1
|
Zhong J, Doughty R, Thymann T, Sangild PT, Nguyen DN, Muk T. Insulin-like growth factor-1 effects on kidney development in preterm piglets. Pediatr Res 2024; 96:1655-1665. [PMID: 38762663 PMCID: PMC11772250 DOI: 10.1038/s41390-024-03222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Preterm birth disrupts fetal kidney development, potentially leading to postnatal acute kidney injury. Preterm infants are deficient in insulin-like growth factor 1 (IGF-1), a growth factor that stimulates organ development. By utilizing a preterm pig model, this study investigated whether IGF-1 supplementation enhances preterm kidney maturation. METHODS Cesarean-delivered preterm pigs were treated systemically IGF-1 or vehicle control for 5, 9 or 19 days after birth. Blood, urine, and kidney tissue were collected for biochemical, histological and gene expression analyses. Age-matched term-born pigs were sacrificed at similar postnatal ages and served as the reference group. RESULTS Compared with term pigs, preterm pigs exhibited impaired kidney maturation, as indicated by analyses of renal morphology, histopathology, and inflammatory and injury markers. Supplementation with IGF-1 reduced signs of kidney immaturity, particularly in the first week of life, as indicated by improved morphology, upregulated expression of key developmental genes, reduced severity and incidence of microscopic lesions, and decreased levels of inflammatory and injury markers. No association was seen between the symptoms of necrotizing enterocolitis and kidney defects. CONCLUSION Preterm birth in pigs impairs kidney maturation and exogenous IGF-1 treatment partially reverses this impairment. Early IGF-1 supplementation could support the development of preterm kidneys. IMPACT Preterm birth may disrupt kidney development in newborns, potentially leading to morphological changes, injury, and inflammation. Preterm pigs have previously been used as models for preterm infants, but not for kidney development. IGF-1 supplementation promotes kidney maturation and alleviates renal impairments in the first week of life in preterm pigs. IGF-1 may hold potential as a supportive therapy for preterm infants sensitive to acute kidney injury.
Collapse
Affiliation(s)
- Jingren Zhong
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Richard Doughty
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Thomas Thymann
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Per Torp Sangild
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Department of Pediatrics, Odense University Hospital, Odense, Denmark
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
| | - Duc Ninh Nguyen
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tik Muk
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
2
|
Song L, Li Q, Xia L, Sahay AE, Qiu Q, Li Y, Li H, Sasaki K, Susztak K, Wu H, Wan L. Single-cell multiomics reveals ENL mutation perturbs kidney developmental trajectory by rewiring gene regulatory landscape. Nat Commun 2024; 15:5937. [PMID: 39009564 PMCID: PMC11250843 DOI: 10.1038/s41467-024-50171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
How disruptions to normal cell differentiation link to tumorigenesis remains incompletely understood. Wilms tumor, an embryonal tumor associated with disrupted organogenesis, often harbors mutations in epigenetic regulators, but their role in kidney development remains unexplored. Here, we show at single-cell resolution that a Wilms tumor-associated mutation in the histone acetylation reader ENL disrupts kidney differentiation in mice by rewiring the gene regulatory landscape. Mutant ENL promotes nephron progenitor commitment while restricting their differentiation by dysregulating transcription factors such as Hox clusters. It also induces abnormal progenitors that lose kidney-associated chromatin identity. Furthermore, mutant ENL alters the transcriptome and chromatin accessibility of stromal progenitors, resulting in hyperactivation of Wnt signaling. The impacts of mutant ENL on both nephron and stroma lineages lead to profound kidney developmental defects and postnatal mortality in mice. Notably, a small molecule inhibiting mutant ENL's histone acetylation binding activity largely reverses these defects. This study provides insights into how mutations in epigenetic regulators disrupt kidney development and suggests a potential therapeutic approach.
Collapse
Affiliation(s)
- Lele Song
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qinglan Li
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lingbo Xia
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of the School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Arushi Eesha Sahay
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qi Qiu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuanyuan Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Katalin Susztak
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Liling Wan
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Song L, Li Q, Xia L, Sahay A, Qiu Q, Li Y, Li H, Sasaki K, Susztak K, Wu H, Wan L. Single-Cell multiomics reveals ENL mutation perturbs kidney developmental trajectory by rewiring gene regulatory landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.591709. [PMID: 38766219 PMCID: PMC11100752 DOI: 10.1101/2024.05.09.591709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Cell differentiation during organogenesis relies on precise epigenetic and transcriptional control. Disruptions to this regulation can result in developmental abnormalities and malignancies, yet the underlying mechanisms are not well understood. Wilms tumors, a type of embryonal tumor closely linked to disrupted organogenesis, harbor mutations in epigenetic regulators in 30-50% of cases. However, the role of these regulators in kidney development and pathogenesis remains unexplored. By integrating mouse modeling, histological characterizations, and single-cell transcriptomics and chromatin accessibility profiling, we show that a Wilms tumor-associated mutation in the chromatin reader protein ENL disrupts kidney development trajectory by rewiring the gene regulatory landscape. Specifically, the mutant ENL promotes the commitment of nephron progenitors while simultaneously restricting their differentiation by dysregulating key transcription factor regulons, particularly the HOX clusters. It also induces the emergence of abnormal progenitor cells that lose their chromatin identity associated with kidney specification. Furthermore, the mutant ENL might modulate stroma-nephron interactions via paracrine Wnt signaling. These multifaceted effects caused by the mutation result in severe developmental defects in the kidney and early postnatal mortality in mice. Notably, transient inhibition of the histone acetylation binding activity of mutant ENL with a small molecule displaces transcriptional condensates formed by mutant ENL from target genes, abolishes its gene activation function, and restores developmental defects in mice. This work provides new insights into how mutations in epigenetic regulators can alter the gene regulatory landscape to disrupt kidney developmental programs at single-cell resolution in vivo . It also offers a proof-of-concept for the use of epigenetics-targeted agents to rectify developmental defects.
Collapse
|
4
|
Bahrami M, Darabi S, Roozbahany NA, Abbaszadeh HA, Moghadasali R. Great potential of renal progenitor cells in kidney: From the development to clinic. Exp Cell Res 2024; 434:113875. [PMID: 38092345 DOI: 10.1016/j.yexcr.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
The mammalian renal organ represents a pinnacle of complexity, housing functional filtering units known as nephrons. During embryogenesis, the depletion of niches containing renal progenitor cells (RPCs) and the subsequent incapacity of adult kidneys to generate new nephrons have prompted the formulation of protocols aimed at isolating residual RPCs from mature kidneys and inducing their generation from diverse cell sources, notably pluripotent stem cells. Recent strides in the realm of regenerative medicine and the repair of tissues using stem cells have unveiled critical signaling pathways essential for the maintenance and generation of human RPCs in vitro. These findings have ushered in a new era for exploring novel strategies for renal protection. The present investigation delves into potential transcription factors and signaling cascades implicated in the realm of renal progenitor cells, focusing on their protection and differentiation. The discourse herein elucidates contemporary research endeavors dedicated to the acquisition of progenitor cells, offering crucial insights into the developmental mechanisms of these cells within the renal milieu and paving the way for the formulation of innovative treatment modalities.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Hojjat Allah Abbaszadeh
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Paul A, Lawlor A, Cunanan K, Gaheer PS, Kalra A, Napoleone M, Lanktree MB, Bridgewater D. The Good and the Bad of SHROOM3 in Kidney Development and Disease: A Narrative Review. Can J Kidney Health Dis 2023; 10:20543581231212038. [PMID: 38107159 PMCID: PMC10722951 DOI: 10.1177/20543581231212038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose of review Multiple large-scale genome-wide association meta-analyses studies have reliably identified an association between genetic variants within the SHROOM3 gene and chronic kidney disease. This association extends to alterations in known markers of kidney disease including baseline estimated glomerular filtration rate, urinary albumin-to-creatinine ratio, and blood urea nitrogen. Yet, an understanding of the molecular mechanisms behind the association of SHROOM3 and kidney disease remains poorly communicated. We conducted a narrative review to summarize the current state of literature regarding the genetic and molecular relationships between SHROOM3 and kidney development and disease. Sources of information PubMed, PubMed Central, SCOPUS, and Web of Science databases, as well as review of references from relevant studies and independent Google Scholar searches to fill gaps in knowledge. Methods A comprehensive narrative review was conducted to explore the molecular mechanisms underlying SHROOM3 and kidney development, function, and disease. Key findings SHROOM3 is a unique protein, as it is the only member of the SHROOM group of proteins that regulates actin dynamics through apical constriction and apicobasal cell elongation. It holds a dichotomous role in the kidney, as subtle alterations in SHROOM3 expression and function can be both pathological and protective toward kidney disease. Genome-wide association studies have identified genetic variants near the transcription start site of the SHROOM3 gene associated with chronic kidney disease. SHROOM3 also appears to protect the glomerular structure and function in conditions such as focal segmental glomerulosclerosis. However, little is known about the exact mechanisms by which this protection occurs, which is why SHROOM3 binding partners remain an opportunity for further investigation. Limitations Our search was limited to English articles. No structured assessment of study quality was performed, and selection bias of included articles may have occurred. As we discuss future directions and opportunities, this narrative review reflects the academic views of the authors.
Collapse
Affiliation(s)
- Amy Paul
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Allison Lawlor
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kristina Cunanan
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Pukhraj S. Gaheer
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton, ON, Canada
| | - Aditya Kalra
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Melody Napoleone
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Matthew B. Lanktree
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton, ON, Canada
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Banan Sadeghian R, Ueno R, Takata Y, Kawakami A, Ma C, Araoka T, Takasato M, Yokokawa R. Cells sorted off hiPSC-derived kidney organoids coupled with immortalized cells reliably model the proximal tubule. Commun Biol 2023; 6:483. [PMID: 37142732 PMCID: PMC10160057 DOI: 10.1038/s42003-023-04862-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Of late, numerous microphysiological systems have been employed to model the renal proximal tubule. Yet there is lack of research on refining the functions of the proximal tubule epithelial layer-selective filtration and reabsorption. In this report, pseudo proximal tubule cells extracted from human-induced pluripotent stem cell-derived kidney organoids are combined and cultured with immortalized proximal tubule cells. It is shown that the cocultured tissue is an impervious epithelium that offers improved levels of certain transporters, extracellular matrix proteins collagen and laminin, and superior glucose transport and P-glycoprotein activity. mRNA expression levels higher than those obtained from each cell type were detected, suggesting an anomalous synergistic crosstalk between the two. Alongside, the improvements in morphological characteristics and performance of the immortalized proximal tubule tissue layer exposed, upon maturation, to human umbilical vein endothelial cells are thoroughly quantified and compared. Glucose and albumin reabsorption, as well as xenobiotic efflux rates through P-glycoprotein were all improved. The data presented abreast highlight the advantages of the cocultured epithelial layer and the non-iPSC-based bilayer. The in vitro models presented herein can be helpful in personalized nephrotoxicity studies.
Collapse
Affiliation(s)
| | - Ryohei Ueno
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Yuji Takata
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Akihiko Kawakami
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Cheng Ma
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Minoru Takasato
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
- Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto, 615-8540, Japan.
| |
Collapse
|
7
|
Petrosyan A, Villani V, Aguiari P, Thornton ME, Wang Y, Rajewski A, Zhou S, Cravedi P, Grubbs BH, De Filippo RE, Sedrakyan S, Lemley KV, Csete M, Da Sacco S, Perin L. Identification and Characterization of the Wilms Tumor Cancer Stem Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206787. [PMID: 37114795 PMCID: PMC10369255 DOI: 10.1002/advs.202206787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/24/2023] [Indexed: 06/19/2023]
Abstract
A nephrogenic progenitor cell (NP) with cancer stem cell characteristics driving Wilms tumor (WT) using spatial transcriptomics, bulk and single cell RNA sequencing, and complementary in vitro and transplantation experiments is identified and characterized. NP from WT samples with NP from the developing human kidney is compared. Cells expressing SIX2 and CITED1 fulfill cancer stem cell criteria by reliably recapitulating WT in transplantation studies. It is shown that self-renewal versus differentiation in SIX2+CITED1+ cells is regulated by the interplay between integrins ITGβ1 and ITGβ4. The spatial transcriptomic analysis defines gene expression maps of SIX2+CITED1+ cells in WT samples and identifies the interactive gene networks involved in WT development. These studies define SIX2+CITED1+ cells as the nephrogenic-like cancer stem cells of WT and points to the renal developmental transcriptome changes as a possible driver in regulating WT formation and progression.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Valentina Villani
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
| | - Paola Aguiari
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- David Geffen School of Medicine at UCLA - VA Healthcare System, Los Angeles, CA, 90095, USA
| | - Matthew E Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yizhou Wang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Alex Rajewski
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Shengmei Zhou
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Paolo Cravedi
- Department of Medicine, Division of Nephrology and Translational Transplant Research Center, Recanati Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Roger E De Filippo
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kevin V Lemley
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Children's Hospital Los Angeles, Division of Nephrology, Department of Pediatrics, University of Southern California, Los Angeles, CA, 90027, USA
| | - Marie Csete
- Department of Anesthesiology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Stefano Da Sacco
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Laura Perin
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
8
|
Okamura DM, Brewer CM, Wakenight P, Bahrami N, Bernardi K, Tran A, Olson J, Shi X, Yeh SY, Piliponsky A, Collins SJ, Nguyen ED, Timms AE, MacDonald JW, Bammler TK, Nelson BR, Millen KJ, Beier DR, Majesky MW. Spiny mice activate unique transcriptional programs after severe kidney injury regenerating organ function without fibrosis. iScience 2021; 24:103269. [PMID: 34849462 PMCID: PMC8609232 DOI: 10.1016/j.isci.2021.103269] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/02/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrosis-driven solid organ failure is an enormous burden on global health. Spiny mice (Acomys) are terrestrial mammals that can regenerate severe skin wounds without scars to avoid predation. Whether spiny mice also regenerate internal organ injuries is unknown. Here, we show that despite equivalent acute obstructive or ischemic kidney injury, spiny mice fully regenerate nephron structure and organ function without fibrosis, whereas C57Bl/6 or CD1 mice progress to complete organ failure with extensive renal fibrosis. Two mechanisms for vertebrate regeneration have been proposed that emphasize either extrinsic (pro-regenerative macrophages) or intrinsic (surviving cells of the organ itself) controls. Comparative transcriptome analysis revealed that the Acomys genome appears poised at the time of injury to initiate regeneration by surviving kidney cells, whereas macrophage accumulation was not detected until about day 7. Thus, we provide evidence for rapid activation of a gene expression signature for regenerative wound healing in the spiny mouse kidney.
Collapse
Affiliation(s)
- Daryl M. Okamura
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Chris M. Brewer
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Paul Wakenight
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Nadia Bahrami
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Kristina Bernardi
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Amy Tran
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Jill Olson
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Xiaogang Shi
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Szu-Ying Yeh
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Adrian Piliponsky
- Center for Immunity & Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Sarah J. Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Elizabeth D. Nguyen
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Andrew E. Timms
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - James W. MacDonald
- Department of Environmental & Occupational Health, University of Washington, Seattle, WA 98195, USA
| | - Theo K. Bammler
- Department of Environmental & Occupational Health, University of Washington, Seattle, WA 98195, USA
| | - Branden R. Nelson
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Kathleen J. Millen
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - David R. Beier
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Mark W. Majesky
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Kidney development to kidney organoids and back again. Semin Cell Dev Biol 2021; 127:68-76. [PMID: 34627669 DOI: 10.1016/j.semcdb.2021.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Kidney organoid technology has led to a renaissance in kidney developmental biology. The complex underpinnings of mammalian kidney development have provided a framework for the generation of kidney cells and tissues from human pluripotent stem cells. Termed kidney organoids, these 3-dimensional structures contain kidney-specific cell types distributed similarly to in vivo architecture. The adult human kidney forms from the reciprocal induction of two disparate tissues, the metanephric mesenchyme (MM) and ureteric bud (UB), to form nephrons and collecting ducts, respectively. Although nephrons and collecting ducts are derived from the intermediate mesoderm (IM), their development deviates in time and space to impart distinctive inductive signaling for which separate differentiation protocols are required. Here we summarize the directed differentiation protocols which generate nephron kidney organoids and collecting duct kidney organoids, making note of similarities as much as differences. We discuss limitations of these present approaches and discuss future directions to improve kidney organoid technology, including a greater understanding of anterior IM and its derivatives to enable an improved differentiation protocol to collecting duct organoids for which historic and future developmental biology studies will be instrumental.
Collapse
|
10
|
Schumacher A, Rookmaaker MB, Joles JA, Kramann R, Nguyen TQ, van Griensven M, LaPointe VLS. Defining the variety of cell types in developing and adult human kidneys by single-cell RNA sequencing. NPJ Regen Med 2021; 6:45. [PMID: 34381054 PMCID: PMC8357940 DOI: 10.1038/s41536-021-00156-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/22/2021] [Indexed: 01/14/2023] Open
Abstract
The kidney is among the most complex organs in terms of the variety of cell types. The cellular complexity of human kidneys is not fully unraveled and this challenge is further complicated by the existence of multiple progenitor pools and differentiation pathways. Researchers disagree on the variety of renal cell types due to a lack of research providing a comprehensive picture and the challenge to translate findings between species. To find an answer to the number of human renal cell types, we discuss research that used single-cell RNA sequencing on developing and adult human kidney tissue and compares these findings to the literature of the pre-single-cell RNA sequencing era. We find that these publications show major steps towards the discovery of novel cell types and intermediate cell stages as well as complex molecular signatures and lineage pathways throughout development. The variety of cell types remains variable in the single-cell literature, which is due to the limitations of the technique. Nevertheless, our analysis approaches an accumulated number of 41 identified cell populations of renal lineage and 32 of non-renal lineage in the adult kidney, and there is certainly much more to discover. There is still a need for a consensus on a variety of definitions and standards in single-cell RNA sequencing research, such as the definition of what is a cell type. Nevertheless, this early-stage research already proves to be of significant impact for both clinical and regenerative medicine, and shows potential to enhance the generation of sophisticated in vitro kidney tissue.
Collapse
Affiliation(s)
- A Schumacher
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - M B Rookmaaker
- Department of Nephrology, University Medical Center, Utrecht, The Netherlands
| | - J A Joles
- Department of Nephrology, University Medical Center, Utrecht, The Netherlands
| | - R Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - T Q Nguyen
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - M van Griensven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - V L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
11
|
Sene LDB, Scarano WR, Zapparoli A, Gontijo JAR, Boer PA. Impact of gestational low-protein intake on embryonic kidney microRNA expression and in nephron progenitor cells of the male fetus. PLoS One 2021; 16:e0246289. [PMID: 33544723 PMCID: PMC7864410 DOI: 10.1371/journal.pone.0246289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Here, we have demonstrated that gestational low-protein (LP) intake offspring present lower birth weight, reduced nephron numbers, renal salt excretion, arterial hypertension, and renal failure development compared to regular protein (NP) intake rats in adulthood. We evaluated the expression of various miRNAs and predicted target genes in the kidney in gestational 17-days LP (DG-17) fetal metanephros to identify molecular pathways involved in the proliferation and differentiation of renal embryonic or fetal cells. METHODS Pregnant Wistar rats were classified into two groups based on protein supply during pregnancy: NP (regular protein diet, 17%) or LP diet (6%). Renal miRNA sequencing (miRNA-Seq) performed on the MiSeq platform, RT-qPCR of predicted target genes, immunohistochemistry, and morphological analysis of 17-DG NP and LP offspring were performed using previously described methods. RESULTS A total of 44 miRNAs, of which 19 were up and 25 downregulated, were identified in 17-DG LP fetuses compared to age-matched NP offspring. We selected 7 miRNAs involved in proliferation, differentiation, and cellular apoptosis. Our findings revealed reduced cell number and Six-2 and c-Myc immunoreactivity in metanephros cap (CM) and ureter bud (UB) in 17-DG LP fetuses. Ki-67 immunoreactivity in CM was 48% lesser in LP compared to age-matched NP fetuses. Conversely, in LP CM and UB, β-catenin was 154%, and 85% increased, respectively. Furthermore, mTOR immunoreactivity was higher in LP CM (139%) and UB (104%) compared to that in NP offspring. TGFβ-1 positive cells in the UB increased by approximately 30% in the LP offspring. Moreover, ZEB1 metanephros-stained cells increased by 30% in the LP offspring. ZEB2 immunofluorescence, although present in the entire metanephros, was similar in both experimental groups. CONCLUSIONS Maternal protein restriction changes the expression of miRNAs, mRNAs, and proteins involved in proliferation, differentiation, and apoptosis during renal development. Renal ontogenic dysfunction, caused by maternal protein restriction, promotes reduced reciprocal interaction between CM and UB; consequently, a programmed and expressive decrease in nephron number occurs in the fetus.
Collapse
Affiliation(s)
- Letícia de Barros Sene
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Bioscience Institute, São Paulo State University, Botucatu, SP, Brazil
| | - Adriana Zapparoli
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| | - José Antônio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
12
|
Zwart P, Kuiken T, Veldhuis Kroeze EJ, Knotek S, Divers SJ. Nephromegaly due to Disruption of Nephrons in the Green Iguana (Iguana iguana). J Comp Pathol 2020; 181:1-6. [PMID: 33288144 DOI: 10.1016/j.jcpa.2020.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 07/27/2020] [Accepted: 09/18/2020] [Indexed: 11/19/2022]
Abstract
We describe a fatal kidney disease in green iguanas (Iguana iguana), associated with severe nephromegaly. Affected animals have enlarged kidneys, which fill the pelvic cavity, leading to compression of adjacent organs, obstipation and, ultimately, death. The pathological features of this disease have been poorly described and its aetiology is unknown. We performed detailed gross and histological analyses of 17 green iguanas with a clinical diagnosis of nephromegaly, and compared the results with those of eight healthy controls. Grossly, the kidneys of all 17 individuals were markedly enlarged and the distal colons were distended and overfilled with faecal contents. Histopathological examination revealed that these enlarged kidneys consisted mainly of tubular hyperplasia, resembling poorly developed proximal segments. The nephrogenic zones were either poorly developed or absent. There was a reduction in the density of glomeruli and the distal segments were reduced in number. There was no histological evidence of an aetiology for the nephron disruption and nephromegaly.
Collapse
Affiliation(s)
- Peernel Zwart
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, the Netherlands.
| | - Thijs Kuiken
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Sid Knotek
- Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Steve J Divers
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
13
|
Zhang L, Wu T, Qiao S. miR-1 and miR-802 regulate mesenchymal-epithelial transition during kidney development by regulating Wnt-4/β-catenin signaling. Am J Transl Res 2019; 11:7000-7008. [PMID: 31814903 PMCID: PMC6895509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Mesenchymal-epithelial transition (MET) is an important part of kidney development. However, the role of microRNA (miRNA) in MET and the regulating mechanism is still not well known. MATERIALS AND METHODS qRT-PCR and western blot were performed to detect the expression of miR-1 and miR-802 and related protein expression. Luciferase reporter assay and western blot were used to identify the target of miR-1 and miR-802. Confocal microscopy was used to analyze the MET process. RESULTS We demonstrated that miR-1 expression was downregulated and miR-802 expression was upregulated during kidney development. And during the process, proteins levels of Wnt-4 and β-catenin changed significantly. In MDCK cells, overexpression of Wnt-4 inhibited the expression of β-catenin, and promote the MET, and overexpression of β-catenin inhibited MET. Further studies suggested that miR-1 and miR-802 regulated MET by binding to Wnt-4 and β-catenin mRNA, regulated the expression of Wnt-4 and β-catenin. In conclusion, miR-1 and miR-802 regulate MET during kidney development by regulating Wnt-4/β-catenin signaling.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, P. R. China
- School of Laboratory Medicine, Zunyi Medical UniversityZunyi 563003, P. R. China
| | - Tao Wu
- Department of Urology, The Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, P. R. China
| | - Sen Qiao
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, P. R. China
- School of Laboratory Medicine, Zunyi Medical UniversityZunyi 563003, P. R. China
| |
Collapse
|
14
|
Gomes SA, Hare JM, Rangel EB. Kidney-Derived c-Kit + Cells Possess Regenerative Potential. Stem Cells Transl Med 2019; 7:317-324. [PMID: 29575816 PMCID: PMC5866938 DOI: 10.1002/sctm.17-0232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/15/2017] [Accepted: 01/14/2018] [Indexed: 12/27/2022] Open
Abstract
Kidney‐derived c‐Kit+ cells exhibit progenitor/stem cell properties in vitro (self‐renewal capacity, clonogenicity, and multipotentiality). These cells can regenerate epithelial tubular cells following ischemia‐reperfusion injury and accelerate foot processes effacement reversal in a model of acute proteinuria in rats. Several mechanisms are involved in kidney regeneration by kidney‐derived c‐Kit+ cells, including cell engraftment and differentiation into renal‐like structures, such as tubules, vessels, and podocytes. Moreover, paracrine mechanisms could also account for kidney regeneration, either by stimulating proliferation of surviving cells or modulating autophagy and podocyte cytoskeleton rearrangement through mTOR‐Raptor and ‐Rictor signaling, which ultimately lead to morphological and functional improvement. To gain insights into the functional properties of c‐Kit+ cells during kidney development, homeostasis, and disease, studies on lineage tracing using transgenic mice will unveil their fate. The results obtained from these studies will set the basis for establishing further investigation on the therapeutic potential of c‐Kit+ cells for treatment of kidney disease in preclinical and clinical studies. stemcellstranslationalmedicine2018;7:317–324
Collapse
Affiliation(s)
- Samirah A Gomes
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of Medicine, University of Miami, Miami, Florida, USA.,Department of Molecular and Cellular Pharmacology, Leonard M Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Cardiology, Leonard M Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Erika B Rangel
- Instituto Israelita de Ensino e Pesquisa Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil.,Division of Nephrology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis. Nat Commun 2019; 10:168. [PMID: 30635573 PMCID: PMC6329821 DOI: 10.1038/s41467-018-08127-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/12/2018] [Indexed: 01/10/2023] Open
Abstract
In humans and in mice the formation of nephrons during embryonic development reaches completion near the end of gestation, after which no new nephrons are formed. The final nephron complement can vary 10-fold, with reduced nephron number predisposing individuals to hypertension, renal, and cardiovascular diseases in later life. While the heterochronic genes lin28 and let-7 are well-established regulators of developmental timing in invertebrates, their role in mammalian organogenesis is not fully understood. Here we report that the Lin28b/let-7 axis controls the duration of kidney development in mice. Suppression of let-7 miRNAs, directly or via the transient overexpression of LIN28B, can prolong nephrogenesis and enhance kidney function potentially via upregulation of the Igf2/H19 locus. In contrast, kidney-specific loss of Lin28b impairs renal development. Our study reveals mechanisms regulating persistence of nephrogenic mesenchyme and provides a rationale for therapies aimed at increasing nephron mass. Nephrogenesis ceases after postnatal day 2 in the mouse or after the 36th week of gestation in humans, but how this is regulated is unclear. Here, the authors identify a role for the RNA-binding protein Lin28 and suppression of let-7 microRNA in regulating the duration of nephrogenesis.
Collapse
|
16
|
Key features of the nephrogenic zone in the fetal human kidney—hardly known but relevant for the detection of first traces impairing nephrogenesis. Cell Tissue Res 2018; 375:589-603. [DOI: 10.1007/s00441-018-2937-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/21/2018] [Indexed: 01/09/2023]
|
17
|
Quintero-Ronderos P, Laissue P. The multisystemic functions of FOXD1 in development and disease. J Mol Med (Berl) 2018; 96:725-739. [PMID: 29959475 DOI: 10.1007/s00109-018-1665-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) participate in a wide range of cellular processes due to their inherent function as essential regulatory proteins. Their dysfunction has been linked to numerous human diseases. The forkhead box (FOX) family of TFs belongs to the "winged helix" superfamily, consisting of proteins sharing a related winged helix-turn-helix DNA-binding motif. FOX genes have been extensively present during vertebrates and invertebrates' evolution, participating in numerous molecular cascades and biological functions, such as embryonic development and organogenesis, cell cycle regulation, metabolism control, stem cell niche maintenance, signal transduction, and many others. FOXD1, a forkhead TF, has been related to different key biological processes such as kidney and retina development and embryo implantation. FOXD1 dysfunction has been linked to different pathologies, thereby constituting a diagnostic biomarker and a promising target for future therapies. This paper aims to present, for the first time, a comprehensive review of FOXD1's role in mouse development and human disease. Molecular, structural, and functional aspects of FOXD1 are presented in light of physiological and pathogenic conditions, including its role in human disease aetiology, such as cancer and recurrent pregnancy loss. Taken together, the information given here should enable a better understanding of FOXD1 function for basic science researchers and clinicians.
Collapse
Affiliation(s)
- Paula Quintero-Ronderos
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, Colombia
| | - Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, Colombia.
| |
Collapse
|
18
|
Dionne LK, Shim K, Hoshi M, Cheng T, Wang J, Marthiens V, Knoten A, Basto R, Jain S, Mahjoub MR. Centrosome amplification disrupts renal development and causes cystogenesis. J Cell Biol 2018; 217:2485-2501. [PMID: 29895697 PMCID: PMC6028550 DOI: 10.1083/jcb.201710019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/23/2017] [Accepted: 05/09/2018] [Indexed: 01/07/2023] Open
Abstract
Supernumerary centrosomes are commonly observed in cystic kidneys, but whether they are a cause or consequence of cystogenesis is unknown. Dionne et al. demonstrate that centrosome amplification disrupts renal development and is sufficient to induce cystogenesis in vivo. Centrosome number is tightly controlled to ensure proper ciliogenesis, mitotic spindle assembly, and cellular homeostasis. Centrosome amplification (the formation of excess centrosomes) has been noted in renal cells of patients and animal models of various types of cystic kidney disease. Whether this defect plays a causal role in cystogenesis remains unknown. Here, we investigate the consequences of centrosome amplification during kidney development, homeostasis, and after injury. Increasing centrosome number in vivo perturbed proliferation and differentiation of renal progenitors, resulting in defective branching morphogenesis and renal hypoplasia. Centrosome amplification disrupted mitotic spindle morphology, ciliary assembly, and signaling pathways essential for the function of renal progenitors, highlighting the mechanisms underlying the developmental defects. Importantly, centrosome amplification was sufficient to induce rapid cystogenesis shortly after birth. Finally, we discovered that centrosome amplification sensitized kidneys in adult mice, causing cystogenesis after ischemic renal injury. Our study defines a new mechanism underlying the pathogenesis of renal cystogenesis, and identifies a potentially new cellular target for therapy.
Collapse
Affiliation(s)
- Lai Kuan Dionne
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Kyuhwan Shim
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Masato Hoshi
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Tao Cheng
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jinzhi Wang
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Amanda Knoten
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Renata Basto
- Centre National de la Recherche Scientifique-Institute Curie, Paris, France
| | - Sanjay Jain
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Moe R Mahjoub
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
19
|
Rahman MS, Spitzhorn LS, Wruck W, Hagenbeck C, Balan P, Graffmann N, Bohndorf M, Ncube A, Guillot PV, Fehm T, Adjaye J. The presence of human mesenchymal stem cells of renal origin in amniotic fluid increases with gestational time. Stem Cell Res Ther 2018; 9:113. [PMID: 29695308 PMCID: PMC5918774 DOI: 10.1186/s13287-018-0864-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022] Open
Abstract
Background Established therapies for managing kidney dysfunction such as kidney dialysis and transplantation are limited due to the shortage of compatible donated organs and high costs. Stem cell-based therapies are currently under investigation as an alternative treatment option. As amniotic fluid is composed of fetal urine harboring mesenchymal stem cells (AF-MSCs), we hypothesized that third-trimester amniotic fluid could be a novel source of renal progenitor and differentiated cells. Methods Human third-trimester amniotic fluid cells (AFCs) were isolated and cultured in distinct media. These cells were characterized as renal progenitor cells with respect to cell morphology, cell surface marker expression, transcriptome and differentiation into chondrocytes, osteoblasts and adipocytes. To test for renal function, a comparative albumin endocytosis assay was performed using AF-MSCs and commercially available renal cells derived from kidney biopsies. Comparative transcriptome analyses of first, second and third trimester-derived AF-MSCs were conducted to monitor expression of renal-related genes. Results Regardless of the media used, AFCs showed expression of pluripotency-associated markers such as SSEA4, TRA-1-60, TRA-1-81 and C-Kit. They also express the mesenchymal marker Vimentin. Immunophenotyping confirmed that third-trimester AFCs are bona fide MSCs. AF-MSCs expressed the master renal progenitor markers SIX2 and CITED1, in addition to typical renal proteins such as PODXL, LHX1, BRN1 and PAX8. Albumin endocytosis assays demonstrated the functionality of AF-MSCs as renal cells. Additionally, upregulated expression of BMP7 and downregulation of WT1, CD133, SIX2 and C-Kit were observed upon activation of WNT signaling by treatment with the GSK-3 inhibitor CHIR99201. Transcriptome analysis and semiquantitative PCR revealed increasing expression levels of renal-specific genes (e.g., SALL1, HNF4B, SIX2) with gestational time. Moreover, AF-MSCs shared more genes with human kidney cells than with native MSCs and gene ontology terms revealed involvement of biological processes associated with kidney morphogenesis. Conclusions Third-trimester amniotic fluid contains AF-MSCs of renal origin and this novel source of kidney progenitors may have enormous future potentials for disease modeling, renal repair and drug screening. Electronic supplementary material The online version of this article (10.1186/s13287-018-0864-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Md Shaifur Rahman
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Lucas-Sebastian Spitzhorn
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Carsten Hagenbeck
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Percy Balan
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Nina Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Audrey Ncube
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Pascale V Guillot
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London, London, WC1E 6HX, UK
| | - Tanja Fehm
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
20
|
Elhendawi M, Davies JA. Sebinger Culture: A System Optimized for Morphological Maturation and Imaging of Cultured Mouse Metanephric Primordia. Bio Protoc 2018; 8:e2730. [PMID: 29546231 DOI: 10.21769/bioprotoc.2730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Here, we present a detailed protocol on setting up embryonic renal organ cultures using a culture method that we have optimised for anatomical maturation and imaging. Our culture method places kidney rudiments on glass in a thin film of medium, which results in very flat cultures with all tubules in the same image plane. For reasons not yet understood, this technique results in improved renal maturation compared to traditional techniques. Typically, this protocol will result in an organ formed with distinct cortical and medullary regions as well as elongated, correctly positioned loops of Henle. This article describes our method and provides detailed advice. We have published qualitative and quantitative evaluations on the performance of the technique in Sebinger et al. (2010) and Chang and Davies (2012).
Collapse
Affiliation(s)
- Mona Elhendawi
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Clinical Pathology Department, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Jamie A Davies
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Troy/TNFRSF19 marks epithelial progenitor cells during mouse kidney development that continue to contribute to turnover in adult kidney. Proc Natl Acad Sci U S A 2017; 114:E11190-E11198. [PMID: 29237753 DOI: 10.1073/pnas.1714145115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During kidney development, progressively committed progenitor cells give rise to the distinct segments of the nephron, the functional unit of the kidney. Similar segment-committed progenitor cells are thought to be involved in the homeostasis of adult kidney. However, markers for most segment-committed progenitor cells remain to be identified. Here, we evaluate Troy/TNFRSF19 as a segment-committed nephron progenitor cell marker. Troy is expressed in the ureteric bud during embryonic development. During postnatal nephrogenesis, Troy+ cells are present in the cortex and papilla and display an immature tubular phenotype. Tracing of Troy+ cells during nephrogenesis demonstrates that Troy+ cells clonally give rise to tubular structures that persist for up to 2 y after induction. Troy+ cells have a 40-fold higher capacity than Troy- cells to form organoids, which is considered a stem cell property in vitro. In the adult kidney, Troy+ cells are present in the papilla and these cells continue to contribute to collecting duct formation during homeostasis. The number of Troy-derived cells increases after folic acid-induced injury. Our data show that Troy marks a renal stem/progenitor cell population in the developing kidney that in adult kidney contributes to homeostasis, predominantly of the collecting duct, and regeneration.
Collapse
|
22
|
Naiman N, Fujioka K, Fujino M, Valerius MT, Potter SS, McMahon AP, Kobayashi A. Repression of Interstitial Identity in Nephron Progenitor Cells by Pax2 Establishes the Nephron-Interstitium Boundary during Kidney Development. Dev Cell 2017; 41:349-365.e3. [PMID: 28535371 DOI: 10.1016/j.devcel.2017.04.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 03/10/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
The kidney contains the functional units, the nephrons, surrounded by the renal interstitium. Previously we discovered that, once Six2-expressing nephron progenitor cells and Foxd1-expressing renal interstitial progenitor cells form at the onset of kidney development, descendant cells from these populations contribute exclusively to the main body of nephrons and renal interstitial tissues, respectively, indicating a lineage boundary between the nephron and renal interstitial compartments. Currently it is unclear how lineages are regulated during kidney organogenesis. We demonstrate that nephron progenitor cells lacking Pax2 fail to differentiate into nephron cells but can switch fates into renal interstitium-like cell types. These data suggest that Pax2 function maintains nephron progenitor cells by repressing a renal interstitial cell program. Thus, the lineage boundary between the nephron and renal interstitial compartments is maintained by the Pax2 activity in nephron progenitor cells during kidney organogenesis.
Collapse
Affiliation(s)
- Natalie Naiman
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Kaoru Fujioka
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Mari Fujino
- Department of Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, 750 Republican Street, Seattle, WA 98109, USA
| | - M Todd Valerius
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA
| | - Akio Kobayashi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Department of Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, 750 Republican Street, Seattle, WA 98109, USA.
| |
Collapse
|
23
|
Activation of Hypoxia Signaling in Stromal Progenitors Impairs Kidney Development. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1496-1511. [PMID: 28527294 DOI: 10.1016/j.ajpath.2017.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 01/16/2023]
Abstract
Intrauterine hypoxia is a reason for impaired kidney development. The cellular and molecular pathways along which hypoxia exerts effects on nephrogenesis are not well understood. They are likely triggered by hypoxia-inducible transcription factors (HIFs), and their effects appear to be dependent on the cell compartment contributing to kidney formation. In this study, we investigated the effects of HIF activation in the developing renal stroma, which also essentially modulates nephron development from the metanephric mesenchyme. HIF activation was achieved by conditional deletion of the von Hippel-Lindau tumor suppressor (VHL) protein in the forkhead box FOXD1 cell lineage, from which stromal progenitors arise. The resulting kidneys showed maturation defects associated with early postnatal death. In particular, nephron formation, tubular maturation, and the differentiation of smooth muscle, renin, and mesangial cells were impaired. Erythropoietin expression was strongly enhanced. Codeletion of VHL together with HIF2A but not with HIF1A led to apparently normal kidneys, and the animals reached normal age but were anemic because of low erythropoietin levels. Stromal deletion of HIF2A or HIF1A alone did not affect kidney development. These findings emphasize the relevance of sufficient intrauterine oxygenation for normal renal stroma differentiation, suggesting that chronic activity of HIF2 in stromal progenitors impairs kidney development. Finally, these data confirm the concept that normal stroma function is essential for normal tubular differentiation.
Collapse
|
24
|
Lefevre JG, Chiu HS, Combes AN, Vanslambrouck JM, Ju A, Hamilton NA, Little MH. Self-organisation after embryonic kidney dissociation is driven via selective adhesion of ureteric epithelial cells. Development 2017; 144:1087-1096. [PMID: 28174247 DOI: 10.1242/dev.140228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022]
Abstract
Human pluripotent stem cells, after directed differentiation in vitro, can spontaneously generate complex tissues via self-organisation of the component cells. Self-organisation can also reform embryonic organ structure after tissue disruption. It has previously been demonstrated that dissociated embryonic kidneys can recreate component epithelial and mesenchymal relationships sufficient to allow continued kidney morphogenesis. Here, we investigate the timing and underlying mechanisms driving self-organisation after dissociation of the embryonic kidney using time-lapse imaging, high-resolution confocal analyses and mathematical modelling. Organotypic self-organisation sufficient for nephron initiation was observed within a 24 h period. This involved cell movement, with structure emerging after the clustering of ureteric epithelial cells, a process consistent with models of random cell movement with preferential cell adhesion. Ureteric epithelialisation rapidly followed the formation of ureteric cell clusters with the reformation of nephron-forming niches representing a later event. Disruption of P-cadherin interactions was seen to impair this ureteric epithelial cell clustering without affecting epithelial maturation. This understanding could facilitate improved regulation of patterning within organoids and facilitate kidney engineering approaches guided by cell-cell self-organisation.
Collapse
Affiliation(s)
- James G Lefevre
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Han S Chiu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Alexander N Combes
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia.,Department of Anatomy and Neuroscience, Faculty of Science, University of Melbourne, Parkville 3052, Australia.,Murdoch Children's Research Institute, Parkville, Melbourne 3052, Australia
| | - Jessica M Vanslambrouck
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia.,Murdoch Children's Research Institute, Parkville, Melbourne 3052, Australia
| | - Ali Ju
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia.,Translational Research Institute, Woolloongabba, Brisbane 4102, Australia
| | - Nicholas A Hamilton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia.,Murdoch Children's Research Institute, Parkville, Melbourne 3052, Australia.,Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville 3052, Australia
| |
Collapse
|
25
|
Abstract
Over a decade ago, it was proposed that the regulation of tubular repair in the kidney might involve the recapitulation of developmental pathways. Although the kidney cannot generate new nephrons after birth, suggesting a low level of regenerative competence, the tubular epithelial cells of the nephrons can proliferate to repair the damage after AKI. However, the debate continues over whether this repair involves a persistent progenitor population or any mature epithelial cell remaining after injury. Recent reports have highlighted the expression of Sox9, a transcription factor critical for normal kidney development, during postnatal epithelial repair in the kidney. Indeed, the proliferative response of the epithelium involves expression of several pathways previously described as being involved in kidney development. In some instances, these pathways are also apparently involved in the maladaptive responses observed after repeated injury. Whether development and repair in the kidney are the same processes or we are misinterpreting the similar expression of genes under different circumstances remains unknown. Here, we review the evidence for this link, concluding that such parallels in expression may more correctly represent the use of the same pathways in a distinct context, likely triggered by similar stressors.
Collapse
Affiliation(s)
- Melissa Helen Little
- Murdoch Children's Research Institute, Melbourne, Australia; and .,Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Pamela Kairath
- Murdoch Children's Research Institute, Melbourne, Australia; and.,Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
26
|
Nagy II, Xu Q, Naillat F, Ali N, Miinalainen I, Samoylenko A, Vainio SJ. Impairment of Wnt11 function leads to kidney tubular abnormalities and secondary glomerular cystogenesis. BMC DEVELOPMENTAL BIOLOGY 2016; 16:30. [PMID: 27582005 PMCID: PMC5007805 DOI: 10.1186/s12861-016-0131-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/22/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Wnt11 is a member of the Wnt family of secreted signals controlling the early steps in ureteric bud (UB) branching. Due to the reported lethality of Wnt11 knockout embryos in utero, its role in later mammalian kidney organogenesis remains open. The presence of Wnt11 in the emerging tubular system suggests that it may have certain roles later in the development of the epithelial ductal system. RESULTS The Wnt11 knockout allele was backcrossed with the C57Bl6 strain for several generations to address possible differences in penetrance of the kidney phenotypes. Strikingly, around one third of the null mice with this inbred background survived to the postnatal stages. Many of them also reached adulthood, but urine and plasma analyses pointed out to compromised kidney function. Consistent with these data the tubules of the C57Bl6 Wnt11 (-/-) mice appeared to be enlarged, and the optical projection tomography indicated changes in tubular convolution. Moreover, the C57Bl6 Wnt11 (-/-) mice developed secondary glomerular cysts not observed in the controls. The failure of Wnt11 signaling reduced the expression of several genes implicated in kidney development, such as Wnt9b, Six2, Foxd1 and Hox10. Also Dvl2, an important PCP pathway component, was downregulated by more than 90 % due to Wnt11 deficiency in both the E16.5 and NB kidneys. Since all these genes take part in the control of UB, nephron and stromal progenitor cell differentiation, their disrupted expression may contribute to the observed anomalies in the kidney tubular system caused by Wnt11 deficiency. CONCLUSIONS The Wnt11 signal has roles at the later stages of kidney development, namely in coordinating the development of the tubular system. The C57Bl6 Wnt11 (-/-) mouse generated here provides a model for studying the mechanisms behind tubular anomalies and glomerular cyst formation.
Collapse
Affiliation(s)
- Irina I Nagy
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland.,NordLab Oulu, Department of Clinical Chemistry, University of Oulu, Oulu, Finland
| | - Qi Xu
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Florence Naillat
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Nsrein Ali
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Ilkka Miinalainen
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Anatoly Samoylenko
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland. .,InfoTech Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
27
|
Arora H, Boulberdaa M, Qureshi R, Bitirim V, Messadeq N, Dolle P, Nebigil CG. Prokineticin receptor 1 is required for mesenchymal-epithelial transition in kidney development. FASEB J 2016; 30:2733-40. [PMID: 27084889 DOI: 10.1096/fj.201600181r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/05/2016] [Indexed: 12/23/2022]
Abstract
Identification of factors regulating renal development is important to understand the pathogenesis of congenital kidney diseases. Little is known about the molecular mechanism of renal development and functions triggered by the angiogenic hormone prokineticin-2 and its receptor, PKR1. Utilizing the Gata5 (G5)-Cre and Wilms tumor 1 (Wt1)(GFP)cre transgenic lines, we generated mutant mice with targeted PKR1 gene disruptions in nephron progenitors. These mutant mice exhibited partial embryonic and postnatal lethality. Kidney developmental defects in PKR(G5-/-) mice are manifested in the adult stage as renal atrophy with glomerular defects, nephropathy, and uremia. PKR1(Wt1-/-) embryos exhibit hypoplastic kidneys with premature glomeruli and necrotic nephrons as a result of impaired proliferation and increased apoptosis in Wt1(+) renal mesenchymal cells. PKR1 regulates renal mesenchymal-epithelial transition (MET) that is involved in formation of renal progenitors, regulating glomerulogenesis toward forming nephrons during kidney development. In the isolated embryonic Wt1(+) renal cells, overexpression or activation of PKR1 promotes MET defined by the transition from elongated cell to octagonal cell morphology, and alteration of the expression of MET markers via activating NFATc3 signaling. Together, these results establish PKR1 via NFATc3 as a crucial modifier of MET processing to the development of nephron. Our study should facilitate new therapeutic opportunities in human renal disorders.-Arora, H., Boulberdaa, M., Qureshi, R., Bitirim, V., Messadeq, N., Dolle, P., Nebigil, C. G. Prokineticin receptor 1 is required for mesenchymal-epithelial transition in kidney development.
Collapse
Affiliation(s)
- Himanshu Arora
- Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Unité Mixte de Recherche (UMR) 7242, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France; and
| | - Mounia Boulberdaa
- Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Unité Mixte de Recherche (UMR) 7242, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France; and
| | - Rehana Qureshi
- Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Unité Mixte de Recherche (UMR) 7242, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France; and
| | - Verda Bitirim
- Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Unité Mixte de Recherche (UMR) 7242, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France; and
| | - Nadia Messadeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, UMR 7104 and INSERM Unité 964, Université de Strasbourg, Illkirch-Strasbourg, France
| | - Pascal Dolle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, UMR 7104 and INSERM Unité 964, Université de Strasbourg, Illkirch-Strasbourg, France
| | - Canan G Nebigil
- Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Unité Mixte de Recherche (UMR) 7242, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France; and
| |
Collapse
|
28
|
Arcolino FO, Zia S, Held K, Papadimitriou E, Theunis K, Bussolati B, Raaijmakers A, Allegaert K, Voet T, Deprest J, Vriens J, Toelen J, van den Heuvel L, Levtchenko E. Urine of Preterm Neonates as a Novel Source of Kidney Progenitor Cells. J Am Soc Nephrol 2016; 27:2762-70. [PMID: 26940093 DOI: 10.1681/asn.2015060664] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022] Open
Abstract
In humans, nephrogenesis is completed prenatally, with nephrons formed until 34 weeks of gestational age. We hypothesized that urine of preterm neonates born before the completion of nephrogenesis is a noninvasive source of highly potent stem/progenitor cells. To test this hypothesis, we collected freshly voided urine at day 1 after birth from neonates born at 31-36 weeks of gestational age and characterized isolated cells using a single-cell RT-PCR strategy for gene expression analysis and flow cytometry and immunofluorescence for protein expression analysis. Neonatal stem/progenitor cells expressed markers of nephron progenitors but also, stromal progenitors, with many single cells coexpressing these markers. Furthermore, these cells presented mesenchymal stem cell features and protected cocultured tubule cells from cisplatin-induced apoptosis. Podocytes differentiated from the neonatal stem/progenitor cells showed upregulation of podocyte-specific genes and proteins, albumin endocytosis, and calcium influx via podocyte-specific transient receptor potential cation channel, subfamily C, member 6. Differentiated proximal tubule cells showed upregulation of specific genes and significantly elevated p-glycoprotein activity. We conclude that urine of preterm neonates is a novel noninvasive source of kidney progenitors that are capable of differentiation into mature kidney cells and have high potential for regenerative kidney repair.
Collapse
Affiliation(s)
- Fanny Oliveira Arcolino
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Silvia Zia
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Katharina Held
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Elli Papadimitriou
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Koen Theunis
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Anke Raaijmakers
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Karel Allegaert
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Neonatal Intensive Care Unit, Universitaire Ziekenhuizen Leuven, Leuven, Belgium; and
| | - Thierry Voet
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Joris Vriens
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Jaan Toelen
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Lambertus van den Heuvel
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| |
Collapse
|
29
|
Chen S, Brunskill EW, Potter SS, Dexheimer PJ, Salomonis N, Aronow BJ, Hong CI, Zhang T, Kopan R. Intrinsic Age-Dependent Changes and Cell-Cell Contacts Regulate Nephron Progenitor Lifespan. Dev Cell 2016; 35:49-62. [PMID: 26460946 DOI: 10.1016/j.devcel.2015.09.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 07/22/2015] [Accepted: 09/14/2015] [Indexed: 01/24/2023]
Abstract
During fetal development, nephrons of the metanephric kidney form from a mesenchymal progenitor population that differentiates en masse before or shortly after birth. We explored intrinsic and extrinsic mechanisms controlling progenitor lifespan in a transplantation assay that allowed us to compare engraftment of old and young progenitors into the same young niche. The progenitors displayed an age-dependent decrease in proliferation and concomitant increase in niche exit rates. Single-cell transcriptome profiling revealed progressive age-dependent changes, with heterogeneity increasing in older populations. Age-dependent elevation in mTor and reduction in Fgf20 could contribute to increased exit rates. Importantly, 30% of old progenitors remained in the niche for up to 1 week post engraftment, a net gain of 50% to their lifespan, but only if surrounded by young neighbors. We provide evidence in support of a model in which intrinsic age-dependent changes affect inter-progenitor interactions that drive cessation of nephrogenesis.
Collapse
Affiliation(s)
- Shuang Chen
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Eric W Brunskill
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Phillip J Dexheimer
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Christian I Hong
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Tongli Zhang
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA.
| |
Collapse
|
30
|
Pathogenesis of Type 2 Epithelial to Mesenchymal Transition (EMT) in Renal and Hepatic Fibrosis. J Clin Med 2015; 5:jcm5010004. [PMID: 26729181 PMCID: PMC4730129 DOI: 10.3390/jcm5010004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT), particularly, type 2 EMT, is important in progressive renal and hepatic fibrosis. In this process, incompletely regenerated renal epithelia lose their epithelial characteristics and gain migratory mesenchymal qualities as myofibroblasts. In hepatic fibrosis (importantly, cirrhosis), the process also occurs in injured hepatocytes and hepatic progenitor cells (HPCs), as well as ductular reaction-related bile epithelia. Interestingly, the ductular reaction contributes partly to hepatocarcinogenesis of HPCs, and further, regenerating cholangiocytes after injury may be derived from hepatic stellate cells via mesenchymal to epithelia transition, a reverse phenomenon of type 2 EMT. Possible pathogenesis of type 2 EMT and its differences between renal and hepatic fibrosis are reviewed based on our experimental data.
Collapse
|
31
|
Yuri S, Nishikawa M, Yanagawa N, Jo OD, Yanagawa N. Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor. PLoS One 2015; 10:e0129242. [PMID: 26075891 PMCID: PMC4468097 DOI: 10.1371/journal.pone.0129242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/06/2015] [Indexed: 01/27/2023] Open
Abstract
Knowledge on how to maintain and expand nephron progenitor cells (NPC) in vitro is important to provide a potentially valuable source for kidney replacement therapies. In our present study, we examined the possibility of optimizing NPC maintenance in the "re-aggregate" system. We found that Six2-expressing (Six2(+))-NPC could be maintained in aggregates reconstituted with dispersed cells from E12.5 mouse embryonic kidneys for at least up to 21 days in culture. The maintenance of Six2(+)-NPC required the presence of ureteric bud cells. The number of Six2(+)-NPC increased by more than 20-fold at day 21, but plateaued after day 14. In an attempt to further sustain NPC proliferation by passage subculture, we found that the new (P1) aggregates reconstituted from the original (P0) aggregates failed to maintain NPC. However, based on the similarity between P1 aggregates and aggregates derived from E15.5 embryonic kidneys, we suspected that the differentiated NPC in P1 aggregates may interfere with NPC maintenance. In support of this notion, we found that preventing NPC differentiation by DAPT, a γ-secretase inhibitor that inhibits Notch signaling pathway, was effective to maintain and expand Six2(+)-NPC in P1 aggregates by up to 65-fold. The Six2(+)-NPC in P1 aggregates retained their potential to epithelialize upon exposure to Wnt signal. In conclusion, we demonstrated in our present study that the "re-aggregation" system can be useful for in vitro maintenance of NPC when combined with γ-secretase inhibitor.
Collapse
Affiliation(s)
- Shunsuke Yuri
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
- * E-mail: (SY); (NY)
| | - Masaki Nishikawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Naomi Yanagawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Oak D. Jo
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Norimoto Yanagawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
- * E-mail: (SY); (NY)
| |
Collapse
|
32
|
Recent advances in elucidating the genetic mechanisms of nephrogenesis using zebrafish. Cells 2015; 4:218-33. [PMID: 26024215 PMCID: PMC4493457 DOI: 10.3390/cells4020218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
The kidney is comprised of working units known as nephrons, which are epithelial tubules that contain a series of specialized cell types organized into a precise pattern of functionally distinct segment domains. There is a limited understanding of the genetic mechanisms that establish these discrete nephron cell types during renal development. The zebrafish embryonic kidney serves as a simplified yet conserved vertebrate model to delineate how nephron segments are patterned from renal progenitors. Here, we provide a concise review of recent advances in this emerging field, and discuss how continued research using zebrafish genetics can be applied to gain insightsabout nephrogenesis.
Collapse
|
33
|
Atlas of Cellular Dynamics during Zebrafish Adult Kidney Regeneration. Stem Cells Int 2015; 2015:547636. [PMID: 26089919 PMCID: PMC4451991 DOI: 10.1155/2015/547636] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022] Open
Abstract
The zebrafish is a useful animal model to study the signaling pathways that orchestrate kidney regeneration, as its renal nephrons are simple, yet they maintain the biological complexity inherent to that of higher vertebrate organisms including mammals. Recent studies have suggested that administration of the aminoglycoside antibiotic gentamicin in zebrafish mimics human acute kidney injury (AKI) through the induction of nephron damage, but the timing and details of critical phenotypic events associated with the regeneration process, particularly in existing nephrons, have not been characterized. Here, we mapped the temporal progression of cellular and molecular changes that occur during renal epithelial regeneration of the proximal tubule in the adult zebrafish using a platform of histological and expression analysis techniques. This work establishes the timing of renal cell death after gentamicin injury, identifies proliferative compartments within the kidney, and documents gene expression changes associated with the regenerative response of proliferating cells. These data provide an important descriptive atlas that documents the series of events that ensue after damage in the zebrafish kidney, thus availing a valuable resource for the scientific community that can facilitate the implementation of zebrafish research to delineate the mechanisms that control renal regeneration.
Collapse
|
34
|
CITED1 confers stemness to Wilms tumor and enhances tumorigenic responses when enriched in the nucleus. Oncotarget 2015; 5:386-402. [PMID: 24481423 PMCID: PMC3964215 DOI: 10.18632/oncotarget.1566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Wilms tumor (WT) is the most common childhood kidney cancer and retains gene expression profiles reminiscent of the embryonic kidney. We have shown previously that CITED1, a transcriptional regulator that labels the self-renewing, multipotent nephron progenitor population of the developing kidney, is robustly expressed across all major WT disease and patient characteristics. In this malignant context, CITED1 becomes enriched in the nucleus, which deviates from its cytosolic predominance in embryonic nephron progenitors. We designed the current studies to test the functional and mechanistic effects of differential CITED1 subcellular localization on WT behavior. To mimic its subcellular distribution observed in clinical WT specimens, CITED1 was misexpressed ectopically in the human WT cell line, WiT49, as either a wild-type (predominantly cytosolic) or a mutant, but transcriptionally active, protein (two point mutations in its nuclear export signal, CITED1ΔNES; nuclear-enriched). In vitro analyses showed that CITED1ΔNES enhanced WiT49 proliferation and colony formation in soft agar relative to wild-type CITED1 and empty vector controls. The nuclear-enriched CITED1ΔNES cell line showed the greatest tumor volumes after xenotransplantation into immunodeficient mice (n=15 animals per cell line). To elucidate CITED1 gene targets in this model, microarray profiling showed that wildtype CITED1 foremost upregulated LGR5 (stem cell marker), repressed CDH6 (early marker of epithelial commitment of nephron progenitors), and altered expression of specific WNT pathway participants. In summary, forced nuclear enrichment of CITED1 in a human WT cell line appears to enhance tumorigenicity, whereas ectopic cytosolic expression confers stem-like properties and an embryonic phenotype, analogous to the developmental context.
Collapse
|
35
|
Cebrian C, Asai N, D'Agati V, Costantini F. The number of fetal nephron progenitor cells limits ureteric branching and adult nephron endowment. Cell Rep 2014; 7:127-37. [PMID: 24656820 DOI: 10.1016/j.celrep.2014.02.033] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/23/2014] [Accepted: 02/22/2014] [Indexed: 01/16/2023] Open
Abstract
Nephrons, the functional units of the kidney, develop from progenitor cells (cap mesenchyme [CM]) surrounding the epithelial ureteric bud (UB) tips. Reciprocal signaling between UB and CM induces nephrogenesis and UB branching. Although low nephron number is implicated in hypertension and renal disease, the mechanisms that determine nephron number are obscure. To test the importance of nephron progenitor cell number, we genetically ablated 40% of these cells, asking whether this would limit kidney size and nephron number or whether compensatory mechanisms would allow the developing organ to recover. The reduction in CM cell number decreased the rate of branching, which in turn allowed the number of CM cells per UB tip to normalize, revealing a self-correction mechanism. However, the retarded UB branching impaired kidney growth, leaving a permanent nephron deficit. Thus, the number of fetal nephron progenitor cells is an important determinant of nephron endowment, largely via its effect on UB branching.
Collapse
Affiliation(s)
- Cristina Cebrian
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Naoya Asai
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Vivette D'Agati
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Frank Costantini
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
36
|
Matsumoto S, Fujii S, Sato A, Ibuka S, Kagawa Y, Ishii M, Kikuchi A. A combination of Wnt and growth factor signaling induces Arl4c expression to form epithelial tubular structures. EMBO J 2014; 33:702-18. [PMID: 24562386 DOI: 10.1002/embj.201386942] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Growth factor-dependent epithelial morphological changes and proliferation are essential for the formation of tubular structures, but the underlying molecular mechanisms are poorly understood. Co-stimulation with Wnt3a and epidermal growth factor (Wnt3a/EGF) induced development of tubes consisting of intestinal epithelial cells by inducing expression of Arl4c, an Arf-like small GTP-binding protein, in three-dimensional culture, while stimulation with Wnt3a or EGF alone did not. Arl4c expression resulted in rearrangement of the cytoskeleton through activation of Rac and inactivation of Rho properly, which promoted cell growth by inducing nuclear translocation of Yes-associated protein and transcriptional co-activator with PDZ-binding motif (YAP/TAZ) in leading cells. Arl4c was expressed in ureteric bud tips and pretubular structures in the embryonic kidney. In an organoid culture assay, Wnt and fibroblast growth factor signaling simultaneously induced elongation and budding of kidney ureteric buds through Arl4c expression. YAP/TAZ was observed in the nucleus of extending ureteric bud tips. Thus, Arl4c expression induced by a combination of growth factor signaling mechanisms is involved in tube formation.
Collapse
Affiliation(s)
- Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Karlsson J, Holmquist Mengelbier L, Ciornei CD, Naranjo A, O'Sullivan MJ, Gisselsson D. Clear cell sarcoma of the kidney demonstrates an embryonic signature indicative of a primitive nephrogenic origin. Genes Chromosomes Cancer 2014; 53:381-91. [PMID: 24488803 DOI: 10.1002/gcc.22149] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/13/2014] [Indexed: 01/08/2023] Open
Abstract
Clear cell sarcoma of the kidney (CCSK) is a tumor affecting children with a median age of 3 years at diagnosis. The cell of origin of CCSK is unknown and data on the molecular changes giving rise to CCSK is scarce. This has hindered the identification of positive diagnostic markers and development of molecularly targeted treatment protocols for CCSK. We have characterized a panel of CCSK to gain information regarding its molecular profile and possible origin. High-resolution genomic analysis with single nucleotide polymorphism array of 37 tumors did not reveal any clues to the mechanisms behind tumor development as remarkably few genetic imbalances were found. Gene expression analysis revealed a highly characteristic gene signature, enriched for pathways involved in embryonic development, including kidney formation. The presence of markers for two different developmental lineages in the embryonic kidney was therefore investigated in the tumor cells. FOXD1 which identifies cells giving rise to stromal elements, and CITED1, a marker for cells primed for nephrogenic epithelial differentiation, were both highly expressed in CCSK. In addition, the early embryonic marker OSR1 was expressed at higher levels in CCSK than in Wilms tumor, normal fetal kidney or adult kidney. As this marker discriminates the intermediate mesoderm from other mesodermal structures, our study could suggest that CCSK arises from a mesodermal cell type that retains the capacity to initiate differentiation towards both nephrons and stroma, but remains locked in a primitive state.
Collapse
Affiliation(s)
- Jenny Karlsson
- Department of Clinical Genetics, Lund University, University and Regional Laboratories, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
38
|
Hilliard SA, Yao X, El-Dahr SS. Mdm2 is required for maintenance of the nephrogenic niche. Dev Biol 2014; 387:1-14. [PMID: 24440154 DOI: 10.1016/j.ydbio.2014.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/08/2014] [Accepted: 01/11/2014] [Indexed: 11/26/2022]
Abstract
The balance between nephron progenitor cell (NPC) renewal, survival and differentiation ultimately determines nephron endowment and thus susceptibile to chronic kidney disease and hypertension. Embryos lacking the p53-E3 ubiquitin ligase, Murine double minute 2 (Mdm2), die secondary to p53-mediated apoptosis and growth arrest, demonstrating the absolute requirement of Mdm2 in embryogenesis. Although Mdm2 is required in the maintenance of hematopoietic stem cells, its role in renewal and differentiation of stem/progenitor cells during kidney organogenesis is not well defined. Here we examine the role of the Mdm2-p53 pathway in NPC renewal and fate in mice. The Six2-GFP::Cre(tg/+) mediated inactivation of Mdm2 in the NPC (NPC(Mdm)2(-/-)) results in perinatal lethality. NPC(Mdm)2(-/-) neonates have hypo-dysplastic kidneys, patchy depletion of the nephrogenic zone and pockets of superficially placed, ectopic, well-differentiated proximal tubules. NPC(Mdm2-/-) metanephroi exhibit thinning of the progenitor GFP(+)/Six2(+) population and a marked reduction or loss of progenitor markers Amphiphysin, Cited1, Sall1 and Pax2. This is accompanied by aberrant accumulation of phospho-γH2AX and p53, and elevated apoptosis together with reduced cell proliferation. E13.5-E15.5 NPC(Mdm2-/-) kidneys show reduced expression of Eya1, Pax2 and Bmp7 while the few surviving nephron precursors maintain expression of Wnt4, Lhx1, Pax2, and Pax8. Lineage fate analysis and section immunofluorescence revealed that NPC(Mdm2-/-) kidneys have severely reduced renal parenchyma embedded in an expanded stroma. Six2-GFP::Cre(tg/+); Mdm2(f/f) mice bred into a p53 null background ensures survival of the GFP-positive, self-renewing progenitor mesenchyme and therefore restores normal renal development and postnatal survival of mice. In conclusion, the Mdm2-p53 pathway is essential to the maintenance of the nephron progenitor niche.
Collapse
Affiliation(s)
- Sylvia A Hilliard
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiao Yao
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samir S El-Dahr
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
39
|
Minuth WW, Denk L. Advanced fixation for transmission electron microscopy unveils special extracellular matrix within the renal stem/progenitor cell niche. Methods Mol Biol 2014; 1212:21-37. [PMID: 25063501 DOI: 10.1007/7651_2014_93] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
As well in light as in transmission electron microscopy can be seen that the renal stem/progenitor cell niche shows a special arrangement of two different kinds of stem/progenitor cells. Epithelial cells are found in the tip of an ureteric bud derived CD ampulla encircled by a special basal lamina. Mesenchymal cells are separated from them by a striking interstitial interface. Specimens fixed by conventional glutaraldehyde solution show that the interface looks bright and unremarkable. In contrast, fixation of specimens with glutaraldehyde in combination with cupromeronic blue, ruthenium red, or tannic acid illustrates that the interface contains a remarkable network of extracellular matrix spanning between epithelial and mesenchymal stem/progenitor cells. After unpacking this particular extracellular matrix for electron microscopy, elaboration of related functions such as structural composition of contained molecules, binding of morphogenetic factors, and influence on parenchyma development is under current experimental work.
Collapse
Affiliation(s)
- Will W Minuth
- Molecular and Cellular Anatomy, University of Regensburg, University Street 31, D-93053, Regensburg, Germany,
| | | |
Collapse
|
40
|
Abstract
Amniotic fluid is in continuity with multiple developing organ systems, including the kidney. Committed, but still stem-like cells from these organs may thus appear in amniotic fluid. We report having established for the first time a stem-like cell population derived from human amniotic fluid and possessing characteristics of podocyte precursors. Using a method of triple positive selection we obtained a population of cells (hAKPC-P) that can be propagated in vitro for many passages without immortalization or genetic manipulation. Under specific culture conditions, these cells can be differentiated to mature podocytes. In this work we compared these cells with conditionally immortalized podocytes, the current gold standard for in vitro studies. After in vitro differentiation, both cell lines have similar expression of the major podocyte proteins, such as nephrin and type IV collagen, that are characteristic of mature functional podocytes. In addition, differentiated hAKPC-P respond to angiotensin II and the podocyte toxin, puromycin aminonucleoside, in a way typical of podocytes. In contrast to immortalized cells, hAKPC-P have a more nearly normal cell cycle regulation and a pronounced developmental pattern of specific protein expression, suggesting their suitability for studies of podocyte development for the first time in vitro. These novel progenitor cells appear to have several distinct advantages for studies of podocyte cell biology and potentially for translational therapies.
Collapse
|
41
|
A multicolor podocyte reporter highlights heterogeneous podocyte changes in focal segmental glomerulosclerosis. Kidney Int 2013; 85:972-80. [PMID: 24284512 PMCID: PMC3987991 DOI: 10.1038/ki.2013.463] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/19/2013] [Accepted: 09/19/2013] [Indexed: 02/06/2023]
Abstract
In contrast to most glomerular diseases, the injury pattern in focal segmental glomerulosclerosis (FSGS) is highly heterogeneous, even though podocytes are genetically identical and exposed to the same environmental factors. To understand changes in individual podocytes, we generated and analyzed a stochastic multicolor Cre-reporter, encoding four fluorescent proteins. In these animals podocytes were randomly labeled allowing individual cells and their foot processes to be distinguished. In healthy animals podocyte size and structure showed little cell to cell variability. In the doxorubicin-induced FSGS model, fluorescent-labeled glomerular podocyte numbers decreased and fluorescent cells could be recovered from the urine. The size of the remaining podocytes showed a high degree of heterogeneity, some cells remained small, while others enlarged. Both enlarged and non-enlarged podocytes showed alterations in their foot process morphology. Thus, by the virtue of a multicolor cre-reporter, individual podocytes could be viewed in real time at a cellular resolution indicating a heterogeneous podocyte injury response during the pathogenesis of FSGS.
Collapse
|
42
|
Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D, Wu MZ, Dubova I, Esteban CR, Montserrat N, Campistol JM, Izpisua Belmonte JC. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol 2013; 15:1507-15. [PMID: 24240476 DOI: 10.1038/ncb2872] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/04/2013] [Indexed: 02/06/2023]
Abstract
Diseases affecting the kidney constitute a major health issue worldwide. Their incidence and poor prognosis affirm the urgent need for the development of new therapeutic strategies. Recently, differentiation of pluripotent cells to somatic lineages has emerged as a promising approach for disease modelling and cell transplantation. Unfortunately, differentiation of pluripotent cells into renal lineages has demonstrated limited success. Here we report on the differentiation of human pluripotent cells into ureteric-bud-committed renal progenitor-like cells. The generated cells demonstrated rapid and specific expression of renal progenitor markers on 4-day exposure to defined media conditions. Further maturation into ureteric bud structures was accomplished on establishment of a three-dimensional culture system in which differentiated human cells assembled and integrated alongside murine cells for the formation of chimeric ureteric buds. Altogether, our results provide a new platform for the study of kidney diseases and lineage commitment, and open new avenues for the future application of regenerative strategies in the clinic.
Collapse
Affiliation(s)
- Yun Xia
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA [2]
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Amann R, Trueb B. Evidence that the novel receptor FGFRL1 signals indirectly via FGFR1. Int J Mol Med 2013; 32:983-8. [PMID: 24026051 PMCID: PMC3820611 DOI: 10.3892/ijmm.2013.1484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/28/2013] [Indexed: 01/12/2023] Open
Abstract
Fibroblast growth factor (FGF) receptor-like protein 1 (FGFRL1) is a recently discovered member of the FGF receptor (FGFR) family. Similar to the classical FGFRs, it contains three extracellular immunoglobulin-like domains and interacts with FGF ligands. However, in contrast to the classical receptors, it does not contain any intracellular tyrosine kinase domain and consequently cannot signal by transphosphorylation. In mouse kidneys, FgfrL1 is expressed primarily at embryonic stages E14–E15 in regions where nascent nephrons develop. In this study, we used whole-mount in situ hybridization to show the spatial pattern of five different Fgfrs in the developing mouse kidney. We compared the expression pattern of FgfrL1 with that of other Fgfrs. The expression pattern of FgfrL1 closely resembled that of Fgfr1, but clearly differed from that of Fgfr2–Fgfr4. It is therefore conceivable that FgfrL1 signals indirectly via Fgfr1. The mechanisms by which FgfrL1 affects the activity of Fgfr1 remain to be elucidated.
Collapse
Affiliation(s)
- Ruth Amann
- Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | | |
Collapse
|
44
|
Lefevre J, Marshall DJ, Combes AN, Ju AL, Little MH, Hamilton NA. Modelling cell turnover in a complex tissue during development. J Theor Biol 2013; 338:66-79. [PMID: 24018201 DOI: 10.1016/j.jtbi.2013.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
The growth of organs results from proliferation within distinct cellular compartments. Organ development also involves transitions between cell types and variations in cell cycle duration as development progresses, and is regulated by a balance between entry into the compartment, proliferation of cells within the compartment, acquisition of quiescence and exit from that cell state via differentiation or death. While it is important to understand how environmental or genetic alterations can perturb such development, most approaches employed to date are descriptive rather than quantitative. This is because the identification and quantification of such parameters, while tractable in vitro, is challenging in the context of a complex tissue in vivo. Here we present a new framework for determining cell turnover in developing organs in vivo that combines cumulative cell-labelling and quantification of distinct cell-cycle phases without assuming homogeneity of behaviour within that compartment. A mathematical model is given that allows the calculation of cell cycle length in the context of a specific biological example and assesses the uncertainty of this calculation due to incomplete knowledge of cell cycle dynamics. This includes the development of a two population model to quantify possible heterogeneity of cell cycle length within a compartment and estimate the aggregate proliferation rate. These models are demonstrated on data collected from a progenitor cell compartment within the developing mouse kidney, the cap mesenchyme. This tissue was labelled by cumulative infusion, volumetrically quantified across time, and temporally analysed for the proportion of cells undergoing proliferation. By combining the cell cycle length predicted by the model with measurements of total cell population and mitotic rate, this approach facilitates the quantification of exit from this compartment without the need for a direct marker of that event. As a method specifically designed with assumptions appropriate to developing organs we believe this approach will be applicable to a range of developmental systems, facilitating estimations of cell cycle length and compartment behaviour that extend beyond simple comparisons of mitotic rates between normal and perturbed states.
Collapse
Affiliation(s)
- J Lefevre
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
45
|
Méniel V, Song F, Phesse T, Young M, Poetz O, Parry L, Jenkins JR, Williams GT, Dunwoodie SL, Watson A, Clarke AR. Cited1 deficiency suppresses intestinal tumorigenesis. PLoS Genet 2013; 9:e1003638. [PMID: 23935526 PMCID: PMC3731217 DOI: 10.1371/journal.pgen.1003638] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 06/01/2013] [Indexed: 11/23/2022] Open
Abstract
Conditional deletion of Apc in the murine intestine alters crypt-villus architecture and function. This process is accompanied by multiple changes in gene expression, including upregulation of Cited1, whose role in colorectal carcinogenesis is unknown. Here we explore the relevance of Cited1 to intestinal tumorigenesis. We crossed Cited1 null mice with Apc(Min/+) and AhCre(+)Apc(fl/fl) mice and determined the impact of Cited1 deficiency on tumour growth/initiation including tumour multiplicity, cell proliferation, apoptosis and the transcriptome. We show that Cited1 is up-regulated in both human and murine tumours, and that constitutive deficiency of Cited1 increases survival in Apc(Min/+) mice from 230.5 to 515 days. However, paradoxically, Cited1 deficiency accentuated nearly all aspects of the immediate phenotype 4 days after conditional deletion of Apc, including an increase in cell death and enhanced perturbation of differentiation, including of the stem cell compartment. Transcriptome analysis revealed multiple pathway changes, including p53, PI3K and Wnt. The activation of Wnt through Cited1 deficiency correlated with increased transcription of β-catenin and increased levels of dephosphorylated β-catenin. Hence, immediately following deletion of Apc, Cited1 normally restrains the Wnt pathway at the level of β-catenin. Thus deficiency of Cited1 leads to hyper-activation of Wnt signaling and an exaggerated Wnt phenotype including elevated cell death. Cited1 deficiency decreases intestinal tumourigenesis in Apc(Min/+) mice and impacts upon a number of oncogenic signaling pathways, including Wnt. This restraint imposed by Cited1 is consistent with a requirement for Cited1 to constrain Wnt activity to a level commensurate with optimal adenoma formation and maintenance, and provides one mechanism for tumour repression in the absence of Cited1.
Collapse
Affiliation(s)
- Valérie Méniel
- School of Biological Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Fei Song
- Department of Gastroenterology, Institute of Translational Medicine, The Henry Wellcome Laboratory, University of Liverpool, England, United Kingdom
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Toby Phesse
- Cell Signaling and Cell Death, Walter and Eliza Hall Institute for Medical Research, Melbourne, Victoria, Australia
| | - Madeleine Young
- School of Biological Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Oliver Poetz
- Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Lee Parry
- School of Biological Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - John R. Jenkins
- Department of Gastroenterology, Institute of Translational Medicine, The Henry Wellcome Laboratory, University of Liverpool, England, United Kingdom
| | - Geraint T. Williams
- School of Medicine, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - Sally L. Dunwoodie
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales, Australia
| | - Alastair Watson
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Alan R. Clarke
- School of Biological Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
46
|
CITED1 expression in liver development and hepatoblastoma. Neoplasia 2013; 14:1153-63. [PMID: 23308048 DOI: 10.1593/neo.12958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 11/18/2022] Open
Abstract
Hepatoblastoma, the most common pediatric liver cancer, consists of epithelial mixed embryonal/fetal (EMEF) and pure fetal histologic subtypes, with the latter exhibiting a more favorable prognosis. Few embryonal histology markers that yield insight into the biologic basis for this prognostic discrepancy exist. CBP/P-300 interacting transactivator 1 (CITED1), a transcriptional co-activator, is expressed in the self-renewing nephron progenitor population of the developing kidney and broadly in its malignant analog, Wilms tumor (WT). In this current study, CITED1 expression is detected in mouse embryonic liver initially on post-coitum day 10.5 (e10.5), begins to taper by e14.5, and is undetectable in e18.5 and adult livers. CITED1 expression is detected in regenerating murine hepatocytes following liver injury by partial hepatectomy and 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Importantly, while CITED1 is undetectable in normal human adult livers, 36 of 41 (87.8%) hepatoblastoma specimens express CITED1, where it is enriched in EMEF specimens compared to specimens of pure fetal histology. CITED1 overexpression in Hep293TT human hepatoblastoma cells induces cellular proliferation and upregulates the Wnt inhibitors Kringle containing transmembrane protein 1 (KREMEN1) and CXXC finger protein 4 (CXXC4). CITED1 mRNA expression correlates with expression of CXXC4 and KREMEN1 in clinical hepatoblastoma specimens. These data show that CITED1 is expressed during a defined time course of liver development and is no longer expressed in the adult liver but is upregulated in regenerating hepatocytes following liver injury. Moreover, as in WT, this embryonic marker is reexpressed in hepatoblastoma and correlates with embryonal histology. These findings identify CITED1 as a novel marker of hepatic progenitor cells that is re-expressed following liver injury and in embryonic liver tumors.
Collapse
|
47
|
Trueb B, Amann R, Gerber SD. Role of FGFRL1 and other FGF signaling proteins in early kidney development. Cell Mol Life Sci 2013; 70:2505-18. [PMID: 23112089 PMCID: PMC11114036 DOI: 10.1007/s00018-012-1189-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/14/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
The mammalian kidney develops from the ureteric bud and the metanephric mesenchyme. In mice, the ureteric bud invades the metanephric mesenchyme at day E10.5 and begins to branch. The tips of the ureteric bud induce the metanephric mesenchyme to condense and form the cap mesenchyme. Some cells of this cap mesenchyme undergo a mesenchymal-to-epithelial transition and differentiate into renal vesicles, which further develop into nephrons. The developing kidney expresses Fibroblast growth factor (Fgf)1, 7, 8, 9, 10, 12 and 20 and Fgf receptors Fgfr1 and Fgfr2. Fgf7 and Fgf10, mainly secreted by the metanephric mesenchyme, bind to Fgfr2b of the ureteric bud and induce branching. Fgfr1 and Fgfr2c are required for formation of the metanephric mesenchyme, however the two receptors can substitute for one another. Fgf8, secreted by renal vesicles, binds to Fgfr1 and supports survival of cells in the nascent nephrons. Fgf9 and Fgf20, expressed in the metanephric mesenchyme, are necessary to maintain survival of progenitor cells in the cortical region of the kidney. FgfrL1 is a novel member of the Fgfr family that lacks the intracellular tyrosine kinase domain. It is expressed in the ureteric bud and all nephrogenic structures. Targeted deletion of FgfrL1 leads to severe kidney dysgenesis due to the lack of renal vesicles. FgfrL1 is known to interact mainly with Fgf8. It is therefore conceivable that FgfrL1 restricts signaling of Fgf8 to the precise location of the nascent nephrons. It might also promote tight adhesion of cells in the condensed metanephric mesenchyme as required for the mesenchymal-to-epithelial transition.
Collapse
Affiliation(s)
- Beat Trueb
- Department of Clinical Research, University of Bern, Murtenstrasse 35, Bern, Switzerland.
| | | | | |
Collapse
|
48
|
Hendry CE, Vanslambrouck JM, Ineson J, Suhaimi N, Takasato M, Rae F, Little MH. Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors. J Am Soc Nephrol 2013; 24:1424-34. [PMID: 23766537 DOI: 10.1681/asn.2012121143] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Direct reprogramming involves the enforced re-expression of key transcription factors to redefine a cellular state. The nephron progenitor population of the embryonic kidney gives rise to all cells within the nephron other than the collecting duct through a mesenchyme-to-epithelial transition, but this population is exhausted around the time of birth. Here, we sought to identify the conditions under which adult proximal tubule cells could be directly transcriptionally reprogrammed to nephron progenitors. Using a combinatorial screen for lineage-instructive transcription factors, we identified a pool of six genes (SIX1, SIX2, OSR1, EYA1, HOXA11, and SNAI2) that activated a network of genes consistent with a cap mesenchyme/nephron progenitor phenotype in the adult proximal tubule (HK2) cell line. Consistent with these reprogrammed cells being nephron progenitors, we observed differential contribution of the reprogrammed population into the Six2(+) nephron progenitor fields of an embryonic kidney explant. Dereplication of the pool suggested that SNAI2 can suppress E-CADHERIN, presumably assisting in the epithelial-to-mesenchymal transition (EMT) required to form nephron progenitors. However, neither TGFβ-induced EMT nor SNAI2 overexpression alone was sufficient to create this phenotype, suggesting that additional factors are required. In conclusion, these results suggest that reinitiation of kidney development from a population of adult cells by generating embryonic progenitors may be feasible, opening the way for additional cellular and bioengineering approaches to renal repair and regeneration.
Collapse
Affiliation(s)
- Caroline E Hendry
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Chai OH, Song CH, Park SK, Kim W, Cho ES. Molecular regulation of kidney development. Anat Cell Biol 2013; 46:19-31. [PMID: 23560233 PMCID: PMC3615609 DOI: 10.5115/acb.2013.46.1.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/25/2013] [Accepted: 02/04/2013] [Indexed: 12/21/2022] Open
Abstract
Genetically engineered mice have provided much information about gene function in the field of developmental biology. Recently, conditional gene targeting using the Cre/loxP system has been developed to control the cell type and timing of the target gene expression. The increase in number of kidney-specific Cre mice allows for the analysis of phenotypes that cannot be addressed by conventional gene targeting. The mammalian kidney is a vital organ that plays a critical homeostatic role in the regulation of body fluid composition and excretion of waste products. The interactions between epithelial and mesenchymal cells are very critical events in the field of developmental biology, especially renal development. Kidney development is a complex process, requiring inductive interactions between epithelial and mesenchymal cells that eventually lead to the growth and differentiation of multiple highly specialized stromal, vascular, and epithelial cell types. Through the use of genetically engineered mouse models, the molecular bases for many of the events in the developing kidney have been identified. Defective morphogenesis may result in clinical phenotypes that range from complete renal agenesis to diseases such as hypertension that exist in the setting of grossly normal kidneys. In this review, we focus on the growth and transcription factors that define kidney progenitor cell populations, initiate ureteric bud branching, induce nephron formation within the metanephric mesenchyme, and differentiate stromal and vascular progenitors in the metanephric mesenchyme.
Collapse
Affiliation(s)
- Ok-Hee Chai
- Department of Anatomy, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | | | | | | | | |
Collapse
|
50
|
Minuth WW, Denk L. Illustration of extensive extracellular matrix at the epithelial-mesenchymal interface within the renal stem/progenitor cell niche. BMC Clin Pathol 2012; 12:16. [PMID: 23009620 PMCID: PMC3511299 DOI: 10.1186/1472-6890-12-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED BACKGROUND Stem/progenitor cells are promising candidates to treat diseased renal parenchyma. However, implanted stem/progenitor cells are exposed to a harmful atmosphere of degenerating parenchyma. To minimize hampering effects after an implantation investigations are in progress to administer these cells within an artificial polyester interstitum supporting survival. Learning from nature the renal stem/progenitor cell niche appears as a valuable model. At this site epithelial stem/progenitor cells within the collecting duct ampulla face mesenchymal stem/progenitor cells. Both cell types do not have close contact but are separated by a wide interstitium. METHODS To analyze extracellular matrix in this particular interstitium, special contrasting for transmission electron microscopy was performed. Kidneys of neonatal rabbits were fixed in solutions containing glutaraldehyde (GA) or in combination with cupromeronic blue, ruthenium red and tannic acid. RESULTS GA revealed a basal lamina at the ampulla and a bright but inconspicuously looking interstitial space. In contrast, GA containing cupromeronic blue exhibits numerous proteoglycan braces lining from the ampulla towards the interstitial space. GA containing ruthenium red or tannic acid demonstrates clouds of extracellular matrix protruding from the basal lamina of the ampulla to the surface of mesenchymal stem/progenitor cells. CONCLUSIONS The actual data show that the interstitium between epithelial and mesenchymal stem/progenitor cells contains much more and up to date unknown extracellular matrix than earlier observed by classical GA fixation.
Collapse
Affiliation(s)
- Will W Minuth
- Department of Molecular and Cellular Anatomy, University of Regensburg, University Street 31, D - 93053, Regensburg, Germany
| | - Lucia Denk
- Department of Molecular and Cellular Anatomy, University of Regensburg, University Street 31, D - 93053, Regensburg, Germany
| |
Collapse
|