1
|
Ghailani H, Zaidan A, Qahtan S, Alsattar HA, Al-Emran M, Deveci M, Delen D. Developing sustainable management strategies in construction and demolition wastes using a q-rung orthopair probabilistic hesitant fuzzy set-based decision modelling approach. Appl Soft Comput 2023; 145:110606. [DOI: 10.1016/j.asoc.2023.110606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
2
|
Albahri AS, Al-qaysi ZT, Alzubaidi L, Alnoor A, Albahri OS, Alamoodi AH, Bakar AA. A Systematic Review of Using Deep Learning Technology in the Steady-State Visually Evoked Potential-Based Brain-Computer Interface Applications: Current Trends and Future Trust Methodology. Int J Telemed Appl 2023; 2023:7741735. [PMID: 37168809 PMCID: PMC10164869 DOI: 10.1155/2023/7741735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/01/2023] [Accepted: 03/16/2023] [Indexed: 05/13/2023] Open
Abstract
The significance of deep learning techniques in relation to steady-state visually evoked potential- (SSVEP-) based brain-computer interface (BCI) applications is assessed through a systematic review. Three reliable databases, PubMed, ScienceDirect, and IEEE, were considered to gather relevant scientific and theoretical articles. Initially, 125 papers were found between 2010 and 2021 related to this integrated research field. After the filtering process, only 30 articles were identified and classified into five categories based on their type of deep learning methods. The first category, convolutional neural network (CNN), accounts for 70% (n = 21/30). The second category, recurrent neural network (RNN), accounts for 10% (n = 3/30). The third and fourth categories, deep neural network (DNN) and long short-term memory (LSTM), account for 6% (n = 30). The fifth category, restricted Boltzmann machine (RBM), accounts for 3% (n = 1/30). The literature's findings in terms of the main aspects identified in existing applications of deep learning pattern recognition techniques in SSVEP-based BCI, such as feature extraction, classification, activation functions, validation methods, and achieved classification accuracies, are examined. A comprehensive mapping analysis was also conducted, which identified six categories. Current challenges of ensuring trustworthy deep learning in SSVEP-based BCI applications were discussed, and recommendations were provided to researchers and developers. The study critically reviews the current unsolved issues of SSVEP-based BCI applications in terms of development challenges based on deep learning techniques and selection challenges based on multicriteria decision-making (MCDM). A trust proposal solution is presented with three methodology phases for evaluating and benchmarking SSVEP-based BCI applications using fuzzy decision-making techniques. Valuable insights and recommendations for researchers and developers in the SSVEP-based BCI and deep learning are provided.
Collapse
Affiliation(s)
- A. S. Albahri
- Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - Z. T. Al-qaysi
- Department of Computer Science, Computer Science and Mathematics College, Tikrit University, Tikrit, Iraq
| | - Laith Alzubaidi
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC Industrial Transformation Training Centre—Joint Biomechanics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | | | - O. S. Albahri
- Computer Techniques Engineering Department, Mazaya University College, Nasiriyah, Iraq
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC, Australia
| | - A. H. Alamoodi
- Faculty of Computing and Meta-Technology (FKMT), Universiti Pendidikan Sultan Idris (UPSI), Perak, Malaysia
| | | |
Collapse
|
3
|
Qahtan S, Alsattar HA, Zaidan A, Deveci M, Pamucar D, Delen D, Pedrycz W. Evaluation of agriculture-food 4.0 supply chain approaches using Fermatean probabilistic hesitant-fuzzy sets based decision making model. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
4
|
Sustainability assessment of palm oil industry 4.0 technologies in a circular economy applications based on interval-valued Pythagorean fuzzy rough set-FWZIC and EDAS methods. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Alamoodi A, Albahri O, Zaidan A, Alsattar H, Zaidan B, Albahri A. Hospital selection framework for remote MCD patients based on fuzzy q-rung orthopair environment. Neural Comput Appl 2022; 35:6185-6196. [PMID: 36415285 PMCID: PMC9672551 DOI: 10.1007/s00521-022-07998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
This research proposes a novel mobile health-based hospital selection framework for remote patients with multi-chronic diseases based on wearable body medical sensors that use the Internet of Things. The proposed framework uses two powerful multi-criteria decision-making (MCDM) methods, namely fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score method for criteria weighting and hospital ranking. The development of both methods is based on a Q-rung orthopair fuzzy environment to address the uncertainty issues associated with the case study in this research. The other MCDM issues of multiple criteria, various levels of significance and data variation are also addressed. The proposed framework comprises two main phases, namely identification and development. The first phase discusses the telemedicine architecture selected, patient dataset used and decision matrix integrated. The development phase discusses criteria weighting by q-ROFWZIC and hospital ranking by q-ROFDOSM and their sub-associated processes. Weighting results by q-ROFWZIC indicate that the time of arrival criterion is the most significant across all experimental scenarios with (0.1837, 0.183, 0.230, 0.276, 0.335) for (q = 1, 3, 5, 7, 10), respectively. Ranking results indicate that Hospital (H-4) is the best-ranked hospital in all experimental scenarios. Both methods were evaluated based on systematic ranking and sensitivity analysis, thereby confirming the validity of the proposed framework.
Collapse
Affiliation(s)
- A.H. Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia
| | - O.S. Albahri
- Computer Techniques Engineering Department, Mazaya University College, Nassiriya, Thi-Qar Iraq
| | - A.A. Zaidan
- Faculty of Engineering & IT, The British University in Dubai, Dubai, United Arab Emirates
| | - H.A. Alsattar
- Department of Business Administration, College of Administrative Science, The University of Mashreq, 10021 Baghdad, Iraq
| | - B.B. Zaidan
- Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002 Taiwan
| | - A.S. Albahri
- Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| |
Collapse
|
6
|
Alqaysi ME, Albahri AS, Hamid RA. Hybrid Diagnosis Models for Autism Patients Based on Medical and Sociodemographic Features Using Machine Learning and Multicriteria Decision-Making (MCDM) Techniques: An Evaluation and Benchmarking Framework. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9410222. [PMID: 36439957 PMCID: PMC9683965 DOI: 10.1155/2022/9410222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/01/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024]
Abstract
Method The three-phase framework integrated the MCDM and ML to develop the diagnosis models and evaluate and benchmark the best. Firstly, the new ASD-dataset-combined medical tests and sociodemographic characteristic features is identified and preprocessed. Secondly, developing the hybrid diagnosis models using the intersection process between three FS techniques and five ML algorithms introduces 15 models. The selected medical tests and sociodemographic features from each FS technique are weighted before feeding the five ML algorithms using the fuzzy-weighted zero-inconsistency (FWZIC) method based on four psychiatry experts. Thirdly, (i) formulate a dynamic decision matrix for all developed models based on seven evaluation metrics, including classification accuracy, precision, F1 score, recall, test time, train time, and AUC. (ii) The fuzzy decision by opinion score method (FDOSM) is used to evaluate and benchmark the 15 models concerning the seven evaluation metrics. Results Results reveal that (i) the three FS techniques have obtained a size different from the others in the number of the selected features; the sets were 39, 38, and 41 out of 48 features. Each set has its weights constructed by FWIZC. Considered sociodemographic features have been mostly selected more than medical tests within FS techniques. (ii) The first three best hybrid models were "ReF-decision tree," "IG-decision tree," and "Chi2-decision tree," with score values 0.15714, 0.17539, and 0.29444. The best diagnosis model (ReF-decision tree) has obtained 0.4190, 0.0030, 0.9946, 0.9902, 0.9902, 0.9902, 0.9902, and 0.9951 for the C1=train time, C2=test time, C3=AUC, C4=CA, C5=F1 score, C6=precision, and C7=recall, respectively. The developed framework would be beneficial in advancing, accelerating, and selecting diagnosis tools in therapy with ASD. The selected model can identify severity as light, medium, or intense based on medical tests and sociodemographic weighted features.
Collapse
Affiliation(s)
- M. E. Alqaysi
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
- Department of Medical Instruments Engineering Techniques, Al-Farahidi University, Baghdad 10021, Iraq
| | - A. S. Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - Rula A. Hamid
- College of Business Informatics, University of Information Technology and Communications (UOITC), Baghdad, Iraq
| |
Collapse
|
7
|
Albahri AS, Hamid RA, Zaidan AA, Albahri OS. Early automated prediction model for the diagnosis and detection of children with autism spectrum disorders based on effective sociodemographic and family characteristic features. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07822-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Albahri AS, Albahri OS, Zaidan AA, Alnoor A, Alsattar HA, Mohammed R, Alamoodi AH, Zaidan BB, Aickelin U, Alazab M, Garfan S, Ahmaro IYY, Ahmed MA. Integration of fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score methods under a q-rung orthopair environment: A distribution case study of COVID-19 vaccine doses. COMPUTER STANDARDS & INTERFACES 2022; 80:103572. [PMID: 34456503 PMCID: PMC8386109 DOI: 10.1016/j.csi.2021.103572] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/14/2021] [Accepted: 08/22/2021] [Indexed: 05/26/2023]
Abstract
Owing to the limitations of Pythagorean fuzzy and intuitionistic fuzzy sets, scientists have developed a distinct and successive fuzzy set called the q-rung orthopair fuzzy set (q-ROFS), which eliminates restrictions encountered by decision-makers in multicriteria decision making (MCDM) methods and facilitates the representation of complex uncertain information in real-world circumstances. Given its advantages and flexibility, this study has extended two considerable MCDM methods the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM). The methodology formulated had two phases. The first phase 'development' presented the sequential steps of each method thoroughly.The q-ROFWZIC method was formulated and used in determining the weights of evaluation criteria and then integrated into the q-ROFDOSM for the prioritisation of alternatives on the basis of the weighted criteria. In the second phase, a case study regarding the MCDM problem of coronavirus disease 2019 (COVID-19) vaccine distribution was performed. The purpose was to provide fair allocation of COVID-19 vaccine doses. A decision matrix based on an intersection of 'recipients list' and 'COVID-19 distribution criteria' was adopted. The proposed methods were evaluated according to systematic ranking assessment and sensitivity analysis, which revealed that the ranking was subject to a systematic ranking that is supported by high correlation results over different scenarios with variations in the weights of criteria.
Collapse
Affiliation(s)
- A S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - O S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - A A Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Alhamzah Alnoor
- School of Management, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - H A Alsattar
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Rawia Mohammed
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - A H Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - B B Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Uwe Aickelin
- School of Computing and Information Systems, University of Melbourne, 700 Swanston Street, Victoria 3010 Australia
| | - Mamoun Alazab
- College of Engineering, IT and Environment, Charles Darwin University, NT, Australia
| | - Salem Garfan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Ibraheem Y Y Ahmaro
- Computer Science Department, College of Information Technology, Hebron University, Hebron, Palestine
| | - M A Ahmed
- Department of Computer Science, Computer Science and Mathematics College, Tikrit University, Tikrit, Iraq
| |
Collapse
|
9
|
A new extension of FDOSM based on Pythagorean fuzzy environment for evaluating and benchmarking sign language recognition systems. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06683-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Alsalem MA, Albahri OS, Zaidan AA, Al-Obaidi JR, Alnoor A, Alamoodi AH, Albahri AS, Zaidan BB, Jumaah FM. Rescuing emergency cases of COVID-19 patients: An intelligent real-time MSC transfusion framework based on multicriteria decision-making methods. APPL INTELL 2022; 52:9676-9700. [PMID: 35035091 PMCID: PMC8741536 DOI: 10.1007/s10489-021-02813-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) have shown promising ability to treat critical cases of coronavirus disease 2019 (COVID-19) by regenerating lung cells and reducing immune system overreaction. However, two main challenges need to be addressed first before MSCs can be efficiently transfused to the most critical cases of COVID-19. First is the selection of suitable MSC sources that can meet the standards of stem cell criteria. Second is differentiating COVID-19 patients into different emergency levels automatically and prioritising them in each emergency level. This study presents an efficient real-time MSC transfusion framework based on multicriteria decision-making(MCDM) methods. In the methodology, the testing phase represents the ability to adhere to plastic surfaces, the upregulation and downregulation of specific surface protein markers and finally the ability to differentiate into different kinds of cells. In the development phase, firstly, two scenarios of an augmented dataset based on the medical perspective are generated to produce 80 patients with different emergency levels. Secondly, an automated triage algorithm based on a formal medical guideline is proposed for real-time monitoring of COVID-19 patients with different emergency levels (i.e. mild, moderate, severe and critical) considering the improvement and deterioration procedures from one level to another. Thirdly, a unique decision matrix for each triage level (except mild) is constructed on the basis of the intersection between the evaluation criteria of each emergency level and list of COVID-19 patients. Thereafter, MCDM methods (i.e. analytic hierarchy process [AHP] and vlsekriterijumska optimizcija i kaompromisno resenje [VIKOR]) are integrated to assign subjective weights for the evaluation criteria within each triage level and then prioritise the COVID-19 patients on the basis of individual and group decision-making(GDM) contexts. Results show that: (1) in both scenarios, the proposed algorithm effectively classified the patients into four emergency levels, including mild, moderate, severe and critical, taking into consideration the improvement and deterioration cases. (2) On the basis of experts' perspectives, clear differences in most individual prioritisations for patients with different emergency levels in both scenarios were found. (3) In both scenarios, COVID-19 patients were prioritised identically between the internal and external group VIKOR. During the evaluation, the statistical objective method indicated that the patient prioritisations underwent systematic ranking. Moreover, comparison analysis with previous work proved the efficiency of the proposed framework. Thus, the real-time MSC transfusion for COVID-19 patients can follow the order achieved in the group VIKOR results.
Collapse
Affiliation(s)
- M. A. Alsalem
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - O. S. Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - A. A. Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - Jameel R. Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak Malaysia
| | - Alhamzah Alnoor
- School of Management, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang Malaysia
| | - A. H. Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - A. S. Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - B. B. Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - F. M. Jumaah
- Department of Advanced Applications and Embedded Systems, Intel Corporation, Plot 6, 11900 Bayan Lepas Technoplex, Pulau Pinang Malaysia
| |
Collapse
|
11
|
Alsalem MA, Alsattar HA, Albahri AS, Mohammed RT, Albahri OS, Zaidan AA, Alnoor A, Alamoodi AH, Qahtan S, Zaidan BB, Aickelin U, Alazab M, Jumaah FM. Based on T-spherical fuzzy environment: A combination of FWZIC and FDOSM for prioritising COVID-19 vaccine dose recipients. J Infect Public Health 2021; 14:1513-1559. [PMID: 34538731 PMCID: PMC8388152 DOI: 10.1016/j.jiph.2021.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/14/2021] [Accepted: 08/21/2021] [Indexed: 01/07/2023] Open
Abstract
The problem complexity of multi-criteria decision-making (MCDM) has been raised in the distribution of coronavirus disease 2019 (COVID-19) vaccines, which required solid and robust MCDM methods. Compared with other MCDM methods, the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) have demonstrated their solidity in solving different MCDM challenges. However, the fuzzy sets used in these methods have neglected the refusal concept and limited the restrictions on their constants. To end this, considering the advantage of the T-spherical fuzzy sets (T-SFSs) in handling the uncertainty in the data and obtaining information with more degree of freedom, this study has extended FWZIC and FDOSM methods into the T-SFSs environment (called T-SFWZIC and T-SFDOSM) to be used in the distribution of COVID-19 vaccines. The methodology was formulated on the basis of decision matrix adoption and development phases. The first phase described the adopted decision matrix used in the COVID-19 vaccine distribution. The second phase presented the sequential formulation steps of T-SFWZIC used for weighting the distribution criteria followed by T-SFDOSM utilised for prioritising the vaccine recipients. Results revealed the following: (1) T-SFWZIC effectively weighted the vaccine distribution criteria based on several parameters including T = 2, T = 4, T = 6, T = 8, and T = 10. Amongst all parameters, the age criterion received the highest weight, whereas the geographic locations severity criterion has the lowest weight. (2) According to the T parameters, a considerable variance has occurred on the vaccine recipient orders, indicating that the existence of T values affected the vaccine distribution. (3) In the individual context of T-SFDOSM, no unique prioritisation was observed based on the obtained opinions of each expert. (4) The group context of T-SFDOSM used in the prioritisation of vaccine recipients was considered the final distribution result as it unified the differences found in an individual context. The evaluation was performed based on systematic ranking assessment and sensitivity analysis. This evaluation showed that the prioritisation results based on each T parameter were subject to a systematic ranking that is supported by high correlation results over all discussed scenarios of changing criteria weights values.
Collapse
Affiliation(s)
- M A Alsalem
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - H A Alsattar
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - A S Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - R T Mohammed
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia; Faculty of Computing and Innovative Technology, Geomatika University College, Kuala Lumpur, Malaysia
| | - O S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - A A Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia.
| | - Alhamzah Alnoor
- School of Management, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - A H Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Sarah Qahtan
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - B B Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia; Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - Uwe Aickelin
- School of Computing and Information Systems, University of Melbourne, 700 Swanston Street, Victoria 3010, Australia
| | - Mamoun Alazab
- College of Engineering, IT and Environment, Charles Darwin University, NT, Australia
| | - F M Jumaah
- Department of Advanced Applications and Embedded Systems, Intel Corporation, Plot 6 Bayan Lepas Technoplex, 11900 Pulau Pinang, Malaysia
| |
Collapse
|
12
|
Novel dynamic fuzzy Decision-Making framework for COVID-19 vaccine dose recipients. J Adv Res 2021; 37:147-168. [PMID: 35475277 PMCID: PMC8378994 DOI: 10.1016/j.jare.2021.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction The vaccine distribution for the COVID-19 is a multicriteria decision-making (MCDM) problem based on three issues, namely, identification of different distribution criteria, importance criteria and data variation. Thus, the Pythagorean fuzzy decision by opinion score method (PFDOSM) for prioritising vaccine recipients is the correct approach because it utilises the most powerful MCDM ranking method. However, PFDOSM weighs the criteria values of each alternative implicitly, which is limited to explicitly weighting each criterion. In view of solving this theoretical issue, the fuzzy-weighted zero-inconsistency (FWZIC) can be used as a powerful weighting MCDM method to provide explicit weights for a criteria set with zero inconstancy. However, FWZIC is based on the triangular fuzzy number that is limited in solving the vagueness related to the aforementioned theoretical issues. Objectives This research presents a novel homogeneous Pythagorean fuzzy framework for distributing the COVID-19 vaccine dose by integrating a new formulation of the PFWZIC and PFDOSM methods. Methods The methodology is divided into two phases. Firstly, an augmented dataset was generated that included 300 recipients based on five COVID-19 vaccine distribution criteria (i.e., vaccine recipient memberships, chronic disease conditions, age, geographic location severity and disabilities). Then, a decision matrix was constructed on the basis of an intersection of the 'recipients list' and 'COVID-19 distribution criteria'. Then, the MCDM methods were integrated. An extended PFWZIC was developed, followed by the development of PFDOSM. Results (1) PFWZIC effectively weighted the vaccine distribution criteria. (2) The PFDOSM-based group prioritisation was considered in the final distribution result. (3) The prioritisation ranks of the vaccine recipients were subject to a systematic ranking that is supported by high correlation results over nine scenarios of the changing criteria weights values. Conclusion The findings of this study are expected to ensuring equitable protection against COVID-19 and thus help accelerate vaccine progress worldwide.
Collapse
|
13
|
Albahri AS, Zaidan AA, Albahri OS, Zaidan BB, Alamoodi AH, Shareef AH, Alwan JK, Hamid RA, Aljbory MT, Jasim AN, Baqer MJ, Mohammed KI. Development of IoT-based mhealth framework for various cases of heart disease patients. HEALTH AND TECHNOLOGY 2021. [DOI: 10.1007/s12553-021-00579-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Abdulkareem M, Petersen SE. The Promise of AI in Detection, Diagnosis, and Epidemiology for Combating COVID-19: Beyond the Hype. Front Artif Intell 2021; 4:652669. [PMID: 34056579 PMCID: PMC8160471 DOI: 10.3389/frai.2021.652669] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 has created enormous suffering, affecting lives, and causing deaths. The ease with which this type of coronavirus can spread has exposed weaknesses of many healthcare systems around the world. Since its emergence, many governments, research communities, commercial enterprises, and other institutions and stakeholders around the world have been fighting in various ways to curb the spread of the disease. Science and technology have helped in the implementation of policies of many governments that are directed toward mitigating the impacts of the pandemic and in diagnosing and providing care for the disease. Recent technological tools, artificial intelligence (AI) tools in particular, have also been explored to track the spread of the coronavirus, identify patients with high mortality risk and diagnose patients for the disease. In this paper, areas where AI techniques are being used in the detection, diagnosis and epidemiological predictions, forecasting and social control for combating COVID-19 are discussed, highlighting areas of successful applications and underscoring issues that need to be addressed to achieve significant progress in battling COVID-19 and future pandemics. Several AI systems have been developed for diagnosing COVID-19 using medical imaging modalities such as chest CT and X-ray images. These AI systems mainly differ in their choices of the algorithms for image segmentation, classification and disease diagnosis. Other AI-based systems have focused on predicting mortality rate, long-term patient hospitalization and patient outcomes for COVID-19. AI has huge potential in the battle against the COVID-19 pandemic but successful practical deployments of these AI-based tools have so far been limited due to challenges such as limited data accessibility, the need for external evaluation of AI models, the lack of awareness of AI experts of the regulatory landscape governing the deployment of AI tools in healthcare, the need for clinicians and other experts to work with AI experts in a multidisciplinary context and the need to address public concerns over data collection, privacy, and protection. Having a dedicated team with expertise in medical data collection, privacy, access and sharing, using federated learning whereby AI scientists hand over training algorithms to the healthcare institutions to train models locally, and taking full advantage of biomedical data stored in biobanks can alleviate some of problems posed by these challenges. Addressing these challenges will ultimately accelerate the translation of AI research into practical and useful solutions for combating pandemics.
Collapse
Affiliation(s)
- Musa Abdulkareem
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, London, United Kingdom
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| | - Steffen E. Petersen
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, London, United Kingdom
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Health Data Research UK, London, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| |
Collapse
|
15
|
COVID-19 Detection Empowered with Machine Learning and Deep Learning Techniques: A Systematic Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083414] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
COVID-19 has infected 223 countries and caused 2.8 million deaths worldwide (at the time of writing this article), and the death rate is increasing continuously. Early diagnosis of COVID patients is a critical challenge for medical practitioners, governments, organizations, and countries to overcome the rapid spread of the deadly virus in any geographical area. In this situation, the previous epidemic evidence on Machine Learning (ML) and Deep Learning (DL) techniques encouraged the researchers to play a significant role in detecting COVID-19. Similarly, the rising scope of ML/DL methodologies in the medical domain also advocates its significant role in COVID-19 detection. This systematic review presents ML and DL techniques practiced in this era to predict, diagnose, classify, and detect the coronavirus. In this study, the data was retrieved from three prevalent full-text archives, i.e., Science Direct, Web of Science, and PubMed, using the search code strategy on 16 March 2021. Using professional assessment, among 961 articles retrieved by an initial query, only 40 articles focusing on ML/DL-based COVID-19 detection schemes were selected. Findings have been presented as a country-wise distribution of publications, article frequency, various data collection, analyzed datasets, sample sizes, and applied ML/DL techniques. Precisely, this study reveals that ML/DL technique accuracy lay between 80% to 100% when detecting COVID-19. The RT-PCR-based model with Support Vector Machine (SVM) exhibited the lowest accuracy (80%), whereas the X-ray-based model achieved the highest accuracy (99.7%) using a deep convolutional neural network. However, current studies have shown that an anal swab test is super accurate to detect the virus. Moreover, this review addresses the limitations of COVID-19 detection along with the detailed discussion of the prevailing challenges and future research directions, which eventually highlight outstanding issues.
Collapse
|
16
|
Mohsin AH, Zaidan AA, Zaidan BB, Mohammed KI, Albahri OS, Albahri AS, Alsalem MA. PSO-Blockchain-based image steganography: towards a new method to secure updating and sharing COVID-19 data in decentralised hospitals intelligence architecture. MULTIMEDIA TOOLS AND APPLICATIONS 2021; 80:14137-14161. [PMID: 33519293 PMCID: PMC7821848 DOI: 10.1007/s11042-020-10284-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/17/2020] [Accepted: 12/22/2020] [Indexed: 05/02/2023]
Abstract
Secure updating and sharing for large amounts of healthcare information (such as medical data on coronavirus disease 2019 [COVID-19]) in efficient and secure transmission are important but challenging in communication channels amongst hospitals. In particular, in addressing the above challenges, two issues are faced, namely, those related to confidentiality and integrity of their health data and to network failure that may cause concerns about data availability. To the authors' knowledge, no study provides secure updating and sharing solution for large amounts of healthcare information in communication channels amongst hospitals. Therefore, this study proposes and discusses a novel steganography-based blockchain method in the spatial domain as a solution. The novelty of the proposed method is the removal and addition of new particles in the particle swarm optimisation (PSO) algorithm. In addition, hash function can hide secret medical COVID-19 data in hospital databases whilst providing confidentiality with high embedding capacity and high image quality. Moreover, stego images with hash data and blockchain technology are used in updating and sharing medical COVID-19 data between hospitals in the network to improve the level of confidentiality and protect the integrity of medical COVID-19 data in grey-scale images, achieve data availability if any connection failure occurs in a single point of the network and eliminate the central point (third party) in the network during transmission. The proposed method is discussed in three stages. Firstly, the pre-hiding stage estimates the embedding capacity of each host image. Secondly, the secret COVID-19 data hiding stage uses PSO algorithm and hash function. Thirdly, the transmission stage transfers the stego images based on blockchain technology and updates all nodes (hospitals) in the network. As proof of concept for the case study, the authors adopted the latest COVID-19 research published in the Computer Methods and Programs in Biomedicine journal, which presents a rescue framework within hospitals for the storage and transfusion of the best convalescent plasma to the most critical patients with COVID-19 on the basis of biological requirements. The validation and evaluation of the proposed method are discussed.
Collapse
Affiliation(s)
- A. H. Mohsin
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
- Republic of Iraq-Presidency of Ministries - Establishment of Martyrs, Baghdad, Iraq
| | - A. A. Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| | - B. B. Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| | - K. I. Mohammed
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| | - O. S. Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| | - A. S. Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - M. A. Alsalem
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| |
Collapse
|
17
|
Mohammed TJ, Albahri AS, Zaidan AA, Albahri OS, Al-Obaidi JR, Zaidan BB, Larbani M, Mohammed RT, Hadi SM. Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component. APPL INTELL 2021; 51:2956-2987. [PMID: 34764579 PMCID: PMC7820530 DOI: 10.1007/s10489-020-02169-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 01/31/2023]
Abstract
As coronavirus disease 2019 (COVID-19) spreads across the world, the transfusion of efficient convalescent plasma (CP) to the most critical patients can be the primary approach to preventing the virus spread and treating the disease, and this strategy is considered as an intelligent computing concern. In providing an automated intelligent computing solution to select the appropriate CP for the most critical patients with COVID-19, two challenges aspects are bound to be faced: (1) distributed hospital management aspects (including scalability and management issues for prioritising COVID-19 patients and donors simultaneously), and (2) technical aspects (including the lack of COVID-19 dataset availability of patients and donors and an accurate matching process amongst them considering all blood types). Based on previous reports, no study has provided a solution for CP-transfusion-rescue intelligent framework during this pandemic that has addressed said challenges and issues. This study aimed to propose a novel CP-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on the matching component process to provide an efficient CP from eligible donors to the most critical patients using multicriteria decision-making (MCDM) methods. A dataset, including COVID-19 patients/donors that have met the important criteria in the virology field, must be augmented to improve the developed framework. Four consecutive phases conclude the methodology. In the first phase, a new COVID-19 dataset is generated on the basis of medical-reference ranges by specialised experts in the virology field. The simulation data are classified into 80 patients and 80 donors on the basis of the five biomarker criteria with four blood types (i.e., A, B, AB, and O) and produced for COVID-19 case study. In the second phase, the identification scenario of patient/donor distributions across four centralised/decentralised telemedicine hospitals is identified 'as a proof of concept'. In the third phase, three stages are conducted to develop a CP-transfusion-rescue framework. In the first stage, two decision matrices are adopted and developed on the basis of the five 'serological/protein biomarker' criteria for the prioritisation of patient/donor lists. In the second stage, MCDM techniques are analysed to adopt individual and group decision making based on integrated AHP-TOPSIS as suitable methods. In the third stage, the intelligent matching components amongst patients/donors are developed on the basis of four distinct rules. In the final phase, the guideline of the objective validation steps is reported. The intelligent framework implies the benefits and strength weights of biomarker criteria to the priority configuration results and can obtain efficient CPs for the most critical patients. The execution of matching components possesses the scalability and balancing presentation within centralised/decentralised hospitals. The objective validation results indicate that the ranking is valid.
Collapse
Affiliation(s)
- Thura J. Mohammed
- grid.444506.70000 0000 9272 6490Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia ,Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - A. S. Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - A. A. Zaidan
- grid.444506.70000 0000 9272 6490Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia
| | - O. S. Albahri
- grid.444506.70000 0000 9272 6490Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia
| | - Jameel R. Al-Obaidi
- grid.444506.70000 0000 9272 6490Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak Malaysia
| | - B. B. Zaidan
- grid.444506.70000 0000 9272 6490Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia
| | - Moussa Larbani
- grid.34428.390000 0004 1936 893XSchool of Mathematics and Statistics, Carleton University, Ottawa, ON Canada
| | - R. T. Mohammed
- grid.11142.370000 0001 2231 800XFaculty of Computer Science and Information Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Suha M. Hadi
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| |
Collapse
|
18
|
Albahri OS, Zaidan AA, Salih MM, Zaidan BB, Khatari MA, Ahmed MA, Albahri AS, Alazab M. Multidimensional benchmarking of the active queue management methods of network congestion control based on extension of fuzzy decision by opinion score method. INT J INTELL SYST 2020. [DOI: 10.1002/int.22322] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Osamah Shihab Albahri
- Department of Computing Universiti Pendidikan Sultan Idris, Tanjong Malim Perak Malaysia
| | - Aws Alaa Zaidan
- Department of Computing Universiti Pendidikan Sultan Idris, Tanjong Malim Perak Malaysia
| | - Mahmood M. Salih
- Department of Computer Science, Computer Science and Mathematics College Tikrit University Tikrit 34001 Iraq
| | - Bilal Bahaa Zaidan
- Department of Computing Universiti Pendidikan Sultan Idris, Tanjong Malim Perak Malaysia
| | - Maimuna A. Khatari
- Department of Computing Universiti Pendidikan Sultan Idris, Tanjong Malim Perak Malaysia
| | - Mohamed A. Ahmed
- Department of Computer Science, Computer Science and Mathematics College Tikrit University Tikrit 34001 Iraq
| | - Ahmed Shihab Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI) Tikrit University Baghdad Iraq
| | - Mamoun Alazab
- College of Engineering, IT and Environment Charles Darwin University NT 0909 Australia
| |
Collapse
|
19
|
Albahri OS, Al-Obaidi JR, Zaidan AA, Albahri AS, Zaidan BB, Salih MM, Qays A, Dawood KA, Mohammed RT, Abdulkareem KH, Aleesa AM, Alamoodi AH, Chyad MA, Zulkifli CZ. Helping doctors hasten COVID-19 treatment: Towards a rescue framework for the transfusion of best convalescent plasma to the most critical patients based on biological requirements via ml and novel MCDM methods. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105617. [PMID: 32593060 PMCID: PMC7305916 DOI: 10.1016/j.cmpb.2020.105617] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/16/2020] [Indexed: 05/04/2023]
Abstract
CONTEXT People who have recently recovered from the threat of deteriorating coronavirus disease-2019 (COVID-19) have antibodies to the coronavirus circulating in their blood. Thus, the transfusion of these antibodies to deteriorating patients could theoretically help boost their immune system. Biologically, two challenges need to be surmounted to allow convalescent plasma (CP) transfusion to rescue the most severe COVID-19 patients. First, convalescent subjects must meet donor selection plasma criteria and comply with national health requirements and known standard routine procedures. Second, multi-criteria decision-making (MCDM) problems should be considered in the selection of the most suitable CP and the prioritisation of patients with COVID-19. OBJECTIVE This paper presents a rescue framework for the transfusion of the best CP to the most critical patients with COVID-19 on the basis of biological requirements by using machine learning and novel MCDM methods. METHOD The proposed framework is illustrated on the basis of two distinct and consecutive phases (i.e. testing and development). In testing, ABO compatibility is assessed after classifying donors into the four blood types, namely, A, B, AB and O, to indicate the suitability and safety of plasma for administration in order to refine the CP tested list repository. The development phase includes patient and donor sides. In the patient side, prioritisation is performed using a contracted patient decision matrix constructed between 'serological/protein biomarkers and the ratio of the partial pressure of oxygen in arterial blood to fractional inspired oxygen criteria' and 'patient list based on novel MCDM method known as subjective and objective decision by opinion score method'. Then, the patients with the most urgent need are classified into the four blood types and matched with a tested CP list from the test phase in the donor side. Thereafter, the prioritisation of CP tested list is performed using the contracted CP decision matrix. RESULT An intelligence-integrated concept is proposed to identify the most appropriate CP for corresponding prioritised patients with COVID-19 to help doctors hasten treatments. DISCUSSION The proposed framework implies the benefits of providing effective care and prevention of the extremely rapidly spreading COVID-19 from affecting patients and the medical sector.
Collapse
Affiliation(s)
- O S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak 35900, Malaysia
| | - A A Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia.
| | - A S Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - B B Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia
| | - Mahmood M Salih
- Department of Computer Science, Computer Science and Mathematics College, Tikrit University, Tikrit 34001, Iraq
| | - Abdulhadi Qays
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia
| | - K A Dawood
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - R T Mohammed
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Karrar Hameed Abdulkareem
- Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia
| | - A M Aleesa
- Faculty of Electronic and Electrical Engineering, Universiti Tun Hussein Onn, Batu Pahat, Johor 86400, Malaysia
| | - A H Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia
| | - M A Chyad
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia
| | - Che Zalina Zulkifli
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia
| |
Collapse
|
20
|
A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy Delphi and hybrid multi-criteria decision analysis methods. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-05020-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Mohammed KI, Zaidan AA, Zaidan BB, Albahri OS, Albahri AS, Alsalem MA, Mohsin AH. Novel technique for reorganisation of opinion order to interval levels for solving several instances representing prioritisation in patients with multiple chronic diseases. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 185:105151. [PMID: 31710981 DOI: 10.1016/j.cmpb.2019.105151] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/20/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
CONTEXT Telemedicine has been increasingly used in healthcare to provide services to patients remotely. However, prioritising patients with multiple chronic diseases (MCDs) in telemedicine environment is challenging because it includes decision-making (DM) with regard to the emergency degree of each chronic disease for every patient. OBJECTIVE This paper proposes a novel technique for reorganisation of opinion order to interval levels (TROOIL) to prioritise the patients with MCDs in real-time remote health-monitoring system. METHODS The proposed TROOIL technique comprises six steps for prioritisation of patients with MCDs: (1) conversion of actual data into intervals; (2) rule generation; (3) rule ordering; (4) expert rule validation; (5) data reorganisation; and (6) criteria weighting and ranking alternatives within each rule. The secondary dataset of 500 patients from the most relevant study in a remote prioritisation area was adopted. The dataset contains three diseases, namely, chronic heart disease, high blood pressure (BP) and low BP. RESULTS The proposed TROOIL is an effective technique for prioritising patients with MCDs. In the objective validation, remarkable differences were recognised among the groups' scores, indicating identical ranking results. In the evaluation of issues within all scenarios, the proposed framework has an advantage of 22.95% over the benchmark framework. DISCUSSION Patients with the most severe MCD were treated first on the basis of their highest priority levels. The treatment for patients with less severe cases was delayed more than that for other patients. CONCLUSIONS The proposed TROOIL technique can deal with multiple DM problems in prioritisation of patients with MCDs.
Collapse
Affiliation(s)
- K I Mohammed
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia
| | - A A Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia
| | - B B Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia.
| | - O S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia
| | - A S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia
| | - M A Alsalem
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia
| | - A H Mohsin
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia
| |
Collapse
|
22
|
Real-Time Remote-Health Monitoring Systems: a Review on Patients Prioritisation for Multiple-Chronic Diseases, Taxonomy Analysis, Concerns and Solution Procedure. J Med Syst 2019; 43:223. [PMID: 31187288 DOI: 10.1007/s10916-019-1362-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/30/2019] [Indexed: 01/01/2023]
Abstract
Remotely monitoring a patient's condition is a serious issue and must be addressed. Remote health monitoring systems (RHMS) in telemedicine refers to resources, strategies, methods and installations that enable doctors or other medical professionals to work remotely to consult, diagnose and treat patients. The goal of RHMS is to provide timely medical services at remote areas through telecommunication technologies. Through major advancements in technology, particularly in wireless networking, cloud computing and data storage, RHMS is becoming a feasible aspect of modern medicine. RHMS for the prioritisation of patients with multiple chronic diseases (MCDs) plays an important role in sustainably providing high-quality healthcare services. Further investigations are required to highlight the limitations of the prioritisation of patients with MCDs over a telemedicine environment. This study introduces a comprehensive and inclusive review on the prioritisation of patients with MCDs in telemedicine applications. Furthermore, it presents the challenges and open issues regarding patient prioritisation in telemedicine. The findings of this study are as follows: (1) The limitations and problems of existing patients' prioritisation with MCDs are presented and emphasised. (2) Based on the analysis of the academic literature, an accurate solution for remote prioritisation in a large scale of patients with MCDs was not presented. (3) There is an essential need to produce a new multiple-criteria decision-making theory to address the current problems in the prioritisation of patients with MCDs.
Collapse
|
23
|
Mobile-Based Patient Monitoring Systems: A Prioritisation Framework Using Multi-Criteria Decision-Making Techniques. J Med Syst 2019; 43:219. [PMID: 31172296 DOI: 10.1007/s10916-019-1339-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
This study presents a prioritisation framework for mobile patient monitoring systems (MPMSs) based on multicriteria analysis in architectural components. This framework selects the most appropriate system amongst available MPMSs for the telemedicine environment. Prioritisation of MPMSs is a challenging task due to (a) multiple evaluation criteria, (b) importance of criteria, (c) data variation and (d) unmeasurable values. The secondary data presented as the decision evaluation matrix include six systems (namely, Yale-National Aeronautics and Space Administration (NASA), advanced health and disaster aid network, personalised health monitoring, CMS, MobiHealth and NTU) as alternatives and 13 criteria (namely, supported number of sensors, sensor front-end (SFE) communication, SFE to mobile base unit (MBU) communications, display of biosignals on the MBU, storage of biosignals on the MBU, intra-body area network (BAN) communication problems, extra-BAN communication problems, extra-BAN communication technology, extra-BAN communication protocols, back-end system communication technology, intended geographic area of use, end-to-end security and reported trial problems) based on the architectural components of MPMSs. These criteria are adopted from the most relevant studies and are found to be applicable to this study. The prioritisation framework is developed in three stages. (1) The unmeasurable values of the MPMS evaluation criteria in the adopted decision evaluation matrix based on expert opinion are represented by using the best-worst method (BWM). (2) The importance of the evaluation criteria based on the architectural components of the MPMS is determined by using the BWM. (3) The VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method is utilised to rank the MPMSs according to the determined importance of the evaluation criteria and the adopted decision matrix. For validation, mean ± standard deviation is used to verify the similarity of systematic prioritisations objectively. The following results are obtained. (1) The BWM represents the unmeasurable values of the MPMS evaluation criteria. (2) The BWM is suitable for weighing the evaluation criteria based on the architectural components of the MPMS. (3) VIKOR is suitable for solving the MPMS prioritisation problem. Moreover, the internal and external VIKOR group decision making are approximately the same, with the best MPMS being 'Yale-NASA' and the worst MPMS being 'NTU'. (4) For the objective validation, remarkable differences are observed between the group scores, which indicate the similarity of internal and external prioritisation results.
Collapse
|
24
|
Multiclass Benchmarking Framework for Automated Acute Leukaemia Detection and Classification Based on BWM and Group-VIKOR. J Med Syst 2019; 43:212. [PMID: 31154550 DOI: 10.1007/s10916-019-1338-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
This paper aims to assist the administration departments of medical organisations in making the right decision on selecting a suitable multiclass classification model for acute leukaemia. In this paper, we proposed a framework that will aid these departments in evaluating, benchmarking and ranking available multiclass classification models for the selection of the best one. Medical organisations have continuously faced evaluation and benchmarking challenges in such endeavour, especially when no single model is superior. Moreover, the improper selection of multiclass classification for acute leukaemia model may be costly for medical organisations. For example, when a patient dies, one such organisation will be legally or financially sued for incidents in which the model fails to fulfil its desired outcome. With regard to evaluation and benchmarking, multiclass classification models are challenging processes due to multiple evaluation and conflicting criteria. This study structured a decision matrix (DM) based on the crossover of 2 groups of multi-evaluation criteria and 22 multiclass classification models. The matrix was then evaluated with datasets comprising 72 samples of acute leukaemia, which include 5327 gens. Subsequently, multi-criteria decision-making (MCDM) techniques are used in the benchmarking and ranking of multiclass classification models. The MCDM used techniques that include the integrated BWM and VIKOR. BWM has been applied for the weight calculations of evaluation criteria, whereas VIKOR has been used to benchmark and rank classification models. VIKOR has also been employed in two decision-making contexts: individual and group decision making and internal and external group aggregation. Results showed the following: (1) the integration of BWM and VIKOR is effective at solving the benchmarking/selection problems of multiclass classification models. (2) The ranks of classification models obtained from internal and external VIKOR group decision making were almost the same, and the best multiclass classification model based on the two was 'Bayes. Naive Byes Updateable' and the worst one was 'Trees.LMT'. (3) Among the scores of groups in the objective validation, significant differences were identified, which indicated that the ranking results of internal and external VIKOR group decision making were valid.
Collapse
|
25
|
Almahdi EM, Zaidan AA, Zaidan BB, Alsalem MA, Albahri OS, Albahri AS. Mobile Patient Monitoring Systems from a Benchmarking Aspect: Challenges, Open Issues and Recommended Solutions. J Med Syst 2019; 43:207. [PMID: 31144129 DOI: 10.1007/s10916-019-1336-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 11/30/2022]
Abstract
This paper presents comprehensive insights into mobile patient monitoring systems (MPMSs) from evaluation and benchmarking aspects on the basis of two critical directions. The current evaluation criteria of MPMSs based on the architectural components of MPMSs and possible solutions are discussed. This review highlights four serious issues, namely, multiple evaluation criteria, criterion importance, unmeasurable criteria and data variation, in MPMS benchmarking. Multicriteria decision-making (MCDM) analysis techniques are proposed as effective solutions to solve these issues from a methodological aspect. This methodological aspect involves a framework for benchmarking MPMSs on the basis of MCDM to rank available MPMSs and select a suitable one. The benchmarking framework is discussed in four steps. Firstly, pre-processing and identification procedures are presented. Secondly, the procedure of weight calculation based on the best-worst method (BWM) is described. Thirdly, the development of a benchmark framework by using the VIKOR method is introduced. Lastly, the proposed framework is validated.
Collapse
Affiliation(s)
- E M Almahdi
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - A A Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia.
| | - B B Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - M A Alsalem
- College of Administration and Economic, University of Mosul, Mosul, Iraq
| | - O S Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - A S Albahri
- College of Engineering, University of Information Technology and Communications, Baghdad, Iraq
| |
Collapse
|