1
|
Gazeu A, Collardeau-Frachon S. Practical Approach to Congenital Anomalies of the Kidneys: Focus on Anomalies With Insufficient or Abnormal Nephron Development: Renal Dysplasia, Renal Hypoplasia, and Renal Tubular Dysgenesis. Pediatr Dev Pathol 2024; 27:459-493. [PMID: 39270126 DOI: 10.1177/10935266241239241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) accounts for up to 30% of antenatal congenital anomalies and is the main cause of kidney failure in children worldwide. This review focuses on practical approaches to CAKUT, particularly those with insufficient or abnormal nephron development, such as renal dysplasia, renal hypoplasia, and renal tubular dysgenesis. The review provides insights into the histological features, pathogenesis, mechanisms, etiologies, antenatal and postnatal presentation, management, and prognosis of these anomalies. Differential diagnoses are discussed as several syndromes may include CAKUT as a phenotypic component and renal dysplasia may occur in some ciliopathies, tumor predisposition syndromes, and inborn errors of metabolism. Diagnosis and genetic counseling for CAKUT are challenging, due to the extensive variability in presentation, genetic and phenotypic heterogeneity, and difficulties to assess postnatal lung and renal function on prenatal imaging. The review highlights the importance of perinatal autopsy and pathological findings in surgical specimens to establish the diagnosis and prognosis of CAKUT. The indications and the type of genetic testing are discussed. The aim is to provide essential insights into the practical approaches, diagnostic processes, and genetic considerations offering valuable guidance for pediatric and perinatal pathologists.
Collapse
Affiliation(s)
- Alexia Gazeu
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Sophie Collardeau-Frachon
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
- Société française de Fœtopathologie, Soffoet, Paris, France
| |
Collapse
|
2
|
Del Valle-Peréz M, Mejía-García A, Echeverri-López D, Gallo-Bonilla K, Tejada-Moreno JA, Villegas-Lanau A, Chvatal-Medina M, Restrepo JE, Cuartas-Montoya G, Zapata-Builes W. Urofacial (Ochoa) syndrome with a founder pathogenic variant in the HPSE2 gene: a case report and mutation origin. J Appl Genet 2024:10.1007/s13353-024-00896-7. [PMID: 39150614 DOI: 10.1007/s13353-024-00896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Urofacial syndrome or Ochoa syndrome (UFS or UFOS) is a rare disease characterized by inverted facial expression and bladder dysfunction that was described for the first time in Colombia. It is an autosomal recessive pathology with mutations in the HPSE2 and LRIG2 genes. However, 16% of patients do not have any mutations associated with the syndrome. Despite the importance of neurobiology in its pathophysiology, there are no neurological, neuropsychological, or psychological studies in these patients. A 30-year-old male from Medellín, Colombia, with a significant perinatal history, was diagnosed with grade 4 hydronephrosis on his first ultrasound test. At 4 months of age, symptoms such as hypomimia, lagophthalmos, and recurrent urinary tract infections started to manifest. Imaging studies revealed urinary tract dilatation, vesicoureteral reflux, and a double collector system on his left side, which led to the diagnosis of UFS. Multiple procedures, including vesicostomy, ureterostomy, and enterocystoplasty, were performed. At 20 years of age, he achieved urinary sphincter control. Genetic analysis revealed a founder pathogenic variant, c.1516C > T (p.Arg506Ter), in the HPSE2 gene, which produces a truncated protein that lacks 86 amino acids. This variant is classified as pathogenic according to the ClinVar database for UFS. The mutation age is approximately 260-360 years, and the two alleles share a 7.2-7.4 Mb IBD segment. Moreover, we detected European local ancestry in the IBD segment, which is consistent with a Spanish introduction. Neurological examination, neuropsychological assessment, and psychological testing revealed no abnormalities, except for high stress levels. Clinical analysis of this patient revealed distorted facial expression and detrusor-sphincter dyssynergia, which are typical of patients with UFS. Genetic analysis revealed a pathogenic variant in the HPSE2 gene of European origin and a mutation age of 260-360 years. From a neurological, neuropsychological, and psychological (emotional and personality) perspective, the patient showed no signs or symptoms of clinical interest.
Collapse
Affiliation(s)
- Manuela Del Valle-Peréz
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Alejandro Mejía-García
- Grupo de Genética Molecular (GENMOL), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Antioquia, Medellín, Colombia
| | - Dayana Echeverri-López
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Katherine Gallo-Bonilla
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Johanna A Tejada-Moreno
- Grupo de Genética Molecular (GENMOL), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Antioquia, Medellín, Colombia
| | - Andrés Villegas-Lanau
- Grupo de Genética Molecular (GENMOL), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Antioquia, Medellín, Colombia
| | - Mateo Chvatal-Medina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Jorge E Restrepo
- Grupo OBSERVATOS, Facultad de Educación Y Ciencias Sociales, Tecnológico de Antioquia - Institución Universitaria, Medellín, Colombia
| | - Gina Cuartas-Montoya
- Facultad de Psicología, Grupo Neurociencia Y Cognición, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Wildeman Zapata-Builes
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
3
|
Cesur Baltacı HN, Taşdelen E, Topçu V, Eminoğlu FT, Karabulut HG. Dual diagnosis of Ochoa syndrome and Niemann-Pick disease type B in a consanguineous family. J Pediatr Endocrinol Metab 2021; 34:653-657. [PMID: 33647194 DOI: 10.1515/jpem-2020-0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/25/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Ochoa syndrome (UFS1; Urofacial syndrome-1) is a very rare autosomal recessive disorder caused by mutations in the HPSE2 gene that results bladder voiding dysfunction and somatic motor neuropathy affecting the VIIth cranial nerve. Niemann-Pick disease is a rare autosomal recessive lysosomal storage disorder with systemic involvement resulting from sphingomyelinase deficiency and generally occurs via mutation in the sphingomyelin phosphodiesterase-1 gene (SMPD1). CASE PRESENTATION Here, we report a 6-year-old girl with symptoms such as urinary incontinence, recurrent urinary tract infections, peculiar facial expression, mainly when smiling, hypertelorism, constipation, incomplete closure of eyelids during sleep and splenomegaly. Homozygote mutations in two different genes responsible for two distinct syndromes were detected in the patient. Homozygous NM_000543.5:c.502G>A (p.Gly168Arg) mutation was found in the SMPD1 gene causing Niemann-Pick disease. In addition, some of the clinical features were due to a novel homozygous mutation identified in the HPSE2 gene, NM_021828.5:c.755delA (p.Lys252SerfsTer23). CONCLUSIONS Here, we discuss about the importance of considering dual diagnosis in societies where consanguineous marriages are common. Accurate diagnosis of the patient is very important for the management of the diseases and prevention of complications.
Collapse
Affiliation(s)
| | - Elifcan Taşdelen
- Department of Medical Genetics, School of Medicine, Ankara University, Ankara, Turkey
| | - Vehap Topçu
- Department of Medical Genetics, Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| | - Fatma Tuba Eminoğlu
- Department of Pediatric Metabolism, School of Medicine, Ankara University, Ankara, Turkey
| | | |
Collapse
|
4
|
Urofacial (ochoa) syndrome: A literature review. J Pediatr Urol 2021; 17:246-254. [PMID: 33558177 DOI: 10.1016/j.jpurol.2021.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/26/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022]
Abstract
The Urofacial or Ochoa Syndrome (UFS or UFOS) is characterized by an inverted facial expression (those affected seem crying while smiling) associated with lower urinary tract dysfunction without evident obstructive or neurological cause. It is associated with autosomal recessive inheritance mutations in the HPSE2 gene, located at 10q23-q24, and the LRGI2 gene, located in 1p13.2; however, in up to 16% of patients, no associated mutations have been found. Recent evidence suggests that these genes are critical to an adequate neurological development to the lower urinary tract and that the origin of the disease seems to be due to peripheral neuropathy. There is clinical variability among patients with UFS and not all present the classic two components, and it has even been genetically confirmed in patients with a prior diagnosis of Hinman Syndrome or other bladder dysfunctions. Also, the presence of nocturnal lagophthalmos in these patients was recently described. Early recognition and timely diagnosis are critical to preventing complications such as urinary tract infections or chronic kidney disease. Next, the history of Urofacial Syndrome, the advances in its pathophysiology, and its clinical characteristics is reviewed.
Collapse
|
5
|
Pinhal MAS, Melo CM, Nader HB. The Good and Bad Sides of Heparanase-1 and Heparanase-2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:821-845. [PMID: 32274740 DOI: 10.1007/978-3-030-34521-1_36] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In this chapter, we will emphasize the importance of heparan sulfate proteoglycans (HSPG) in controlling various physiological and pathological molecular mechanisms and discuss how the heparanase enzyme can modulate the effects triggered by HSPG. Additionally, we will also navigate about the existing knowledge of the possible role of heparanase-2 in biological events. Heparan sulfate is widely distributed and evolutionarily conserved, evidencing its vital importance in cell development and functions such as cell proliferation, migration, adhesion, differentiation, and angiogenesis. During remodeling of the extracellular matrix, the breakdown of heparan sulfate by heparanase results in the release of molecules containing anchored glycosaminoglycan chains of great interest in heparanase-mediated cell signaling pathways in various physiological states, tumor development, inflammation, and other diseases. Taken together, it appears that heparanase plays a key role in the maintenance of the pathology of cancer and inflammatory diseases and is a potential target for anti-cancer therapies. Therefore, heparanase inhibitors are currently being examined in clinical trials as novel cancer therapeutics. Heparanase-2 has no enzymatic activity, displays higher affinity for heparan sulfate and the coding region alignment shows 40% identity with the heparanase gene. Heparanase-2 plays an important role in embryogenic development however its mode of action and biological function remain to be elucidated. Heparanase-2 functions as an inhibitor of the heparanase-1 enzyme and also inhibits neovascularization mediated by VEGF. The HPSE2 gene is repressed by the Polycomb complex, together suggesting a role as a tumor suppressor.
Collapse
Affiliation(s)
| | - Carina Mucciolo Melo
- Biochemistry Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Helena Bonciani Nader
- Biochemistry Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Das S, Gordián-Vélez WJ, Ledebur HC, Mourkioti F, Rompolas P, Chen HI, Serruya MD, Cullen DK. Innervation: the missing link for biofabricated tissues and organs. NPJ Regen Med 2020; 5:11. [PMID: 32550009 PMCID: PMC7275031 DOI: 10.1038/s41536-020-0096-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Innervation plays a pivotal role as a driver of tissue and organ development as well as a means for their functional control and modulation. Therefore, innervation should be carefully considered throughout the process of biofabrication of engineered tissues and organs. Unfortunately, innervation has generally been overlooked in most non-neural tissue engineering applications, in part due to the intrinsic complexity of building organs containing heterogeneous native cell types and structures. To achieve proper innervation of engineered tissues and organs, specific host axon populations typically need to be precisely driven to appropriate location(s) within the construct, often over long distances. As such, neural tissue engineering and/or axon guidance strategies should be a necessary adjunct to most organogenesis endeavors across multiple tissue and organ systems. To address this challenge, our team is actively building axon-based "living scaffolds" that may physically wire in during organ development in bioreactors and/or serve as a substrate to effectively drive targeted long-distance growth and integration of host axons after implantation. This article reviews the neuroanatomy and the role of innervation in the functional regulation of cardiac, skeletal, and smooth muscle tissue and highlights potential strategies to promote innervation of biofabricated engineered muscles, as well as the use of "living scaffolds" in this endeavor for both in vitro and in vivo applications. We assert that innervation should be included as a necessary component for tissue and organ biofabrication, and that strategies to orchestrate host axonal integration are advantageous to ensure proper function, tolerance, assimilation, and bio-regulation with the recipient post-implant.
Collapse
Affiliation(s)
- Suradip Das
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Wisberty J. Gordián-Vélez
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | | | - Foteini Mourkioti
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Panteleimon Rompolas
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Mijail D. Serruya
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
- Axonova Medical, LLC., Philadelphia, PA USA
| |
Collapse
|
7
|
Abstract
From 1999-2003, Oxford GlycoSciences (OGS) ran a successful drug discovery oncology programme to discover small molecule inhibitors of the Heparanase I enzyme (HPSE1). HPSE1 at the time was widely regarded as being the sole mammalian enzyme capable of cleaving Heparan Sulfate (HS). A second family protein member however called Heparanase 2 (HPSE2) including splice forms was subsequently discovered by PCR analysis based on EST sequences. HPSE2 was found to be expressed mainly in smooth muscle containing tissues, particularly bladder and brain. HPSE2 is poorly expressed in haematopoietic cells and placenta which contrasts with the HPSE1 distribution pattern. HPSE2 binds more strongly to HS than HPSE1 and is believed to out compete for substrate binding and so in effect act as a tumor suppressor. So far, all attempts to show specific HPSE2 endoglycosidase activity against HS have failed suggesting that the enzyme may act as a pseudoenzyme that has evolved to retain only certain non-catalytic heparanase like functions. A breakthrough in the elucidation of functional roles for HPSE2 came about in 2010 with the linkage of HPSE2 gene deletions and mutations to the development of Ochoa/Urofacial Syndrome. Future work into the mechanistic analysis of HPSE2's role in signalling, tumor suppression and bladder/nerve functioning are needed to fully explore the role of this family of proteins.
Collapse
|
8
|
Vlodavsky I, Sanderson RD, Ilan N. Forty Years of Basic and Translational Heparanase Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:3-59. [PMID: 32274705 PMCID: PMC7142273 DOI: 10.1007/978-3-030-34521-1_1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes key developments in the heparanase field obtained 20 years prior to cloning of the HPSE gene and nearly 20 years after its cloning. Of the numerous publications and review articles focusing on heparanase, we have selected those that best reflect the progression in the field as well as those we regard important accomplishments with preference to studies performed by scientists and groups that contributed to this book. Apart from a general 'introduction' and 'concluding remarks', the abstracts of these studies are presented essentially as published along the years. We apologize for not being objective and not being able to include some of the most relevant abstracts and references, due to space limitation. Heparanase research can be divided into two eras. The first, initiated around 1975, dealt with identifying the enzyme, establishing the relevant assay systems and investigating its biological activities and significance in cancer and other pathologies. Studies performed during the first area are briefly introduced in a layman style followed by the relevant abstracts presented chronologically, essentially as appears in PubMed. The second era started in 1999 when the heparanase gene was independently cloned by 4 research groups [1-4]. As expected, cloning of the heparanase gene boosted heparanase research by virtue of the readily available recombinant enzyme, molecular probes, and anti-heparanase antibodies. Studies performed during the second area are briefly introduced followed by selected abstracts of key findings, arranged according to specific topics.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| |
Collapse
|
9
|
Yılmaz AÇ, Buyukkaragoz B, Kivilcim S, Tayfur AC, Gunbey S. An adolescent boy progressing insidiously to end-stage renal disease: Answers. Pediatr Nephrol 2018. [PMID: 28631041 DOI: 10.1007/s00467-017-3700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hinman syndrome was a non-neurogenic neurogenic bladder and the most severe form of dysfunctional voiding disorder. The bladder-sphincter discoordination causes damage to the bladder and upper urinary tract if it is not diagnosed early and treated adequately. This case emphasizes the following important message: nighttime wetting is not a benign condition in every child. Parental awareness should be raised about voiding disorders, as it may be possible to prevent important renal diseases such as Hinman syndrome.
Collapse
Affiliation(s)
- Aysun Çaltık Yılmaz
- Department of Pediatric Nephrology, Ankara Kecioren Training and Research Hospital, Keçiören, Turkey.
| | - Bahar Buyukkaragoz
- Department of Pediatric Nephrology, Ankara Kecioren Training and Research Hospital, Keçiören, Turkey
| | - Selcuk Kivilcim
- Department of Pediatric Nephrology, Ankara Kecioren Training and Research Hospital, Keçiören, Turkey
| | - Aslı Celebi Tayfur
- Department of Pediatric Nephrology, Ankara Kecioren Training and Research Hospital, Keçiören, Turkey
| | - Sacit Gunbey
- Department of Pediatric Nephrology, Ankara Kecioren Training and Research Hospital, Keçiören, Turkey
| |
Collapse
|
10
|
Dysfunctional voiding: the importance of non-invasive urodynamics in diagnosis and treatment. Pediatr Nephrol 2018; 33:381-394. [PMID: 28567611 PMCID: PMC5799351 DOI: 10.1007/s00467-017-3679-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 10/31/2022]
Abstract
In Dysfunctional voiding, failure of the external sphincter-pelvic floor complex to relax during micturition results in bladder outflow obstruction with a spectrum of presentation from more benign lower urinary tract dysfunction including recurrent urinary tract infections, to significant upper tract pathology and end-stage renal failure. There is no underlying neurological or anatomical cause and the condition is postulated to be a largely learnt behavior. Diagnosis relies on non-invasive urodynamics and in particular uroflowmetry, plus or minus EMG, which is also used in biofeedback, the mainstay of treatment. The etiology, presentation, diagnosis, and treatment with particular emphasis on non-invasive urodynamics are covered.
Collapse
|
11
|
|
12
|
Vlodavsky I, Gross-Cohen M, Weissmann M, Ilan N, Sanderson RD. Opposing Functions of Heparanase-1 and Heparanase-2 in Cancer Progression. Trends Biochem Sci 2017; 43:18-31. [PMID: 29162390 DOI: 10.1016/j.tibs.2017.10.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022]
Abstract
Heparanase, the sole heparan sulfate (HS)-degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, metastasis, angiogenesis, and inflammation. Heparanase accomplishes this by degrading HS and thereby regulating the bioavailability of heparin-binding proteins; priming the tumor microenvironment; mediating tumor-host crosstalk; and inducing gene transcription, signaling pathways, exosome formation, and autophagy that together promote tumor cell performance and chemoresistance. By contrast, heparanase-2, a close homolog of heparanase, lacks enzymatic activity, inhibits heparanase activity, and regulates selected genes that promote normal differentiation, endoplasmic reticulum stress, tumor fibrosis, and apoptosis, together resulting in tumor suppression. The emerging premise is that heparanase is a master regulator of the aggressive phenotype of cancer, while heparanase-2 functions as a tumor suppressor.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.
| | - Miriam Gross-Cohen
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Marina Weissmann
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Ralph D Sanderson
- University of Alabama at Birmingham, Department of Pathology, Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Wiese CB, Deal KK, Ireland SJ, Cantrell VA, Southard-Smith EM. Migration pathways of sacral neural crest during development of lower urogenital tract innervation. Dev Biol 2017; 429:356-369. [PMID: 28449850 PMCID: PMC5572097 DOI: 10.1016/j.ydbio.2017.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022]
Abstract
The migration and fate of cranial and vagal neural crest-derived progenitor cells (NCPCs) have been extensively studied; however, much less is known about sacral NCPCs particularly in regard to their distribution in the urogenital system. To construct a spatiotemporal map of NCPC migration pathways into the developing lower urinary tract, we utilized the Sox10-H2BVenus transgene to visualize NCPCs expressing Sox10. Our aim was to define the relationship of Sox10-expressing NCPCs relative to bladder innervation, smooth muscle differentiation, and vascularization through fetal development into adulthood. Sacral NCPC migration is a highly regimented, specifically timed process, with several potential regulatory mileposts. Neuronal differentiation occurs concomitantly with sacral NCPC migration, and neuronal cell bodies are present even before the pelvic ganglia coalesce. Sacral NCPCs reside within the pelvic ganglia anlagen through 13.5 days post coitum (dpc), after which they begin streaming into the bladder body in progressive waves. Smooth muscle differentiation and vascularization of the bladder initiate prior to innervation and appear to be independent processes. In adult bladder, the majority of Sox10+ cells express the glial marker S100β, consistent with Sox10 being a glial marker in other tissues. However, rare Sox10+ NCPCs are seen in close proximity to blood vessels and not all are S100β+, suggesting either glial heterogeneity or a potential nonglial role for Sox10+ cells along vasculature. Taken together, the developmental atlas of Sox10+ NCPC migration and distribution profile of these cells in adult bladder provided here will serve as a roadmap for future investigation in mouse models of lower urinary tract dysfunction.
Collapse
Affiliation(s)
- Carrie B Wiese
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - Karen K Deal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - Sara J Ireland
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - V Ashley Cantrell
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States.
| |
Collapse
|
14
|
Ledda F, Paratcha G. Assembly of Neuronal Connectivity by Neurotrophic Factors and Leucine-Rich Repeat Proteins. Front Cell Neurosci 2016; 10:199. [PMID: 27555809 PMCID: PMC4977320 DOI: 10.3389/fncel.2016.00199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/29/2016] [Indexed: 11/13/2022] Open
Abstract
Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR) transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine-University of Buenos Aires (UBA) Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine-University of Buenos Aires (UBA) Buenos Aires, Argentina
| |
Collapse
|
15
|
Gross-Cohen M, Feld S, Doweck I, Neufeld G, Hasson P, Arvatz G, Barash U, Naroditsky I, Ilan N, Vlodavsky I. Heparanase 2 Attenuates Head and Neck Tumor Vascularity and Growth. Cancer Res 2016; 76:2791-801. [PMID: 27013193 DOI: 10.1158/0008-5472.can-15-1975] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 02/26/2016] [Indexed: 12/18/2022]
Abstract
The endoglycosidase heparanase specifically cleaves the heparan sulfate (HS) side chains on proteoglycans, an activity that has been implicated strongly in tumor metastasis and angiogenesis. Heparanase-2 (Hpa2) is a close homolog of heparanase that lacks intrinsic HS-degrading activity but retains the capacity to bind HS with high affinity. In head and neck cancer patients, Hpa2 expression was markedly elevated, correlating with prolonged time to disease recurrence and inversely correlating with tumor cell dissemination to regional lymph nodes, suggesting that Hpa2 functions as a tumor suppressor. The molecular mechanism associated with favorable prognosis following Hpa2 induction is unclear. Here we provide evidence that Hpa2 overexpression in head and neck cancer cells markedly reduces tumor growth. Restrained tumor growth was associated with a prominent decrease in tumor vascularity (blood and lymph vessels), likely due to reduced Id1 expression, a transcription factor highly implicated in VEGF-A and VEGF-C gene regulation. We also noted that tumors produced by Hpa2-overexpressing cells are abundantly decorated with stromal cells and collagen deposition, correlating with a marked increase in lysyl oxidase expression. Notably, heparanase enzymatic activity was unimpaired in cells overexpressing Hpa2, suggesting that reduced tumor growth is not caused by heparanase regulation. Moreover, growth of tumor xenografts by Hpa2-overexpressing cells was unaffected by administration of a mAb that targets the heparin-binding domain of Hpa2, implying that Hpa2 function does not rely on heparanase or heparan sulfate. Cancer Res; 76(9); 2791-801. ©2016 AACR.
Collapse
Affiliation(s)
- Miriam Gross-Cohen
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sari Feld
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ilana Doweck
- Department of Otolaryngology, Head and Neck Surgery, Carmel Medical Center, Haifa, Israel
| | - Gera Neufeld
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Peleg Hasson
- Department of Anatomy and Cell Biology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gil Arvatz
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Uri Barash
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inna Naroditsky
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
16
|
Roberts NA, Hilton EN, Woolf AS. From gene discovery to new biological mechanisms: heparanases and congenital urinary bladder disease. Nephrol Dial Transplant 2015; 31:534-40. [PMID: 26315301 PMCID: PMC4805131 DOI: 10.1093/ndt/gfv309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/29/2015] [Indexed: 12/29/2022] Open
Abstract
We present a scientific investigation into the pathogenesis of a urinary bladder disease. The disease in question is called urofacial syndrome (UFS), a congenital condition inherited in an autosomal recessive manner. UFS features incomplete urinary bladder emptying and vesicoureteric reflux, with a high risk of recurrent urosepsis and end-stage renal disease. The story starts from a human genomic perspective, then proceeds through experiments that seek to determine the roles of the implicated molecules in embryonic frogs and newborn mice. A future aim would be to use such biological knowledge to intelligently choose novel therapies for UFS. We focus on heparanase proteins and the peripheral nervous system, molecules and tissues that appear to be key players in the pathogenesis of UFS and therefore must also be critical for functional differentiation of healthy bladders. These considerations allow the envisioning of novel biological treatments, although the potential difficulties of targeting the developing bladder in vivo should not be underestimated.
Collapse
Affiliation(s)
- Neil A Roberts
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK Royal Manchester Children's Hospital, Manchester, UK
| | - Emma N Hilton
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK Royal Manchester Children's Hospital, Manchester, UK
| | - Adrian S Woolf
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK Royal Manchester Children's Hospital, Manchester, UK
| |
Collapse
|
17
|
Guo C, Kaneko S, Sun Y, Huang Y, Vlodavsky I, Li X, Li ZR, Li X. A mouse model of urofacial syndrome with dysfunctional urination. Hum Mol Genet 2014; 24:1991-9. [PMID: 25510506 DOI: 10.1093/hmg/ddu613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Urofacial syndrome (UFS) is an autosomal recessive disease with severe dysfunctional urination including urinary incontinence (UI). Biallelic mutations of HPSE2 are discovered from UFS patients, suggesting that HPSE2 is a candidate disease gene. Here, we show that deletion of Hpse2 is sufficient to cause the UFS-like phenotype in mice. Hpse2 knockout mutants display a distended bladder (megacystis) phenotype and abnormal voiding behavior similar to that found in patients. While Hpse2 is largely dispensable for detrusor smooth muscle and urothelial cell fate determination, the mutants have significantly lower rates of cell proliferation than wild-type littermate controls. All Hpse2 mutants have a growth retardation phenotype and die within a month after birth. Comprehensive blood chemistry and urinalysis indicate that Hpse2 mutants have renal dysfunction and malnutrition. We provide evidence that transforming growth factor beta (Tgfβ) signaling is attenuated at birth. However, Tgfβ activity is significantly enhanced at later stages when the urological phenotype is severe, and the mutant bladders have accumulated excessive amount of fibrotic tissue. Together, these findings strongly suggest that Hpse2 is a causative gene of human UFS and further uncover unexpected roles of Hpse2 in bladder physiology, tissue remodeling and Tgfβ signaling.
Collapse
Affiliation(s)
- Chunming Guo
- Departments of Urology and Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Satoshi Kaneko
- Departments of Urology and Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Ye Sun
- Departments of Urology and Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Yichen Huang
- Departments of Urology and Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel and
| | - Xiaokun Li
- Department of Pediatric Surgery, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Zhong-Rong Li
- Department of Pediatric Surgery, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xue Li
- Departments of Urology and Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA, Department of Surgery, Harvard Medical School, Boston, MA, USA,
| |
Collapse
|
18
|
Roberts NA, Woolf AS, Stuart HM, Thuret R, McKenzie EA, Newman WG, Hilton EN. Heparanase 2, mutated in urofacial syndrome, mediates peripheral neural development in Xenopus. Hum Mol Genet 2014; 23:4302-14. [PMID: 24691552 PMCID: PMC4103677 DOI: 10.1093/hmg/ddu147] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Urofacial syndrome (UFS; previously Ochoa syndrome) is an autosomal recessive disease characterized by incomplete bladder emptying during micturition. This is associated with a dyssynergia in which the urethral walls contract at the same time as the detrusor smooth muscle in the body of the bladder. UFS is also characterized by an abnormal facial expression upon smiling, and bilateral weakness in the distribution of the facial nerve has been reported. Biallelic mutations in HPSE2 occur in UFS. This gene encodes heparanase 2, a protein which inhibits the activity of heparanase. Here, we demonstrate, for the first time, an in vivo developmental role for heparanase 2. We identified the Xenopus orthologue of heparanase 2 and showed that the protein is localized to the embryonic ventrolateral neural tube where motor neurons arise. Morpholino-induced loss of heparanase 2 caused embryonic skeletal muscle paralysis, and morphant motor neurons had aberrant morphology including less linear paths and less compactly-bundled axons than normal. Biochemical analyses demonstrated that loss of heparanase 2 led to upregulation of fibroblast growth factor 2/phosphorylated extracellular signal-related kinase signalling and to alterations in levels of transcripts encoding neural- and muscle-associated molecules. Thus, a key role of heparanase 2 is to buffer growth factor signalling in motor neuron development. These results shed light on the pathogenic mechanisms underpinning the clinical features of UFS and support the contention that congenital peripheral neuropathy is a key feature of this disorder.
Collapse
Affiliation(s)
- Neil A Roberts
- Centre for Genomic Medicine and Centre for Paediatrics and Child Health, Institute of Human Development, Faculty of Medical and Human Sciences
| | - Adrian S Woolf
- Centre for Paediatrics and Child Health, Institute of Human Development, Faculty of Medical and Human Sciences
| | | | | | - Edward A McKenzie
- Protein Expression Facility, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | - Emma N Hilton
- Centre for Genomic Medicine and Centre for Paediatrics and Child Health, Institute of Human Development, Faculty of Medical and Human Sciences,
| |
Collapse
|