all cases with normal controls. Only decreased urinary magnesium was found to be a risk factor comparing the single calcium oxalate group with normal control group. Low level of urinary magnesium and uric oxalic acid were found to be risk factors comparing the mixed calcium oxalate group with normal control group. No risk factor was found comparing the other stone group with normal control group. In conclusion, there were clear relationships between stone components and urine chemicals. Urine chemicals might be risk factors to predicate the occurrence of urolithiasis.
Collapse
|
47
|
Modulation of Tubular pH by Acetazolamide in a Ca 2+ Transport Deficient Mice Facilitates Calcium Nephrolithiasis. Int J Mol Sci 2021; 22:ijms22063050. [PMID: 33802660 PMCID: PMC8002449 DOI: 10.3390/ijms22063050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/16/2023] Open
Abstract
Proximal tubular (PT) acidosis, which alkalinizes the urinary filtrate, together with Ca2+ supersaturation in PT can induce luminal calcium phosphate (CaP) crystal formation. While such CaP crystals are known to act as a nidus for CaP/calcium oxalate (CaOx) mixed stone formation, the regulation of PT luminal Ca2+ concentration ([Ca2+]) under elevated pH and/or high [Ca2+] conditions are unknown. Since we found that transient receptor potential canonical 3 (TRPC3) knockout (KO; -/-) mice could produce mild hypercalciuria with CaP urine crystals, we alkalinized the tubular pH in TRPC3-/- mice by oral acetazolamide (0.08%) to develop mixed urinary crystals akin to clinical signs of calcium nephrolithiasis (CaNL). Our ratiometric (λ340/380) intracellular [Ca2+] measurements reveal that such alkalization not only upsurges Ca2+ influx into PT cells, but the mode of Ca2+ entry switches from receptor-operated to store-operated pathway. Electrophysiological experiments show enhanced bicarbonate related current activity in treated PT cells which may determine the stone-forming phenotypes (CaP or CaP/CaOx). Moreover, such alkalization promotes reactive oxygen species generation, and upregulation of calcification, inflammation, fibrosis, and apoptosis in PT cells, which were exacerbated in absence of TRPC3. Altogether, the pH-induced alteration of the Ca2+ signaling signature in PT cells from TRPC3 ablated mice exacerbated the pathophysiology of mixed urinary stone formation, which may aid in uncovering the downstream mechanism of CaNL.
Collapse
|
48
|
6-Shogaol attenuated ethylene glycol and aluminium chloride induced urolithiasis and renal injuries in rodents. Saudi J Biol Sci 2021; 28:3418-3423. [PMID: 34121880 PMCID: PMC8176042 DOI: 10.1016/j.sjbs.2021.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
The 6-shogaol, is a flavanone type flavonoid that is abundant in citrus fruit and has a wide range of pharmacological effects. The present study attempted to evaluate the antiurolithic effect of 6-shogaol on ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. The efficacy of 6-shogaol 50 mg/kg and 100 mg/kg was studied in EG 0.75% (V/V) and AC 1% (W/V) experimentally induced urolithiasis in rats for 21 days. The weight difference, urine volume, the levels of calcium, phosphate, magnesium, oxalate and uric acid in urine was observed. The blood urea nitrogen, creatinine, uric acid in serum and levels of malondialdehyde (MDA) and glutathione (GSH) were also measured. Histopathological analyses in kidneys were also performed. The rats weights were higher in the 6-shogaol groups than the urolithiasis group. EG caused a significant increase in serum creatinine (p < 0.05), BUN (P < 0.001), and uric acid (p < 0.01) while treatment with Cystone (750 mg/kg), and 6-shogaol (50 and 100 mg/kg) showed the significant reduction in increased serum levels of creatinine (p < 0.001), uric acid (p < 0.01) and BUN (p < 0.001). Administration of EG and AC showed statistically significant (p < 0.001) elevated levels of MDA and reduction in GSH levels. Treatment of Cystone (750 mg/kg), and 6-shogaol (50 and 100 mg/kg) significantly (p < 0.001) reduced MDA levels and an increase GSH levels as compared to EG and AC-treated group. The histological findings further attested antiurolithiatic properties of 6-shogaol. The present study attributed clinical shreds of evidence first time that claiming the significant antiurolithic effect of 6-shogaol and could be a cost-effective candidate for the prevention and treatment of urolithiasis.
Collapse
|
49
|
Marhoume FZ, Aboufatima R, Zaid Y, Limami Y, Duval RE, Laadraoui J, Belbachir A, Chait A, Bagri A. Antioxidant and Polyphenol-Rich Ethanolic Extract of Rubia tinctorum L. Prevents Urolithiasis in an Ethylene Glycol Experimental Model in Rats. Molecules 2021; 26:1005. [PMID: 33672875 PMCID: PMC7917717 DOI: 10.3390/molecules26041005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 01/14/2023] Open
Abstract
Treatment of kidney stones is based on symptomatic medications which are associated with side effects such as gastrointestinal symptoms (e.g., nausea, vomiting) and hepatotoxicity. The search for effective plant extracts without the above side effects has demonstrated the involvement of antioxidants in the treatment of kidney stones. A local survey in Morocco has previously revealed the frequent use of Rubia tinctorum L. (RT) for the treatment of kidney stones. In this study, we first explored whether RT ethanolic (E-RT) and ethyl acetate (EA-RT) extracts of Rubia tinctorum L. could prevent the occurrence of urolithiasis in an experimental 0.75% ethylene glycol (EG) and 2% ammonium chloride (AC)-induced rat model. Secondly, we determined the potential antioxidant potency as well as the polyphenol composition of these extracts. An EG/AC regimen for 10 days induced the formation of bipyramid-shaped calcium oxalate crystals in the urine. Concomitantly, serum and urinary creatinine, urea, uric acid, phosphorus, calcium, sodium, potassium, and chloride were altered. The co-administration of both RT extracts prevented alterations in all these parameters. In the EG/AC-induced rat model, the antioxidants- and polyphenols-rich E-RT and EA-RT extracts significantly reduced the presence of calcium oxalate in the urine, and prevented serum and urinary biochemical alterations together with kidney tissue damage associated with urolithiasis. Moreover, we demonstrated that the beneficial preventive effects of E-RT co-administration were more pronounced than those obtained with EA-RT. The superiority of E-RT was associated with its more potent antioxidant effect, due to its high content in polyphenols.
Collapse
Affiliation(s)
- Fatima Zahra Marhoume
- Laboratory of Biochemistry and Neuroscience, Integrative and Computational Neuroscience Team, Faculty of Sciences and Technology, Hassan First University, Settat 26002, Morocco;
- Laboratory of Neurobiology, Pharmacology and Behavior, Faculty of Sciences Semlalia, Cadi Ayad University, Marrakech 40000, Morocco; (J.L.); (A.C.)
| | - Rachida Aboufatima
- Laboratory of Biological Engineering, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco;
| | - Younes Zaid
- Research Center of Abulcasis University of Health Sciences, Rabat 10000, Morocco; (Y.Z.); (Y.L.)
- Botany Laboratory, Biology Department, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco
- Immunology and Biodiversity Laboratory, Department of Biology, Faculty of Sciences, Hassan II University, Casablanca 20000, Morocco
| | - Youness Limami
- Research Center of Abulcasis University of Health Sciences, Rabat 10000, Morocco; (Y.Z.); (Y.L.)
- Immunology and Biodiversity Laboratory, Department of Biology, Faculty of Sciences, Hassan II University, Casablanca 20000, Morocco
| | | | - Jawad Laadraoui
- Laboratory of Neurobiology, Pharmacology and Behavior, Faculty of Sciences Semlalia, Cadi Ayad University, Marrakech 40000, Morocco; (J.L.); (A.C.)
| | - Anass Belbachir
- Morpho-Science Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayad University, Marrakech 40000, Morocco;
- Regenerative Medicine Center University Hospital Center of Mohammed VI Marrakech, Marrakech 40000, Morocco
| | - Abderrahmane Chait
- Laboratory of Neurobiology, Pharmacology and Behavior, Faculty of Sciences Semlalia, Cadi Ayad University, Marrakech 40000, Morocco; (J.L.); (A.C.)
| | - Abdallah Bagri
- Laboratory of Biochemistry and Neuroscience, Integrative and Computational Neuroscience Team, Faculty of Sciences and Technology, Hassan First University, Settat 26002, Morocco;
| |
Collapse
|
50
|
Khan A, Bashir S, Khan SR. Antiurolithic effects of medicinal plants: results of in vivo studies in rat models of calcium oxalate nephrolithiasis-a systematic review. Urolithiasis 2021; 49:95-122. [PMID: 33484322 DOI: 10.1007/s00240-020-01236-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/17/2020] [Indexed: 11/25/2022]
Abstract
Urolithiasis is one of the oldest diseases affecting humans, while plants are one of our oldest companions providing food, shelter, and medicine. In spite of substantial progress in understanding the pathophysiological mechanisms, treatment options are still limited, often expensive for common people in most parts of the world. As a result, there is a great interest in herbal remedies for the treatment of urinary stone disease as an alternative or adjunct therapy. Numerous in vivo and in vitro studies have been carried out to understand the efficacy of herbs in reducing stone formation. We adopted PRISMA guidelines and systematically reviewed PubMed/Medline for the literature, reporting results of various herbal products on in vivo models of nephrolithiasis/urolithiasis. The Medical Subject Heading Terms (Mesh term) "Urolithiasis" was used with Boolean operator "AND" and other related Mesh Unique terms to search all the available records (July 2019). A total of 163 original articles on in vivo experiments were retrieved from PubMed indexed with the (MeshTerm) "Urolithiasis" AND "Complementary Therapies/Alternative Medicine, "Urolithiasis" AND "Plant Extracts" and "Urolithiasis" AND "Traditional Medicine". Most of the studies used ethylene glycol (EG) to induce hyperoxaluria and nephrolithiasis in rats. A variety of extraction methods including aqueous, alcoholic, hydro-alcoholic of various plant parts ranging from root bark to fruits and seeds, or a combination thereof, were utilized. All the investigations did not study all aspects of nephrolithiasis making it difficult to compare the efficacy of various treatments. Changes in the lithogenic factors and a reduction in calcium oxalate (CaOx) crystal deposition in the kidneys were, however, considered favorable outcomes of the various treatments. Less than 10% of the studies examined antioxidant and diuretic activities of the herbal treatments and concluded that their antiurolithic activities were a result of antioxidant, anti-inflammatory, and/or diuretic effects of the treatments.
Collapse
Affiliation(s)
- Aslam Khan
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Samra Bashir
- Department of Pharmacy, Faculty of Health and Life Sciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|