1
|
Martínez-Heredia L, Canelo-Moreno JM, García-Fontana B, Muñoz-Torres M. Non-Classical Effects of FGF23: Molecular and Clinical Features. Int J Mol Sci 2024; 25:4875. [PMID: 38732094 PMCID: PMC11084844 DOI: 10.3390/ijms25094875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This article reviews the role of fibroblast growth factor 23 (FGF23) protein in phosphate metabolism, highlighting its regulation of vitamin D, parathyroid hormone, and bone metabolism. Although it was traditionally thought that phosphate-calcium homeostasis was controlled exclusively by parathyroid hormone (PTH) and calcitriol, pathophysiological studies revealed the influence of FGF23. This protein, expressed mainly in bone, inhibits the renal reabsorption of phosphate and calcitriol formation, mediated by the α-klotho co-receptor. In addition to its role in phosphate metabolism, FGF23 exhibits pleiotropic effects in non-renal systems such as the cardiovascular, immune, and metabolic systems, including the regulation of gene expression and cardiac fibrosis. Although it has been proposed as a biomarker and therapeutic target, the inhibition of FGF23 poses challenges due to its potential side effects. However, the approval of drugs such as burosumab represents a milestone in the treatment of FGF23-related diseases.
Collapse
Affiliation(s)
- Luis Martínez-Heredia
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Manuel Muñoz-Torres
- Instituto de Investigación Biosanitaria de Granada, 18014 Granada, Spain;
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
2
|
Frank BS, Nandy D, Khailova L, Mitchell MB, Morgan GJ, Twite M, DiMaria MV, Davidson JA. Circulating biomarkers of extracellular matrix dysregulation are associated with adverse post-stage 2 outcomes in infants with single ventricle heart disease. Sci Rep 2023; 13:16318. [PMID: 37770592 PMCID: PMC10539532 DOI: 10.1038/s41598-023-43562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023] Open
Abstract
Children with single ventricle heart disease (SVHD) experience morbidity due to inadequate pulmonary blood flow. Using proteomic screening, our group previously identified members of the matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinase (TIMP), and fibroblast growth factor (FGF) families as potentially dysregulated in SVHD. No prior study has taken a targeted approach to mapping circulating levels of these protein families or their relationship to pulmonary vascular outcomes in SVHD. We performed a prospective cohort study of 70 SVHD infants pre-Stage 2 palliation and 24 healthy controls. We report targeted serum quantification of 39 proteins in the MMP, TIMP, and FGF families using the SomaScan platform. Clinical variables were extracted from the medical record. Twenty of 39 tested proteins (7/14 MMPs, 2/4 TIMPs, and 11/21 FGFs) differed between cases and controls. On single variable testing, 6 proteins and no clinical covariates were associated with both post-Stage 2 hypoxemia and length of stay. Multiple-protein modeling identified increased circulating MMP 7 and MMP 17, and decreased circulating MMP 8 and FGFR2 as most associated with post-Stage 2 hypoxemia; increased MMP 7 and TIMP 4 and decreased circulating MMP 1 and MMP 8 were most associated with post-operation length of stay. The MMP, TIMP, and FGF families are altered in SVHD. Pre-Stage 2 imbalance of extracellular matrix (ECM) proteins-increased MMP 7 and decreased MMP 8-was associated with multiple adverse post-operation outcomes. Maintenance of the ECM may be an important pathophysiologic driver of Stage 2 readiness in SVHD.
Collapse
Affiliation(s)
- Benjamin S Frank
- Section of Cardiology, University of Colorado Department of Pediatrics, 13123 E. 16th Ave, Box B100, Aurora, CO, 80045, USA.
| | - Debmalya Nandy
- Center for Innovative Design and Analysis, University of Colorado Department of Biostatistics and Informatics, Denver, CO, USA
| | - Ludmila Khailova
- Section of Cardiology, University of Colorado Department of Pediatrics, 13123 E. 16th Ave, Box B100, Aurora, CO, 80045, USA
| | - Max B Mitchell
- University of Colorado Department of Surgery, Denver, CO, USA
| | - Gareth J Morgan
- Section of Cardiology, University of Colorado Department of Pediatrics, 13123 E. 16th Ave, Box B100, Aurora, CO, 80045, USA
| | - Mark Twite
- University of Colorado Department of Anesthesiology, Denver, CO, USA
| | - Michael V DiMaria
- Section of Cardiology, University of Colorado Department of Pediatrics, 13123 E. 16th Ave, Box B100, Aurora, CO, 80045, USA
| | - Jesse A Davidson
- Section of Cardiology, University of Colorado Department of Pediatrics, 13123 E. 16th Ave, Box B100, Aurora, CO, 80045, USA
| |
Collapse
|
3
|
Pajaziti B, Yosy K, Steinberg OV, Düfer M. FGF-23 protects cell function and viability in murine pancreatic islets challenged by glucolipotoxicity. Pflugers Arch 2023; 475:309-322. [PMID: 36437429 PMCID: PMC9908675 DOI: 10.1007/s00424-022-02772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022]
Abstract
The fibroblast growth factor FGF-23 is a member of the FGF-15/19 subfamily with hormonal functions. Besides its well-known role for bone mineralization, FGF-23 is discussed as a marker for cardiovascular disease. We investigated whether FGF-23 has any effects on the endocrine pancreas of mice by determining insulin secretion, electrical activity, intracellular Ca2+, and apoptosis. Acute application of FGF-23 (10 to 500 ng/ml, i.e., 0.4 to 20 nM) does not affect insulin release of murine islets, while prolonged exposure leads to a 21% decrease in glucose-stimulated secretion. The present study shows for the first time that FGF-23 (100 or 500 ng/ml) partially protects against impairment of insulin secretion and apoptotic cell death induced by glucolipotoxicity. The reduction of apoptosis by FGF-23 is approximately twofold higher compared to FGF-21 or FGF-15/19. In contrast to FGF-23 and FGF-21, FGF-15/19 is clearly pro-apoptotic under control conditions. The beneficial effect of FGF-23 against glucolipotoxicity involves interactions with the stimulus-secretion cascade of beta-cells. Electrical activity and the rise in the cytosolic Ca2+ concentration of islets in response to acute glucose stimulation increase after glucolipotoxic culture (48 h). Co-culture with FGF-23 further elevates the glucose-mediated effects on both parameters. Protection against apoptosis and glucolipotoxic impairment of insulin release by FGF-23 is prevented, when calcineurin is inhibited by tacrolimus or when c-Jun N-terminal kinase (JNK) is blocked by SP600125. In conclusion, our data suggest that FGF-23 can activate compensatory mechanisms to maintain beta-cell function and integrity of islets of Langerhans during excessive glucose and lipid supply.
Collapse
Affiliation(s)
- Betina Pajaziti
- Institute of Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, University of Münster, Corrensstraße, 48, 48149, Münster, Germany
| | - Kenneth Yosy
- Institute of Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, University of Münster, Corrensstraße, 48, 48149, Münster, Germany
| | - Olga V Steinberg
- Institute of Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, University of Münster, Corrensstraße, 48, 48149, Münster, Germany
| | - Martina Düfer
- Institute of Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, University of Münster, Corrensstraße, 48, 48149, Münster, Germany.
| |
Collapse
|
4
|
Jung J, Lee KH, Park E, Park YS, Kang HG, Ahn YH, Ha IS, Kim SH, Cho H, Han KH, Cho MH, Choi HJ, Lee JH, Shin JI. Mineral bone disorder in children with chronic kidney disease: Data from the KNOW-Ped CKD (Korean cohort study for outcome in patients with pediatric chronic kidney disease) study. Front Pediatr 2023; 11:994979. [PMID: 36873652 PMCID: PMC9982157 DOI: 10.3389/fped.2023.994979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Children with chronic kidney disease (CKD) are at high risk of mineral bone disorder (MBD), which leads to fractures, growth retardation, and cardiovascular disease. We aimed to comprehensively understand the relationship between renal function and factors related to MBD and evaluate the prevalence and distribution characteristics of MBD, specifically among Korean patients from the KNOW-PedCKD cohort. METHODS From the baseline data of the KNOW-PedCKD cohort, we examined the prevalence and distribution of MBD in 431 Korean pediatric CKD patients, including the level of corrected total calcium, serum phosphate, serum alkaline phosphatase, serum intact parathyroid hormone (iPTH), fibroblast growth factor 23 (FGF-23), serum vitamin D, fractional excretion of phosphate (FEP), and bone densitometry Z-scores. RESULTS The median serum calcium level remained relatively normal regardless of the CKD stage. The levels of 1,25-dihydroxy vitamin D, urine calcium-to-creatinine ratio, and bone densitometry Z-score significantly decreased with advancing CKD stage, while those of serum phosphate, FGF-23, and FEP significantly increased with CKD stage. The prevalence of hyperphosphatemia (17.4%, 23.7%, and 41.2% from CKD stages 3b, 4, and 5, respectively) and hyperparathyroidism (37.3%, 57.4%, 55.3%, and 52.9% from CKD stages 3a, 3b, 4, and 5, respectively) significantly increased with the CKD stage. Prescriptions of medications, such as calcium supplements (39.1%, 42.1%, 82.4%), phosphate binders (39.1%, 43.4%, 82.4%), and active vitamin D (21.7%, 44.7%, and 64.7%) significantly increased with CKD stage 3b, 4, and 5, respectively. CONCLUSIONS The results demonstrated the prevalence and relationship of abnormal mineral metabolism and bone growth according to CKD stage in Korean pediatric CKD patients for the first time.
Collapse
Affiliation(s)
- Jiwon Jung
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University, College of Medicine, Seoul, Republic of Korea
| | - Keum Hwa Lee
- Department of Pediatrics, Severance Children's Hospital, College of Medicine, University of Yonsei, Seoul, Republic of Korea
| | - Eujin Park
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Young Seo Park
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University, College of Medicine, Seoul, Republic of Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University Children's Hospital, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University Children's Hospital, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University Children's Hospital, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seong Heon Kim
- Department of Pediatrics, Seoul National University Children's Hospital, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Heeyeon Cho
- Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyoung Hee Han
- Department of Pediatrics, School of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Min Hyun Cho
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun Jin Choi
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Joo Hoon Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University, College of Medicine, Seoul, Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics, Severance Children's Hospital, College of Medicine, University of Yonsei, Seoul, Republic of Korea.,Institute of Kidney Disease Research, College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Yuan D, Li J, Guo M, Yang Q, Huang J, Nie J, Li R, Li Q. Correlation study of FGF23/D-serine in maintenance hemodialysis patients with combined hearing impairment. PLoS One 2023; 18:e0280378. [PMID: 36649363 PMCID: PMC9844913 DOI: 10.1371/journal.pone.0280378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Recent studies have reported an association between chronic renal failure and hearing impairment. Yet, the exact mechanism of action is still not fully understood. In this study, we investigated the expression of fibroblast growth factor 23 (FGF23) and D-serine in maintenance hemodialysis (MHD) patients with end-stage renal disease (ESRD) complicated with hearing impairment and further investigated the correlation between FGF23/D-serine and hearing impairment. METHODS A total of 90 subjects, including 30 MHD patients complicated with hearing impairment, 30 MHD patients with normal hearing, and 30 controls, were included in this case-control study. Relevant data were obtained by questionnaire survey, audiometric test, enzyme-linked immunosorbent assay (ELISA) to determine FGF23 level, and high-performance liquid chromatography to determine D-serine level. RESULTS MHD patients showed abnormally high expression of FGF23 and D-serine, where FGF23 and D-serine levels were significantly higher in the group with hearing impairment than in the group with normal hearing and normal controls (all P<0.01). Also, elevated FGF23 and D-serine were identified as risk factors for hearing impairment in ESRD, with ORs of 16.54 (95%CI, 2.75-99.55) and 15.22 (95%CI, 2.59-89.51), respectively. Further Person correlation analysis showed a moderate positive correlation between FGF23 and D-serine (r = 0.683, P<0.001). CONCLUSION This study provides potential biomarkers for the early detection of hearing impairment complicated by chronic renal failure, and the reduction of FGF23/D-serine may provide a potential target for the treatment of hearing impairment complicated by chronic renal failure.
Collapse
Affiliation(s)
- Dunlu Yuan
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiaqing Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Guo
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing Yang
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingjing Huang
- Department of Medical Record, The Third People’s Hospital of Kunming, Kunming, China
| | - Jingwen Nie
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruomei Li
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- * E-mail:
| |
Collapse
|
6
|
Castellano-Martinez A, Acuñas-Soto S, Roldan-Cano V, Rodriguez-Gonzalez M. Left Ventricular Hypertrophy in Patients with X-Linked Hypophosphataemia. J Clin Res Pediatr Endocrinol 2022; 14:344-349. [PMID: 33783172 PMCID: PMC9422913 DOI: 10.4274/jcrpe.galenos.2021.2020.0287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
X-linked hypophosphatemia (XLH) is a rare genetic disorder with X-linked dominant inheritance. Mutations in the PHEX gene increase fibroblast growth factor 23 (FGF23) concentrations, causing loss of phosphorus at the proximal tubule. Most pediatric patients debut in the first two years with short stature and bowed legs. Conventional treatment consists of oral supplements with phosphorus and calcitriol. Since 2018, burosumab has been approved as a novel therapeutic option for XLH, with promising results. The purpose of this study was to share our experience with two cases of XLH treated with burosumab. These patients presented with a broad phenotypical differences. One had the most severe radiological phenotype and developed left ventricular hypertrophy (LVH) and left ventricular dysfunction with preserved ejection fraction. Treatment with burosumab was well-tolerated and was followed by radiological stability and a striking improvement in both blood biochemistry and quality of life. The LVH was stable and left ventricular function normalized in the patient with cardiac involvement. In recent years many studies have been carried out to explain the role of FGF23 in cardiovascular damage, but the exact pathophysiological mechanisms are as yet unclear. The most intensively studied populations are patients with XLH or chronic kidney disease, as both are associated with high levels of FGF23. To date, cardiovascular involvement in XLH has been described in patients treated with conventional treatment, so it would be of interest to investigate if early use of burosumab at the time of diagnosis of XLH would prevent the occurrence of cardiovascular manifestations.
Collapse
Affiliation(s)
- Ana Castellano-Martinez
- Puerta del Mar University Hospital, Department of Pediatric Nephrology, Cadiz, Spain,* Address for Correspondence: Puerta del Mar University Hospital, Department of Pediatric Nephrology, Cadiz, Spain Phone: +34 956002700 E-mail:
| | - Silvia Acuñas-Soto
- Puerta del Mar University Hospital, Department of Pediatric Nephrology, Cadiz, Spain
| | - Virginia Roldan-Cano
- Puerta del Mar University Hospital, Department of Pediatric Nephrology, Cadiz, Spain
| | | |
Collapse
|
7
|
Xie Z, Tong S, Chu X, Feng T, Geng M. Chronic Kidney Disease and Cognitive Impairment: The Kidney-Brain Axis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:275-285. [PMID: 36157262 PMCID: PMC9386403 DOI: 10.1159/000524475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/30/2022] [Indexed: 11/19/2022]
Abstract
Background Cognitive impairment, increasingly recognized as a major social burden, is commonly found in chronic kidney disease (CKD) patients. Summary Vascular damage, uremic toxicity, oxidative stress, and peripheral/central inflammation induced by CKD might be involved in brain lesions and ultimately result in cognitive decline. Uncovering the pathophysiology of CKD-associated cognitive impairment is important for early diagnosis and prevention, which undoubtedly prompts innovative pharmacological treatments. Key Messages Here, we sequentially review the current understanding and advances in the epidemiology, risk factors, and pathological mechanisms of cognitive impairment in CKD. Furthermore, we summarize the currently available therapeutic strategies for cognitive impairment in CKD.
Collapse
Affiliation(s)
- Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Siyu Tong
- Green Valley (Shanghai) Pharmaceuticals Co. Ltd., Shanghai, China
| | - Xingkun Chu
- Green Valley (Shanghai) Pharmaceuticals Co. Ltd., Shanghai, China
| | - Teng Feng
- Green Valley (Shanghai) Pharmaceuticals Co. Ltd., Shanghai, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Agarwal K, Manza P, Chapman M, Nawal N, Biesecker E, McPherson K, Dennis E, Johnson A, Volkow ND, Joseph PV. Inflammatory Markers in Substance Use and Mood Disorders: A Neuroimaging Perspective. Front Psychiatry 2022; 13:863734. [PMID: 35558424 PMCID: PMC9086785 DOI: 10.3389/fpsyt.2022.863734] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022] Open
Abstract
Chronic exposure to addictive drugs in substance use disorders and stressors in mood disorders render the brain more vulnerable to inflammation. Inflammation in the brain, or neuroinflammation, is characterized by gliosis, microglial activation, and sustained release of cytokines, chemokines, and pro-inflammatory factors compromising the permeability of the blood-brain barrier. There is increased curiosity in understanding how substance misuse and/or repeated stress exposure affect inflammation and contribute to abnormal neuronal activity, altered neuroplasticity, and impaired cognitive control, which eventually promote compulsive drug-use behaviors and worsen mood disorders. This review will emphasize human imaging studies to explore the link between brain function and peripheral markers of inflammation in substance use disorders and mood disorders.
Collapse
Affiliation(s)
- Khushbu Agarwal
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,Section of Sensory Science and Metabolism, Division of Intramural Research, U.S. Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Peter Manza
- Laboratory of Neuroimaging, Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Marquis Chapman
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nafisa Nawal
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Erin Biesecker
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Katherine McPherson
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Evan Dennis
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Allison Johnson
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- Laboratory of Neuroimaging, Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Paule V Joseph
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,Section of Sensory Science and Metabolism, Division of Intramural Research, U.S. Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Sasaki S, Koike M, Tanifuji K, Uga M, Kawahara K, Komiya A, Miura M, Harada Y, Hamaguchi Y, Sasaki S, Shiozaki Y, Kaneko I, Miyamoto KI, Segawa H. Dietary polyphosphate has a greater effect on renal damage and FGF23 secretion than dietary monophosphate. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:173-179. [DOI: 10.2152/jmi.69.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sumire Sasaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Megumi Koike
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuya Tanifuji
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Minori Uga
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kota Kawahara
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Aoi Komiya
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mizuki Miura
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yamato Harada
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Hamaguchi
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shohei Sasaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuji Shiozaki
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ichiro Kaneko
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ken-ichi Miyamoto
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroko Segawa
- Department of Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
10
|
Freundlich M, Gamba G, Rodriguez-Iturbe B. Fibroblast growth factor 23-Klotho and hypertension: experimental and clinical mechanisms. Pediatr Nephrol 2021; 36:3007-3022. [PMID: 33230698 PMCID: PMC7682775 DOI: 10.1007/s00467-020-04843-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
Hypertension (HTN) and chronic kidney disease (CKD) are increasingly recognized in pediatric patients and represent risk factors for cardiovascular morbidity and mortality later in life. In CKD, enhanced tubular sodium reabsorption is a leading cause of HTN due to augmented extracellular fluid volume expansion. The renin-angiotensin-aldosterone system (RAAS) upregulates various tubular sodium cotransporters that are also targets of the hormone fibroblast growth factor 23 (FGF23) and its co-receptor Klotho. FGF23 inhibits the activation of 1,25-dihydroxyvitamin D that is a potent suppressor of renin biosynthesis. Here we review the complex interactions and disturbances of the FGF23-Klotho axis, vitamin D, and the RAAS relevant to blood pressure regulation and discuss the therapeutic strategies aimed at mitigating their pathophysiologic contributions to HTN.
Collapse
Affiliation(s)
- Michael Freundlich
- Department of Pediatrics, Division of Pediatric Nephrology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
11
|
Epstein M, Freundlich M. The intersection of Mineralocorticoid Receptor (MR) activation and the FGF23 - Klotho cascade. A Duopoly that promotes renal and cardiovascular injury. Nephrol Dial Transplant 2021; 37:211-221. [PMID: 34459924 DOI: 10.1093/ndt/gfab254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
The nexus of CKD and cardiovascular disease (CVD) amplifies the morbidity and mortality of CKD, emphasizing the need for defining and establishing therapeutic initiatives to modify and abrogate the progression of CKD and concomitant CV risks. In addition to the traditional CV risk factors, disturbances of mineral metabolism are specific risk factors that contribute to the excessive CV mortality in patients with CKD. These risk factors include dysregulations of circulating factors that modulate phosphate metabolism including fibroblast growth factor 23 (FGF23) and soluble Klotho. Reduced circulating levels and suppressed renal klotho expression may be associated with adverse outcomes in CKD patients. While elevated circulating concentrations or locally produced FGF23 in the strained heart exert pro-hypertrophic mechanisms on the myocardium, Klotho attenuates tissue fibrosis, progression of CKD, cardiomyopathy, endothelial dysfunction, vascular stiffness, and vascular calcification. Mineralocorticoid receptor (MR) activation in non-classical targets, mediated by aldosterone and other ligands, amplifies CVD in CKD. In concert, we detail how the interplay of elevated FGF23, activation of the MR, and concomitant reductions of circulating Klotho in CKD, may potentiate each other's deleterious effects on kidney and the heart, thereby contributing to the initiation and progression of kidney and cardiac functional deterioration, acting through multipronged albeit complementary mechanistic pathways.
Collapse
Affiliation(s)
- Murray Epstein
- Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael Freundlich
- Division of Pediatric Nephrology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
12
|
Haffner D, Grund A, Leifheit-Nestler M. Renal effects of growth hormone in health and in kidney disease. Pediatr Nephrol 2021; 36:2511-2530. [PMID: 34143299 PMCID: PMC8260426 DOI: 10.1007/s00467-021-05097-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/27/2021] [Indexed: 12/29/2022]
Abstract
Growth hormone (GH) and its mediator insulin-like growth factor-1 (IGF-1) have manifold effects on the kidneys. GH and IGF receptors are abundantly expressed in the kidney, including the glomerular and tubular cells. GH can act either directly on the kidneys or via circulating or paracrine-synthesized IGF-1. The GH/IGF-1 system regulates glomerular hemodynamics, renal gluconeogenesis, tubular sodium and water, phosphate, and calcium handling, as well as renal synthesis of 1,25 (OH)2 vitamin D3 and the antiaging hormone Klotho. The latter also acts as a coreceptor of the phosphaturic hormone fibroblast-growth factor 23 in the proximal tubule. Recombinant human GH (rhGH) is widely used in the treatment of short stature in children, including those with chronic kidney disease (CKD). Animal studies and observations in acromegalic patients demonstrate that GH-excess can have deleterious effects on kidney health, including glomerular hyperfiltration, renal hypertrophy, and glomerulosclerosis. In addition, elevated GH in patients with poorly controlled type 1 diabetes mellitus was thought to induce podocyte injury and thereby contribute to the development of diabetic nephropathy. This manuscript gives an overview of the physiological actions of GH/IGF-1 on the kidneys and the multiple alterations of the GH/IGF-1 system and its consequences in patients with acromegaly, CKD, nephrotic syndrome, and type 1 diabetes mellitus. Finally, the impact of short- and long-term treatment with rhGH/rhIGF-1 on kidney function in patients with kidney diseases will be discussed.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
13
|
High Intakes of Bioavailable Phosphate May Promote Systemic Oxidative Stress and Vascular Calcification by Boosting Mitochondrial Membrane Potential-Is Good Magnesium Status an Antidote? Cells 2021; 10:cells10071744. [PMID: 34359914 PMCID: PMC8303439 DOI: 10.3390/cells10071744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
Chronic kidney disease is characterized by markedly increased risk for cardiovascular mortality, vascular calcification, and ventricular hypertrophy, and is associated with increased systemic oxidative stress. Hyperphosphatemia, reflecting diminished glomerular phosphate (Pi) clearance, coupled with a compensatory increase in fibroblast growth factor 23 (FGF23) secretion are thought to be key mediators of this risk. Elevated serum and dietary Pi and elevated plasma FGF23 are associated with increased cardiovascular and total mortality in people with normal baseline renal function. FGF23 may mediate some of this risk by promoting cardiac hypertrophy via activation of fibroblast growth factor receptor 4 on cardiomyocytes. Elevated serum Pi can also cause a profound increase in systemic oxidative stress, and this may reflect the ability of Pi to act directly on mitochondria to boost membrane potential and thereby increase respiratory chain superoxide production. Moreover, elevated FGF23 likewise induces oxidative stress in vascular endothelium via activation of NADPH oxidase complexes. In vitro exposure of vascular smooth muscle cells to elevated Pi provokes an osteoblastic phenotypic transition that is mediated by increased mitochondrial oxidant production; this is offset dose-dependently by increased exposure to magnesium (Mg). In vivo, dietary Mg is protective in rodent models of vascular calcification. It is proposed that increased intracellular Mg opposes Pi’s ability to increase mitochondrial membrane potential; this model could explain its utility for prevention of vascular calcification and predicts that Mg may have a more global protective impact with regard to the direct pathogenic effects of hyperphosphatemia.
Collapse
|
14
|
Moench I, Aravindhan K, Kuziw J, Schnackenberg CG, Willette RN, Toomey JR, Gatto GJ. High FGF23 Levels Failed to Predict Cardiac Hypertrophy in Animal Models of Hyperphosphatemia and Chronic Renal Failure. J Endocr Soc 2021; 5:bvab066. [PMID: 34268460 PMCID: PMC8275024 DOI: 10.1210/jendso/bvab066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/19/2022] Open
Abstract
Increased fibroblast growth factor 23 (FGF23) levels are an independent predictor for adverse cardiac events suggesting a role as a link that drives cardiomyopathic changes in cardiorenal syndrome. The search for the underlying mechanism driving this interaction has led to the hypothesis that FGF23 causes pathogenic changes in the heart. Increased serum FGF23 has been independently shown to cause increased cardiac morbidity, mortality, and hypertrophy by signalling through FGF receptor 4. This mechanistic concept was based on preclinical studies demonstrating inhibition of FGF23 signaling through FGF4, which led to suppression of left ventricular hypertrophy and fibrosis in a 2-week rat 5/6 nephrectomy study and a 12-week (2%) high-phosphate diet mouse model in which FGF23 levels were markedly elevated. In this report, renal dysfunction was observed in the 5/6 nephrectomy model, and FGF23 levels were significantly elevated, whereas no changes in left ventricular hypertrophy were observed at 2 or 4 weeks postnephrectomy. Mice placed on a high-phosphate diet that did not cause significant renal dysfunction resulted in significantly elevated FGF23 but no changes in left ventricular hypertrophy. The in vivo studies reported here, which were performed to recapitulate the observations of FGF23 as a driver of cardiac hypertrophy, did not lend support to the FGF23-driven cardiac remodelling hypothesis.
Collapse
Affiliation(s)
- Ian Moench
- Novel Human Genetics Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, 19426, USA
| | - Karpagam Aravindhan
- Novel Human Genetics Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, 19426, USA
| | - Joanne Kuziw
- Novel Human Genetics Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, 19426, USA
| | | | - Robert N Willette
- Novel Human Genetics Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, 19426, USA
| | - John R Toomey
- Novel Human Genetics Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, 19426, USA
| | - Gregory J Gatto
- Novel Human Genetics Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, 19426, USA
| |
Collapse
|
15
|
Vázquez-Sánchez S, Poveda J, Navarro-García JA, González-Lafuente L, Rodríguez-Sánchez E, Ruilope LM, Ruiz-Hurtado G. An Overview of FGF-23 as a Novel Candidate Biomarker of Cardiovascular Risk. Front Physiol 2021; 12:632260. [PMID: 33767635 PMCID: PMC7985069 DOI: 10.3389/fphys.2021.632260] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor-23 (FGF)-23 is a phosphaturic hormone involved in mineral bone metabolism that helps control phosphate homeostasis and reduces 1,25-dihydroxyvitamin D synthesis. Recent data have highlighted the relevant direct FGF-23 effects on the myocardium, and high plasma levels of FGF-23 have been associated with adverse cardiovascular outcomes in humans, such as heart failure and arrhythmias. Therefore, FGF-23 has emerged as a novel biomarker of cardiovascular risk in the last decade. Indeed, experimental data suggest FGF-23 as a direct mediator of cardiac hypertrophy development, cardiac fibrosis and cardiac dysfunction via specific myocardial FGF receptor (FGFR) activation. Therefore, the FGF-23/FGFR pathway might be a suitable therapeutic target for reducing the deleterious effects of FGF-23 on the cardiovascular system. More research is needed to fully understand the intracellular FGF-23-dependent mechanisms, clarify the downstream pathways and identify which could be the most appropriate targets for better therapeutic intervention. This review updates the current knowledge on both clinical and experimental studies and highlights the evidence linking FGF-23 to cardiovascular events. The aim of this review is to establish the specific role of FGF-23 in the heart, its detrimental effects on cardiac tissue and the possible new therapeutic opportunities to block these effects.
Collapse
Affiliation(s)
- Sara Vázquez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jonay Poveda
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José Alberto Navarro-García
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura González-Lafuente
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Elena Rodríguez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Luis M. Ruilope
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
- School of Doctoral Studies and Research, European University of Madrid, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
16
|
Marcucci G, Brandi ML. Congenital Conditions of Hypophosphatemia Expressed in Adults. Calcif Tissue Int 2021; 108:91-103. [PMID: 32409880 DOI: 10.1007/s00223-020-00695-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/15/2020] [Indexed: 01/05/2023]
Abstract
The main congenital conditions of hypophosphatemia expressed in adulthood include several forms of hereditary hypophosphatemic rickets and a congenital disorder of vitamin D metabolism characterized by osteomalacia and hypophosphatemia in adult patients. Hypophosphatemia in adults is defined as serum phosphate concentration < 0.80 mmol/L. The principal regulators of phosphate homeostasis, as is well known, are parathyroid hormone (PTH), activated vitamin D, and Fibroblast Growth Factor 23 (FGF23). Differential diagnosis of hypophosphatemia is based on the evaluation of mechanisms leading to this alteration, such as high PTH activity, inadequate phosphate absorption from the gut, or renal phosphate wasting, either due to primary tubular defects or high FGF23 levels. The most common inherited form associated to hypophosphatemia is X-linked hypophosphatemic rickets (XLH), caused by PHEX gene mutations with enhanced secretion of the FGF23. Until now, the management of hypophosphatemia in adulthood has been poorly investigated. It is widely debated whether adult patients benefit from the conventional treatments normally used for pediatric patients. The new treatment for XLH with burosumab, a recombinant human IgG1 monoclonal antibody that binds to FGF23, blocking its activity, may change the pharmacological management of adult subjects with hypophosphatemia associated to FGF23-dependent mechanisms.
Collapse
Affiliation(s)
- Gemma Marcucci
- Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Florence, Italy
| | - Maria Luisa Brandi
- Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Florence, Italy.
- Head Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Largo Palagi 1, 50139, Florence, Italy.
| |
Collapse
|
17
|
da Paz Oliveira G, Elias RM, Peres Fernandes GB, Moyses R, Tufik S, Bichuetti DB, Coelho FMS. Decreased concentration of klotho and increased concentration of FGF23 in the cerebrospinal fluid of patients with narcolepsy. Sleep Med 2020; 78:57-62. [PMID: 33385780 DOI: 10.1016/j.sleep.2020.11.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE to explore the status of concentration of klotho and fibroblast growth factor 23 (FGF23) in cerebrospinal fluid (CSF) of patients with narcolepsy. PATIENTS/METHODS 59 patients with narcolepsy and 17 control individuals were enrolled. We used radioimmunoassay, human klotho enzyme-linked immunosorbent assay (ELISA), human intact FGF23 ELISA and spectrophotometry to measure hypocretin-1, klotho, FGF-23 and phosphorus, respectively. T-Student Test was used to compare klotho and phosphate concentrations, Mann-Whitney U Test were used to compare FGF-23 levels between groups. ANOVA Test was used to compare klotho and phosphate CSF concentrations among narcolepsy patients with CSF hypocretin-1 <110 pg/ml (HCRT-) and narcolepsy patients with CSF hypocretin-1 >110 pg/ml (HCRT+) versus control subjects. RESULTS Klotho and phosphorus CSF levels were lower in narcoleptic patients than in control (908.18 ± 405.51 versus 1265.78 ± 523.26 pg/ml; p = 0.004 and 1.34 ± 0.25 versus 1.58 ± 0.23 mg/dl; p = 0.001, respectively). We found higher FGF-23 levels in narcoleptic patients (5.51 versus 4.00 pg/mL; p = 0.001). Klotho and phosphorus CSF levels were lower in both HCRT- and HCRT+ than controls. Moreover, there were higher FGF-23 levels in both HCRT-/HCRT+ groups versus controls. However, we did not find differences comparing HCRT- and HCRT+ groups, analyzing CSF klotho, FGF-23 or phosphorus levels. CONCLUSIONS Patients with narcolepsy have decreased CSF concentration of klotho and increased CSF levels of FGF-23. These findings may play a role in understanding the pathogenesis of narcolepsy.
Collapse
Affiliation(s)
- Giuliano da Paz Oliveira
- Disciplina de Neurologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil; Universidade Federal do Piauí (UFPI), Campus Ministro Reis Velloso, Parnaíba, PI, Brazil
| | - Rosilene Motta Elias
- Disciplina de Nefrologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Rosa Moyses
- Disciplina de Nefrologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Denis Bernardi Bichuetti
- Disciplina de Neurologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| | - Fernando Morgadinho Santos Coelho
- Disciplina de Neurologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Oliveira G, Coelho FMS. Narcolepsy and bone metabolism: is there any association? Sleep Med 2020; 74:297. [DOI: 10.1016/j.sleep.2020.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/30/2020] [Indexed: 11/15/2022]
|
19
|
Muñoz-Castañeda JR, Rodelo-Haad C, Pendon-Ruiz de Mier MV, Martin-Malo A, Santamaria R, Rodriguez M. Klotho/FGF23 and Wnt Signaling as Important Players in the Comorbidities Associated with Chronic Kidney Disease. Toxins (Basel) 2020; 12:E185. [PMID: 32188018 PMCID: PMC7150840 DOI: 10.3390/toxins12030185] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Fibroblast Growth Factor 23 (FGF23) and Klotho play an essential role in the regulation of mineral metabolism, and both are altered as a consequence of renal failure. FGF23 increases to augment phosphaturia, which prevents phosphate accumulation at the early stages of chronic kidney disease (CKD). This effect of FGF23 requires the presence of Klotho in the renal tubules. However, Klotho expression is reduced as soon as renal function is starting to fail to generate a state of FGF23 resistance. Changes in these proteins directly affect to other mineral metabolism parameters; they may affect renal function and can produce damage in other organs such as bone, heart, or vessels. Some of the mechanisms responsible for the changes in FGF23 and Klotho levels are related to modifications in the Wnt signaling. This review examines the link between FGF23/Klotho and Wnt/β-catenin in different organs: kidney, heart, and bone. Activation of the canonical Wnt signaling produces changes in FGF23 and Klotho and vice versa; therefore, this pathway emerges as a potential therapeutic target that may help to prevent CKD-associated complications.
Collapse
Affiliation(s)
- Juan Rafael Muñoz-Castañeda
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Cristian Rodelo-Haad
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Victoria Pendon-Ruiz de Mier
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alejandro Martin-Malo
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Rafael Santamaria
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Mariano Rodriguez
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
20
|
Haffner D, Leifheit-Nestler M. Treatment of hyperphosphatemia: the dangers of aiming for normal PTH levels. Pediatr Nephrol 2020; 35:485-491. [PMID: 31823044 DOI: 10.1007/s00467-019-04399-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
Secondary hyperparathyroidism is part of the complex of chronic kidney disease-associated mineral and bone disorders (CKD-MBD) and is linked with high bone turnover, ectopic calcification, and increased cardiovascular mortality. Therefore, measures for CKD-MBD aim at lowering PTH levels, but there is no general consensus on optimal PTH target values. This manuscript is part of a pros and cons debate for keeping PTH levels within the normal range in children with CKD, focusing on the cons. We conclude that a modest increase in PTH most likely represents an appropriate adaptive response to declining kidney function in patients with CKD stages 2-5D, due to phosphaturic effects and increasing bone resistance. There is no evidence for strictly keeping PTH levels within the normal range in CKD patients with respect to bone health and cardiovascular outcome. In addition, the potentially adverse effects of PTH-lowering measures, such as active vitamin D and calcimimetics, must be taken into account. We suggest that PTH values of 1-2 times the upper normal limit (ULN) may be acceptable in children with CKD stage 2-3, and that PTH levels of 1.7-5 times UNL may be optimal in patients with CKD stage 4-5D. However, standard care of CKD-MBD in children relies on a combination of different measures in which the observation of PTH levels is only a small part of, and trends in PTH levels rather than absolute target values should determine treatment decisions in patients with CKD as recommended by the 2017 KDIGO guidelines.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
21
|
Oshima N, Onimaru H, Yamagata A, Ito S, Imakiire T, Kumagai H. Rostral ventrolateral medulla neuron activity is suppressed by Klotho and stimulated by FGF23 in newborn Wistar rats. Auton Neurosci 2020; 224:102640. [PMID: 32036244 DOI: 10.1016/j.autneu.2020.102640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 12/23/2022]
Abstract
Hypertension often occurs in patients with chronic kidney disease (CKD). Considering the decrease in serum Klotho and increase in serum FGF23 levels in such patients, decreased Klotho and increased FGF23 levels were thought to be associated with hypertension. Presympathetic neurons at the rostral ventrolateral medulla (RVLM) contribute to sympathetic activity and regulation of blood pressure. Therefore, we hypothesized that Klotho would reduce the activities of RVLM neurons and FGF23 would stimulate them. Accordingly, this study examined the effects of Klotho and FGF23 on bulbospinal neurons in the RVLM. We used a brainstem-spinal cord preparation to record from RVLM presympathetic neurons and to evaluate the effects of Klotho and FGF23 on firing rate and membrane potentials of these neurons. Our results showed that Klotho-induced RVLM neuron hyperpolarization, while ouabain, a Na+/K+-ATPase inhibitor, suppressed the effects of Klotho on such neurons. Moreover, FGF23 induced RVLM neuron depolarization, while SU5402, an FGF23 receptor (FGFR1) antagonist, induced RVLM neuron hyperpolarization. Histological examinations revealed that Klotho, Na+/K+-ATPase, FGF23, and FGFR1 were present in RVLM neurons and that Klotho was localized in the same neurons as FGFR1. These results suggest that Klotho and FG23 regulate the activity of RVLM neurons. Klotho may reduce the activity of RVLM neurons via stimulating Na+/K+-ATPase on those neurons while FGF23 may activate those neurons via FGFR1.
Collapse
Affiliation(s)
- Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Akira Yamagata
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Seigo Ito
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshihiko Imakiire
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroo Kumagai
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
22
|
Leifheit-Nestler M, Kirchhoff F, Nespor J, Richter B, Soetje B, Klintschar M, Heineke J, Haffner D. Fibroblast growth factor 23 is induced by an activated renin-angiotensin-aldosterone system in cardiac myocytes and promotes the pro-fibrotic crosstalk between cardiac myocytes and fibroblasts. Nephrol Dial Transplant 2019; 33:1722-1734. [PMID: 29425341 DOI: 10.1093/ndt/gfy006] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
Background Fibroblast growth factor 23 (FGF23) is discussed as a new biomarker of cardiac hypertrophy and mortality in patients with and without chronic kidney disease (CKD). We previously demonstrated that FGF23 is expressed by cardiac myocytes, enhanced in CKD and induces cardiac hypertrophy via activation of FGF receptor 4 independent of its co-receptor klotho. The impact of FGF23 on cardiac fibrosis is largely unknown. Methods By conducting a retrospective case-control study including myocardial autopsy samples from 24 patients with end-stage CKD and in vitro studies in cardiac fibroblasts and myocytes, we investigated the pro-fibrotic properties of FGF23. Results The accumulation of fibrillar collagens I and III was increased in myocardial tissue of CKD patients and correlated with dialysis vintage, klotho deficiency and enhanced cardiac angiotensinogen (AGT) expression. Using human fibrosis RT2 Profiler PCR array analysis, transforming growth factor (TGF)-β and its related TGF-β receptor/Smad complexes, extracellular matrix remodeling enzymes and pro-fibrotic growth factors were upregulated in myocardial tissue of CKD patients. FGF23 stimulated cell proliferation, migration, pro-fibrotic TGF-β receptor/Smad complexes and collagen synthesis in cultured cardiac fibroblasts. In isolated cardiac myocytes, FGF23 enhanced collagen remodeling, expression of pro-inflammatory genes and pro-survival pathways and induced pro-hypertrophic genes. FGF23 stimulated AGT expression in cardiac myocytes and angiotensin II and aldosterone, as components of the renin-angiotensin-aldosterone system (RAAS), induced FGF23 in cardiac myocytes. Conclusions Our data demonstrate that activated RAAS induces FGF23 expression in cardiac myocytes and thereby stimulates a pro-fibrotic crosstalk between cardiac myocytes and fibroblasts, which may contribute to myocardial fibrosis in CKD.
Collapse
Affiliation(s)
- Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Felix Kirchhoff
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Julia Nespor
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Beatrice Richter
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany.,Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Birga Soetje
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Michael Klintschar
- Institute for Forensic Medicine, Hannover Medical School, Hannover, Germany
| | - Joerg Heineke
- Department of Cardiology and Angiology, Rebirth-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Cho NJ, Park S, Lee EY, Oh SW, Oh HG, Gil HW. Association of Intracranial Artery Calcification with Cognitive Impairment in Hemodialysis Patients. Med Sci Monit 2019; 25:5036-5043. [PMID: 31280282 PMCID: PMC6636401 DOI: 10.12659/msm.914658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Chronic kidney disease (CKD) is one of risk factors for dementia and cognitive decline. Cardiovascular and dialysis-related factors might also be involved in the mechanism of cognitive impairment in hemodialysis patients. The objective of this study was to investigate whether cardiovascular risk factors including intracranial artery calcification and dialysis-related factors such as fibroblast growth factor 23 (FGF23) might be associated with cognitive impairment in hemodialysis patients. Material/Methods A cross-sectional observational study included patients receiving in-center hemodialysis over 6 months at our hospital. All patients underwent non-contrast computed tomography (CT) examinations. Internal carotid artery (ICA) calcium scores were measured using the Agatston method. The Korean version of the Montreal Cognitive Assessment was used for measurement of cognitive function at each study visit. Serum concentrations of FGF23, osteoprotegerin, and klotho were analyzed using commercial enzyme-linked immunosorbent assay kits. Results This study included 69 patients. Cognitive impairment was observed in 22 patients (31.9%), including 3 patients with dementia. ICA calcium score in patients with cognitive impairment was higher than that in those without cognitive impairment (177.3 versus 87.6, P=0.022). Intracranial artery calcification was significantly associated with cognitive impairment after adjusting for FGF23 and 25-OH vitamin D, but not significant after adjusting for age, FGF23, and 25-OH vitamin D. Low level of FGF23 was associated with cognitive impairment. Conclusions Intracranial artery calcification and low FGF23 could be associated with cognitive impairment in hemodialysis patients. Longitudinal studies are needed to investigate whether intracranial artery calcification and FGF23 could affect cognitive function of hemodialysis patients.
Collapse
Affiliation(s)
- Nam-Jun Cho
- Department of Nephrology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, South Chungcheong, South Korea
| | - Samel Park
- Department of Nephrology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, South Chungcheong, South Korea
| | - Eun-Young Lee
- Department of Nephrology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, South Chungcheong, South Korea
| | - Se Won Oh
- Department of Radiology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, South Chungcheong, South Korea
| | - Hyung Geun Oh
- Department of Neurology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, South Chungcheong, South Korea
| | - Hyo-Wook Gil
- Department of Nephrology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, South Chungcheong, South Korea
| |
Collapse
|
24
|
Risk of cardiovascular involvement in pediatric patients with X-linked hypophosphatemia. Pediatr Nephrol 2019; 34:1077-1086. [PMID: 30607568 DOI: 10.1007/s00467-018-4180-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To find out if cardiovascular alterations are present in pediatric patients with X-linked hypophosphatemia (XLH). STUDY DESIGN Multicentre prospective clinical study on pediatric patients included in the RenalTube database ( www.renaltube.com ) with genetically confirmed diagnosis of XLH by mutations in the PHEX gene. The study's protocol consisted of biochemical work-up, 24-h ambulatory blood pressure monitoring (ABPM), carotid ultrasonography, and echocardiogram. All patients were on chronic treatment with phosphate supplements and 1-hydroxy vitamin D metabolites. RESULTS Twenty-four patients (17 females, from 1 to 17 years of age) were studied. Serum concentrations (X ± SD) of phosphate and intact parathyroid hormone were 2.66 ± 0.60 mg/dl and 58.3 ± 26.8 pg/ml, respectively. Serum fibroblast growth factor 23 (FGF23) concentration was 278.18 ± 294.45 pg/ml (normal < 60 pg/ml). Abnormally high carotid intima media thickness was found in one patient, who was obese and hypertensive as revealed by ABPM, which disclosed arterial hypertension in two other patients. Z scores for echocardiographic interventricular septum end diastole and left ventricular posterior wall end diastole were + 0.77 ± 0.77 and + 0.94 ± 0.86, respectively. Left ventricular mass index (LVMI) was 44.93 ± 19.18 g/m2.7, and four patients, in addition to the obese one, had values greater than 51 g/m2.7, indicative of left ventricular hypertrophy. There was no correlation between these echocardiographic parameters and serum FGF23 concentrations. CONCLUSIONS XLH pediatric patients receiving conventional treatment have echocardiographic measurements of ventricular mass within normal reference values, but above the mean, and 18% have LVMI suggestive of left ventricular hypertrophy without correlation with serum FGF23 concentrations. This might indicate an increased risk of cardiovascular involvement in XLH.
Collapse
|
25
|
González-Reimers E, Romero-Acevedo L, Espelosín-Ortega E, Martín-González MC, Quintero-Platt G, Abreu-González P, José de-la-Vega-Prieto M, Martínez-Martínez D, Santolaria-Fernández F. Soluble Klotho and Brain Atrophy in Alcoholism. Alcohol Alcohol 2018; 53:503-510. [PMID: 29846497 DOI: 10.1093/alcalc/agy037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 12/20/2022] Open
Abstract
Aim Fibroblast growth factor (FGF-23) and α-Klotho (Klotho) levels may be altered in inflammatory conditions, possibly as compensatory mechanisms. Klotho exerts a protective effect on neurodegeneration and improves learning and cognition. No data exist about the association of Klotho and FGF-23 levels with brain atrophy observed in alcoholics. The aim of this study is to explore these relationships. Short summary FGF-23 and Klotho levels are altered in inflammation, possibly as compensatory mechanisms. Klotho enhances learning, but its role in ethanol-mediated brain atrophy is unknown. We found higher FGF-23 and lower Klotho levels in 131 alcoholics compared with 41 controls. Among cirrhotics, Klotho was higher and inversely related to brain atrophy. Methods The study was performed on 131 alcoholic patients (54 cirrhotics) and 41 age- and sex-matched controls, in whom a brain computed tomography (CT) was performed and several indices were calculated. Results Marked brain atrophy was observed among patients when compared with controls. Patients also showed higher FGF-23 and lower Klotho values. However, among cirrhotics, Klotho values were higher. Klotho was inversely related to brain atrophy (for instance, ventricular index (ρ = -0.23, P = 0.008)), especially in cirrhotics. Klotho was also directly related to tumor necrosis factor (TNF) alpha (ρ = 0.22; P = 0.026) and inversely to transforming growth factor (TGF)-β (ρ = -0.34; P = 0.002), but not to C-reactive protein (CRP) or malondialdehyde levels. FGF-23 was also higher among cirrhotics but showed no association with CT indices. Conclusions Klotho showed higher values among cirrhotics, and was inversely related to brain atrophy. FGF-23, although high among patients, especially cirrhotics, did not show any association with brain atrophy. Some inflammatory markers or cytokines, such as CRP or TGF-β were related to brain atrophy.
Collapse
Affiliation(s)
| | - Lucía Romero-Acevedo
- Servicio de Medicina Interna, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | | | | | | | - Pedro Abreu-González
- Departamento de Fisiología, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | | | | | | |
Collapse
|
26
|
Marcucci G, Masi L, Ferrarì S, Haffner D, Javaid MK, Kamenický P, Reginster JY, Rizzoli R, Brandi ML. Phosphate wasting disorders in adults. Osteoporos Int 2018; 29:2369-2387. [PMID: 30014155 DOI: 10.1007/s00198-018-4618-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
A cause of hypophosphatemia is phosphate wasting disorders. Knowledge concerning mechanisms involved in phosphate wasting disorders has greatly increased in the last decade by the identification of phosphatonins, among them FGF-23. FGF-23 is a primarily bone derived factor decreasing renal tubular reabsorption of phosphate and the synthesis of calcitriol. Currently, pharmacological treatment of these disorders offers limited efficacy and is potentially associated to gastrointestinal, renal, and parathyroid complications; therefore, efforts have been directed toward newer pharmacological strategies that target the FGF-23 pathway. This review focuses on phosphate metabolism, its main regulators, and phosphate wasting disorders in adults, highlighting the main issues related to diagnosis and current and new potential treatments.
Collapse
Affiliation(s)
- G Marcucci
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - L Masi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - S Ferrarì
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - D Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - M K Javaid
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - P Kamenický
- Service d'Endocrinologie et des Maladies de la Reproduction, Centre de référence des Maladies Rares du métabolisme du calcium et du phosphore, Hopital de Bicêtre - AP-HP, 94275, Le Kremlin-Bicêtre, France
| | - J-Y Reginster
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - R Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - M L Brandi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
27
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
28
|
Bernasconi R, Aeschbacher S, Blum S, Mongiat M, Girod M, Todd J, Estis J, Nolan N, Renz H, Risch L, Conen D, Risch M. Fibroblast growth factor 23 and renal function among young and healthy individuals. Clin Chem Lab Med 2018; 56:1483-1489. [PMID: 29708879 DOI: 10.1515/cclm-2017-1183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/08/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF-23), an osteocyte hormone involved in the regulation of phosphate metabolism, is associated with incident and progressive chronic kidney disease. We aimed to assess the association of FGF-23 with renal parameters, vascular function and phosphate metabolism in a large cohort of young and healthy individuals. METHODS Healthy individuals aged 25-41 years were included in a prospective population-based study. Fasting venous blood and morning urinary samples were used to measure plasma creatinine, cystatin C, endothelin-1, phosphate and plasma FGF-23 as well as urinary creatinine and phosphate. Multivariable regression models were constructed to assess the relationship of FGF-23 with parameters of renal function, endothelin-1 and fractional phosphate excretion. RESULTS The median age of 2077 participants was 37 years, 46% were males. The mean estimated glomerular filtration rate (eGFR - CKD-EPI creatinine-cystatin C equation) and fractional phosphate excretion were 110 mL/min/1.73 m2 and 8.7%, respectively. After multivariable adjustment, there was a significant inverse relationship of FGF-23 with eGFR (β per 1 log-unit increase -3.81; 95% CI [-5.42; -2.20]; p<0.0001). Furthermore, we found a linear association between FGF-23 and endothelin-1 (β per 1 log-unit increase 0.06; [0.01, 0.11]; p=0.01). In addition, we established a significant relationship of FGF-23 with fractional phosphate excretion (β per 1 log-unit increase 0.62; [0.08, 1.16]; p=0.03). CONCLUSIONS Increasing plasma FGF-23 levels are strongly associated with decreasing eGFR and increasing urinary phosphate excretion, suggesting an important role of FGF-23 in the regulation of kidney function in young and healthy adults.
Collapse
Affiliation(s)
- Raffaele Bernasconi
- Cardiology Division, Department of Medicine, University Hospital of Basel, Basel, Switzerland.,Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Stefanie Aeschbacher
- Cardiology Division, Department of Medicine, University Hospital of Basel, Basel, Switzerland.,Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Steffen Blum
- Cardiology Division, Department of Medicine, University Hospital of Basel, Basel, Switzerland.,Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Michel Mongiat
- Cardiology Division, Department of Medicine, University Hospital of Basel, Basel, Switzerland.,Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Marc Girod
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - John Todd
- Singulex, Inc., Clinical Research, Alameda, CA, USA
| | - Joel Estis
- Singulex, Inc., Clinical Research, Alameda, CA, USA
| | - Niamh Nolan
- Singulex, Inc., Clinical Research, Alameda, CA, USA
| | - Harald Renz
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Lorenz Risch
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Principality of Liechtenstein.,Department of Laboratory Medicine, Institute of Clinical Chemistry, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland.,Private University, Triesen, Principality of Liechtenstein
| | - David Conen
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland.,Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Martin Risch
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Principality of Liechtenstein.,Division of Laboratory Medicine, Kantonsspital Graubünden, Chur, Switzerland, Phone: +41 (0)58 523 33 22
| |
Collapse
|
29
|
Yu LR, Sun J, Daniels JR, Cao Z, Schnackenberg L, Choudhury D, Palevsky PM, Ma JZ, Beger RD, Portilla D. Aptamer-Based Proteomics Identifies Mortality-Associated Serum Biomarkers in Dialysis-Dependent AKI Patients. Kidney Int Rep 2018; 3:1202-1213. [PMID: 30197987 PMCID: PMC6127416 DOI: 10.1016/j.ekir.2018.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/01/2018] [Accepted: 04/23/2018] [Indexed: 01/06/2023] Open
Abstract
Introduction Currently, no effective therapies exist to reduce the high mortality associated with dialysis-dependent acute kidney injury (AKI-D). Serum biomarkers may be useful in understanding the pathophysiological processes involved with AKI and the severity of injury, and point to novel therapeutic targets. Methods Study day 1 serum samples from 100 patients and day 8 samples from 107 patients enrolled in the Veteran’s Affairs/National Institutes of Health Acute Renal Failure Trial Network study were analyzed by the slow off-rate modified aptamers scan proteomic platform to profile 1305 proteins in each sample. Patients in each cohort were classified into tertiles based on baseline biomarker measurements. Cox regression analyses were performed to examine the relationships between serum levels of each biomarker and mortality. Results Changes in the serum levels of 54 proteins, 33 of which increased and 21 of which decreased, were detected when comparing samples of patients who died in the first 8 days versus patients who survived >8 days. Among the 33 proteins that increased, higher serum levels of fibroblast growth factor-23 (FGF23), tissue plasminogen activator (tPA), neutrophil collagenase (matrix metalloproteinase-8), and soluble urokinase plasminogen activator receptor, when stratified by tertiles, were associated with higher mortality. The association with mortality persisted for each of these proteins after adjusting for other potential risk factors, including age, sex, cardiovascular sequential organ failure assessment score, congestive heart failure, and presence of diabetes. Upper tertile levels of FGF23, tPA, and interleukin-6 on day 8 were associated with increased mortality; however, FGF23 barely lost significance after multivariable adjustment. Conclusions Our results underscore an emerging proteomics tool capable of identifying low-abundance serum proteins important not only in the pathogenesis of AKI-D, but which is also helpful in discriminating AKI-D patients with high mortality.
Collapse
Affiliation(s)
- Li-Rong Yu
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Dr Jinchun Sun Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | - Jaclyn R. Daniels
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Zhijun Cao
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Laura Schnackenberg
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Devasmita Choudhury
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
- Salem Veterans Affairs Medical Center, Salem, Virginia, USA
| | - Paul M. Palevsky
- VA Pittsburgh Healthcare System, University of Pittsburgh, Pennsylvania, USA
| | - Jennie Z. Ma
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Richard D. Beger
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Didier Portilla
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
- Salem Veterans Affairs Medical Center, Salem, Virginia, USA
- Correspondence: Didier Portilla, University of Virginia, PO Box 800133, Charlottesville, VA 22908, USA.
| |
Collapse
|
30
|
Leifheit-Nestler M, Richter B, Basaran M, Nespor J, Vogt I, Alesutan I, Voelkl J, Lang F, Heineke J, Krick S, Haffner D. Impact of Altered Mineral Metabolism on Pathological Cardiac Remodeling in Elevated Fibroblast Growth Factor 23. Front Endocrinol (Lausanne) 2018; 9:333. [PMID: 29977226 PMCID: PMC6021503 DOI: 10.3389/fendo.2018.00333] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
Clinical and experimental studies indicate a possible link between high serum levels of fibroblast growth factor 23 (FGF23), phosphate, and parathyroid hormone (PTH), deficiency of active vitamin D (1,25D) and klotho with the development of pathological cardiac remodeling, i.e., left ventricular hypertrophy and myocardial fibrosis, but a causal link has not been established so far. Here, we investigated the cardiac phenotype in klotho hypomorphic (kl/kl) mice and Hyp mice, two mouse models of elevated FGF23 levels and klotho deficiency, but differing in parameters of mineral metabolism, by using histology, quantitative real-time PCR, immunoblot analysis, and serum and urine biochemistry. Additionally, the specific impact of calcium, phosphate, PTH, and 1,25D on hypertrophic growth of isolated neonatal rat cardiac myocytes was investigated in vitro. Kl/kl mice displayed high serum Fgf23 levels, increased relative heart weight, enhanced cross-sectional area of individual cardiac myocytes, activated cardiac Fgf23/Fgf receptor (Fgfr) 4/calcineurin/nuclear factor of activated T cell (NFAT) signaling, and induction of pro-hypertrophic NFAT target genes including Rcan1, bMHC, brain natriuretic peptide (BNP), and atrial natriuretic peptide (ANP) as compared to corresponding wild-type (WT) mice. Investigation of fibrosis-related molecules characteristic for pathological cardiac remodeling processes demonstrated ERK1/2 activation and enhanced expression of Tgf-β1, collagen I, and Mmp2 in kl/kl mice than in WT mice. In contrast, despite significantly elevation of serum and cardiac Fgf23, and reduced renal klotho expression, Hyp mice showed no signs of pathological cardiac remodeling. Kl/kl mice showed enhanced serum calcium and phosphate levels, while Hyp mice showed unchanged serum calcium levels, lower serum phosphate, and elevated serum iPTH concentrations compared to corresponding WT mice. In cultured cardiac myocytes, treatment with both calcium or phosphate significantly upregulated endogenous Fgf23 mRNA expression and stimulated hypertrophic cell growth and expression of pro-hypertrophic genes. The treatment with PTH induced hypertrophic cell growth only, and stimulation with 1,25D had no significant effects. In conclusion, our data indicate that Hyp mice, in contrast to kl/kl mice appear to be protected from pathological cardiac remodeling during conditions of high FGF23 levels and klotho deficiency, which may be due, at least in part, to differences in mineral metabolism alterations, i.e., hypophosphatemia and lack of hypercalcemia.
Collapse
Affiliation(s)
- Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
- *Correspondence: Maren Leifheit-Nestler,
| | - Beatrice Richter
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Melis Basaran
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Julia Nespor
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Isabel Vogt
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Center for Cardiovascular Research, Charité University Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Center for Cardiovascular Research, Charité University Medicine, Berlin, Germany
| | - Florian Lang
- Department of Physiology I, University of Tuebingen, Tuebingen, Germany
| | - Joerg Heineke
- Department of Cardiology and Angiology, Experimental Cardiology, Rebirth-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
31
|
Leifheit-Nestler M, Haffner D. Paracrine Effects of FGF23 on the Heart. Front Endocrinol (Lausanne) 2018; 9:278. [PMID: 29892269 PMCID: PMC5985311 DOI: 10.3389/fendo.2018.00278] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/11/2018] [Indexed: 12/17/2022] Open
Abstract
Fibroblast growth factor (FGF) 23 is a phosphaturic hormone primarily secreted by osteocytes to maintain phosphate and mineral homeostasis. In patients with and without chronic kidney disease, enhanced circulating FGF23 levels associate with pathologic cardiac remodeling, i.e., left ventricular hypertrophy (LVH) and myocardial fibrosis and increased cardiovascular mortality. Experimental studies demonstrate that FGF23 promotes hypertrophic growth of cardiac myocytes via FGF receptor 4-dependent activation of phospholipase Cγ/calcineurin/nuclear factor of activated T cell signaling independent of its co-receptor klotho. Recent studies indicate that FGF23 is also expressed in the heart, and markedly enhanced in various clinical and experimental settings of cardiac remodeling and heart failure independent of preserved or reduced renal function. On a cellular level, FGF23 is expressed in cardiac myocytes and in other non-cardiac myocytes, including cardiac fibroblasts, vascular smooth muscle and endothelial cells in coronary arteries, and in inflammatory macrophages. Current data suggest that secreted by cardiac myocytes, FGF23 can stimulate pro-fibrotic factors in myocytes to induce fibrosis-related pathways in fibroblasts and consequently cardiac fibrosis in a paracrine manner. While acting on cardiac myocytes, FGF23 directly induces pro-hypertrophic genes and promotes the progression of LVH in an autocrine and paracrine fashion. Thus, enhanced FGF23 may promote cardiac injury in various clinical settings not only by endocrine but also via paracrine/autocrine mechanisms. In this review, we discuss recent clinical and experimental data regarding molecular mechanisms of FGF23's paracrine action on the heart with respect to pathological cardiac remodeling.
Collapse
|
32
|
Zhou S, Glowacki J. Chronic kidney disease and vitamin D metabolism in human bone marrow-derived MSCs. Ann N Y Acad Sci 2017; 1402:43-55. [PMID: 28926112 PMCID: PMC5659722 DOI: 10.1111/nyas.13464] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022]
Abstract
Vitamin D that is synthesized in the skin or is ingested undergoes sequential steps of metabolic activation via a cascade of cytochrome P450 enzymatic hydroxylations in the liver and kidney to produce 1α,25-dihydroxyvitamin D (1α,25(OH)2 D). There are many tissues that are able to synthesize 1α,25(OH)2 D, but the biological significance of extrarenal hydroxylases is unresolved. Human marrow-derived mesenchymal stem cells (marrow stromal cells, hMSCs) give rise to osteoblasts, and their differentiation is stimulated by 1α,25(OH)2 D. In addition to being targets of 1α,25(OH)2 D, hMSCs can synthesize it; on the basis of those observations, we further examined the local autocrine/paracrine role of vitamin D metabolism in osteoblast differentiation. Research with hMSCs from well-characterized subjects provides an innovative opportunity to evaluate the effects of clinical attributes on the regulation of hMSCs. Like the renal 1α-hydroxylase, the enzyme in hMSCs is constitutively decreased with age and chronic kidney disease (CKD); both are regulated by PTH1-34, insulin-like growth factor 1, calcium, 1α,25(OH)2 D, 25(OH)D, and fibroblast growth factor 23. CKD is associated with impaired renal biosynthesis of 1α,25(OH)2 D, low bone mass, and increased fracture risk. Studies with hMSCs from CKD patients or aged subjects indicate that circulating 25(OH)D may have an important role in osteoblast differentiation on vitamin D metabolism and action in hMSCs.
Collapse
Affiliation(s)
- Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Grundmann SM, Brandsch C, Rottstädt D, Kühne H, Stangl GI. The High Calcium, High Phosphorus Rescue Diet Is Not Suitable to Prevent Secondary Hyperparathyroidism in Vitamin D Receptor Deficient Mice. Front Physiol 2017; 8:212. [PMID: 28443031 PMCID: PMC5385385 DOI: 10.3389/fphys.2017.00212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/23/2017] [Indexed: 01/22/2023] Open
Abstract
The vitamin D receptor (VDR) knockout (KO) mouse is a common model to unravel novel metabolic functions of vitamin D. It is recommended to feed these mice a high calcium (2%), high phosphorus (1.25%) diet, termed rescue diet (RD) to prevent hypocalcaemia and secondary hyperparathyroidism. First, we characterized the individual response of VDR KO mice to feeding a RD and found that the RD was not capable of normalizing the parathyroid hormone (PTH) concentrations in each VDR KO mouse. In a second study, we aimed to study whether RD with additional 1 and 2% calcium (in total 3 and 4% of the diet) is able to prevent secondary hyperparathyroidism in the VDR KO mice. Wild type (WT) mice and VDR KO mice that received a normal calcium and phosphorus diet (ND) served as controls. Data demonstrated that the RD was no more efficient than the ND in normalizing PTH levels. An excessive dietary calcium concentration of 4% was required to reduce serum PTH concentrations in the VDR KO mice to PTH levels measured in WT mice. This diet, however, resulted in higher concentrations of circulating intact fibroblast growth factor 23 (iFGF23). To conclude, the commonly used RD is not suitable to normalize the serum PTH in VDR KO mice. Extremely high dietary calcium concentrations are necessary to prevent secondary hyperthyroidism in these mice, with the consequence that iFGF23 concentrations are being raised. Considering that PTH and iFGF23 exert numerous VDR independent effects, data obtained from VDR KO mice cannot be attributed solely to vitamin D.
Collapse
Affiliation(s)
- Sarah M Grundmann
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-WittenbergHalle, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-LeipzigHalle, Germany
| | - Corinna Brandsch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-WittenbergHalle, Germany
| | - Daniela Rottstädt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-WittenbergHalle, Germany
| | - Hagen Kühne
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-WittenbergHalle, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-WittenbergHalle, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-LeipzigHalle, Germany
| |
Collapse
|