1
|
Bravo AC, Morão B, Luz A, Dourado R, Oliveira B, Guedes A, Moreira-Barbosa C, Fidalgo C, Mascarenhas-Lemos L, Costa-Santos MP, Maio R, Paulino J, Viana Baptista P, Fernandes AR, Cravo M. Bringing Hope to Improve Treatment in Pancreatic Ductal Adenocarcinoma-A New Tool for Molecular Profiling of KRAS Mutations in Tumor and Plasma Samples. Cancers (Basel) 2024; 16:3544. [PMID: 39456638 PMCID: PMC11506488 DOI: 10.3390/cancers16203544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) incidence is rising, and prognosis remains poor due to late diagnosis and limited effective therapies. Currently, patients are treated based on TNM staging, without molecular tumor characterization. This study aimed to validate a technique that combines the amplification refractory mutation system (ARMS) with high-resolution melting analysis (HRMA) for detecting mutations in codon 12 of KRAS in tumor and plasma, and to assess its prognostic value. METHODS Prospective study including patients with newly diagnosed PDAC with tumor and plasma samples collected before treatment. Mutations in codon 12 of KRAS (G12D, G12V, G12C, and G12R) were detected using ARMS-HRMA and compared to Sanger sequencing (SS). Univariate and multivariate analyses were used to evaluate the prognostic significance of these mutations. RESULTS A total of 88 patients, 93% with ECOG-PS 0-1, 57% with resectable disease. ARMS-HRMA technique showed a higher sensitivity than SS, both in tumor and plasma (77% vs. 51%; 25 vs. 0%, respectively). The most frequent mutation was G12D (n = 32, 36%), followed by G12V (n = 22, 25%). On multivariate analysis, patients with G12D and/or G12C mutations, either in tumor or plasma, had lower PFS (HR 1.792, 95% CI 1.061-3.028, p = 0.029; HR 2.081, 95% CI 1.014-4.272, p = 0.046, respectively) and lower OS (HR 1.757, 95% CI 1.013-3.049, p = 0.045; HR 2.229, 95% CI 1.082-4.594, p = 0.030, respectively). CONCLUSIONS ARMS-HRMA is a rapid and cost-effective method for detecting KRAS mutations in PDAC patients, offering the potential for stratifying prognosis and guiding treatment decisions. The presence of G12D and G12C mutations in both tumor and plasma is associated with a poorer prognosis.
Collapse
Affiliation(s)
- Ana Catarina Bravo
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
| | - Bárbara Morão
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
| | - André Luz
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Rúben Dourado
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Beatriz Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ana Guedes
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
- Hospital da Luz Learning Health, Luz Saúde, 1500-650 Lisboa, Portugal
| | - Catarina Moreira-Barbosa
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
- Hospital da Luz Learning Health, Luz Saúde, 1500-650 Lisboa, Portugal
| | - Catarina Fidalgo
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
| | - Luís Mascarenhas-Lemos
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
- NOVA Medical School, 1169-056 Lisboa, Portugal
- Catolica Medical School, 1649-023 Lisboa, Portugal
| | | | - Rui Maio
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
- NOVA Medical School, 1169-056 Lisboa, Portugal
| | - Jorge Paulino
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
- NOVA Medical School, 1169-056 Lisboa, Portugal
| | - Pedro Viana Baptista
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Marília Cravo
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
- Lisbon School of Medicine, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
2
|
Hálková T, Bunganič B, Traboulsi E, Minárik M, Zavoral M, Benešová L. Prognostic Role of Specific KRAS Mutations Detected in Aspiration and Liquid Biopsies from Patients with Pancreatic Cancer. Genes (Basel) 2024; 15:1302. [PMID: 39457426 PMCID: PMC11507146 DOI: 10.3390/genes15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Although the overall survival prognosis of patients in advanced stages of pancreatic ductal adenocarcinoma (PDAC) is poor, typically ranging from days to months from diagnosis, there are rare cases of patients remaining in therapy for longer periods of time. Early estimations of survival prognosis would allow rational decisions on complex therapy interventions, including radical surgery and robust systemic therapy regimens. Understandably, there is great interest in finding prognostic markers that can be used for patient stratification. We determined the role of various KRAS mutations in the prognosis of PDAC patients using biopsy samples and circulating tumor DNA. Methods: A total of 118 patients with PDAC, clinically confirmed by endoscopic ultrasound-guided fine-needle aspiration biopsy (EUS-FNB), were included in the study. DNA was extracted from cytological slides following a standard cytology evaluation to ensure adequacy (viability and quantity) and to mark the tumor cell fraction. Circulating tumor DNA (ctDNA) was extracted from plasma samples of 45 patients in stage IV of the disease. KRAS mutations in exons 12 and 13 were detected by denaturing capillary electrophoresis (DCE), revealing a minute presence of mutation-specific heteroduplexes. Kaplan-Meier survival curves were calculated for individual KRAS mutation types. Results:KRAS mutations were detected in 90% of tissue (106/118) and 44% of plasma (20/45) samples. All mutations were localized at exon 2, codon 12, with G12D (GGT > GAT) being the most frequent at 44% (47/106) and 65% (13/20), followed by other types including G12V (GGT > GTT) at 31% (33/106) and 10% (2/20), G12R (GGT > CGT) at 17% (18/106) and 10% (2/20), G12C (GGT/TGT) at 5% (5/106) and 0% (0/20) and G12S (GGT/AGT) at 1% (1/106) and 5% (1/20) in tissue and plasma samples, respectively. Two patients had two mutations simultaneously (G12V + G12S and G12D + G12S) in both types of samples (2%, 2/106 and 10%, 2/20 in tissue and plasma samples, respectively). The median survival of patients with the G12D mutation in tissues was less than half that of other patients (median survival 101 days, 95% CI: 80-600 vs. 228 days, 95% CI: 184-602), with a statistically significant overall difference in survival (p = 0.0080, log-rank test), and furthermore it was less than that of all combined patients with other mutation types (101 days, 95% CI: 80-600 vs. 210 days, 95% CI: 161-602, p = 0.0166). For plasma samples, the survival of patients with this mutation was six times shorter than that of patients without the G12D mutation (27 days, 95% CI: 8-334 vs. 161 days, 95% CI: 107-536, p = 0.0200). In contrast, patients with detected KRAS G12R in the tissue survived nearly twice as long as other patients in the aggregate (286 days, 95% CI: 70-602 vs. 162 days, 95% CI: 122-600, p = 0.0374) or patients with other KRAS mutations (286 days, 95% CI: 70-602 vs. 137 days, 95% CI: 107-600, p = 0.0257). Conclusions: Differentiation of specific KRAS mutations in EUS-FNB and ctDNA (above all, the crucial G12D and G12R) is feasible in routine management of PDAC patients and imperative for assessment of prognosis.
Collapse
Affiliation(s)
- Tereza Hálková
- Centre for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Drnovská 1112/60, 161 00 Prague, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8/2030, 128 00 Prague, Czech Republic
| | - Bohuš Bunganič
- Department of Medicine, First Faculty of Medicine, Charles University and Military University Hospital, U Vojenské Nemocnice 1200, 169 02 Prague, Czech Republic
| | - Eva Traboulsi
- Department of Pathology, Military University Hospital Prague, U Vojenské Nemocnice 1200, 169 02 Prague, Czech Republic
| | - Marek Minárik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8/2030, 128 00 Prague, Czech Republic;
| | - Miroslav Zavoral
- Department of Medicine, First Faculty of Medicine, Charles University and Military University Hospital, U Vojenské Nemocnice 1200, 169 02 Prague, Czech Republic
| | - Lucie Benešová
- Centre for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Drnovská 1112/60, 161 00 Prague, Czech Republic
| |
Collapse
|
3
|
Tiong J, Nguyen P, Sritharan M, Lundy J, Shen H, Kumar B, Swan M, Jenkins B, Croagh D. Evaluation of Needles in Endoscopic Ultrasound-Guided Tissue Acquisition of Pancreatic Cancer for Genetic Yield and Quality. Cureus 2024; 16:e68431. [PMID: 39360054 PMCID: PMC11445693 DOI: 10.7759/cureus.68431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Endoscopic ultrasound-guided fine needle biopsy (FNB) is the gold standard in tissue acquisition of pancreatic ductal adenocarcinoma (PDAC). There is a paucity of evidence of the impact of needle type or size on the genetic yield and quality. METHODS Patients 18 years and older with PDAC who underwent FNB were retrospectively identified from a single database from 2016 to 2021. Genetic quantity is measured in micrograms (µg) and quality defined by RNA or DNA integrity number (RIN and DIN). FNB needles examined were Acquire 22 gauge (Boston Scientific, Marlborough, MA, USA) and ProCore 22 and 20 gauges (Cook Medical, Bloomington, IN, USA). RESULTS Two hundred seventy-seven patients were identified. ProCore 20G needle procured higher RNA quantity (4125.8µg, IQR: 2003.8, 5954.8, p = 0.012) compared to ProCore 22G (2050µg IQR: 966.4, 3181.6) and Acquire 22G (2310.6µg, IQR: 1439.3, 4312). Median DNA quantity was 3340.5µg (Acquire 22G), 2610.4µg (ProCore 22G) and 3499.7µg (ProCore 20G) (p = 0.763). Median DIN was 7.3 (Acquire 22G and ProCore 22G) and 7.4 (ProCore 20G) (p = 0.449). Median RIN was 3.0 (Acquire 22G and ProCore 22G) and 2.7 (ProCore 20G) (p = 0.886). CONCLUSION ProCore 20G was associated with higher quantity of RNA. There were no differences in the quality acquired by different needles.
Collapse
Affiliation(s)
| | - Phi Nguyen
- Department of Surgery, Monash Health, Melbourne, AUS
| | | | - Joanne Lundy
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, AUS
| | - Henry Shen
- Department of Surgery, Monash Health, Melbourne, AUS
| | - Beena Kumar
- Department of Anatomical Pathology, Monash Health, Melbourne, AUS
| | - Michael Swan
- Department of Gastroenterology, Monash Health, Melbourne, AUS
| | - Brendan Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, AUS
| | - Daniel Croagh
- Department of Surgery, Monash Health, Melbourne, AUS
| |
Collapse
|
4
|
Tavano F, Latiano A, Palmieri O, Gioffreda D, Latiano T, Gentile A, Tardio M, Latiano TP, Gentile M, Terracciano F, Perri F. Duodenal Fluid Analysis as a Rewarding Approach to Detect Low-Abundance Mutations in Biliopancreatic Cancers. Int J Mol Sci 2024; 25:8436. [PMID: 39126005 PMCID: PMC11312909 DOI: 10.3390/ijms25158436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Diagnosis of biliopancreatic cancers by the available serum tumor markers, imaging, and histopathological tissue specimen examination remains a challenge. Circulating cell-free DNA derived from matched pairs of secretin-stimulated duodenal fluid (DF) and plasma from 10 patients with biliopancreatic diseases and 8 control subjects was analyzed using AmpliSeq™ HD technology for Ion Torrent Next-Generation Sequencing to evaluate the potential of liquid biopsy with DF in biliopancreatic cancers. The median cfDNA concentration was greater in DF-derived than in plasma-derived samples. A total of 13 variants were detected: 11 vs. 1 were exclusive for DF relative to the plasma source, and 1 was shared between the two body fluids. According to the four-tier systems, 10 clinical tier-I-II (76.9%), 1 tier-III (7.7%), and 2 tier-IV (15.4%) variants were identified. Notably, the 11 tier-I-III variants were exclusively found in DF-derived cfDNA from five patients with biliopancreatic cancers, and were detected in seven genes (KRAS, TP53, BRAF, CDKN2A, RNF43, GNAS, and PIK3CA); 82% of the tier-I-III variants had a low abundance, with a VAF < 6%. The mutational profiling of DF seems to be a reliable and promising tool for identifying cancer-associated alterations in malignant cancers of the biliopancreatic tract.
Collapse
Affiliation(s)
- Francesca Tavano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Anna Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Orazio Palmieri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Tiziana Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Annamaria Gentile
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Matteo Tardio
- Department of Surgery, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Tiziana Pia Latiano
- Department of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Marco Gentile
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Fulvia Terracciano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Francesco Perri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| |
Collapse
|
5
|
Nusrat F, Khanna A, Jain A, Jiang W, Lavu H, Yeo CJ, Bowne W, Nevler A. The Clinical Implications of KRAS Mutations and Variant Allele Frequencies in Pancreatic Ductal Adenocarcinoma. J Clin Med 2024; 13:2103. [PMID: 38610868 PMCID: PMC11012482 DOI: 10.3390/jcm13072103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The KRAS proto-oncogene is a major driver of pancreatic tumorigenesis and is nearly ubiquitously mutated in pancreatic ductal adenocarcinoma (PDAC). KRAS point mutations are detected in over 90% of PDAC cases, and these mutations have been shown to be associated with worse therapy response and overall survival. Pathogenic KRAS mutations are mostly limited to codons 12, 13 and 61, with G12D, G12V, G12R, Q61H, and G13D accounting for approximately 95% of the mutant cases. Emerging data have shown the importance of specific mutant subtypes, as well as KRAS variant allele frequency on clinical prognosis. Furthermore, novel technologies and therapies are being developed to target specific mutant subtypes, with encouraging early results. In this paper, we aim to review the recent studies regarding the relative impact of specific mutant KRAS subtypes on oncologic outcomes, the application of variant allele frequency in next generation sequencing analyses, and the ongoing research into therapies targeting specific mutant KRAS subtypes.
Collapse
Affiliation(s)
- Faria Nusrat
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Akshay Khanna
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Aditi Jain
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Wei Jiang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Harish Lavu
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Charles J Yeo
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Wilbur Bowne
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Avinoam Nevler
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Guo X, Lou W, Xu Y, Zhuang R, Yao L, Wu J, Fu D, Zhang J, Liu J, Rong Y, Jin D, Wu W, Xu X, Ji Y, Wu L, Lv M, Yao X, Liu X, Wang D, Kuang T, Liu L, Wang W, Liu T, Zhou Y. Efficacy of nab‑paclitaxel vs. Gemcitabine in combination with S‑1 for advanced pancreatic cancer: A multicenter phase II randomized trial. Oncol Lett 2024; 27:161. [PMID: 38449794 PMCID: PMC10915801 DOI: 10.3892/ol.2024.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024] Open
Abstract
Patients with advanced pancreatic cancer (PC) need a cost-effective treatment regimen. The present study was designed to compare the efficacy and safety of nab-paclitaxel plus S-1 (AS) and gemcitabine plus S-1 (GS) regimens in patients with chemotherapy-naïve advanced PC. In this open-label, multicenter, randomized study named AvGmPC, eligible patients with chemotherapy-naïve advanced PC were randomly assigned (1:1) to receive AS (125 mg/m2 nab-paclitaxel, days 1 and 8; 80-120 mg S-1, days 1-14) or GS (1,000 mg/m2 gemcitabine, days 1 and 8; 80-120 mg S-1, days 1-14). The treatment was administered every 3 weeks until intolerable toxicity or disease progression occurred. The primary endpoint was progression-free survival (PFS). Between December 2018 and March 2022, 101 of 106 randomized patients were treated and evaluated for analysis (AS, n=49; GS, n=52). As of the data cutoff, the median follow-up time was 11.37 months [95% confidence interval (CI), 9.31-13.24]. The median PFS was 7.16 months (95% CI, 5.19-12.32) for patients treated with AS and 6.41 months (95% CI, 3.72-8.84) for patients treated with GS (HR=0.78; 95% CI, 0.51-1.21; P=0.264). The AS regimen showed a slightly improved overall survival (OS; 13.27 vs. 10.64 months) and a significantly improved ORR (44.90 vs. 15.38%; P=0.001) compared with the GS regimen. In the subgroup analyses, PFS and OS benefits were observed in patients treated with the AS regimen who had KRAS gene mutations and high C-reactive protein (CRP) levels (≥5 mg/l). The most common grade ≥3 adverse events were neutropenia, anemia and alopecia in the two groups. Thrombocytopenia occurred more frequently in the GS group than in the AS group. While the study did not meet the primary endpoint, the response benefit observed for AS may be suggestive of meaningful clinical activity in this population. In particular, promising survival benefits were observed in the subsets of patients with KRAS gene mutations and high CRP levels, which is encouraging and warrants further investigation. This trial was retrospectively registered as ChiCTR1900024588 on July 18, 2019.
Collapse
Affiliation(s)
- Xi Guo
- Department of Medical Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
- Cancer Center, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
- Center of Evidence-Based Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Yaolin Xu
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Rongyuan Zhuang
- Department of Medical Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
- Cancer Center, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
- Center of Evidence-Based Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Lie Yao
- Department of Pancreatic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Junwei Wu
- Oncology Department, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Deliang Fu
- Department of Pancreatic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Jun Zhang
- Oncology Department, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Jing Liu
- Oncology Department, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yefei Rong
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Dayong Jin
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Xuefeng Xu
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Lili Wu
- Department of Radiotherapy, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Minzhi Lv
- Department of Biostatistics, Clinical Research Unit, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Xiuzhong Yao
- Department of Radiology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Xiaowei Liu
- Department of Anti-tumor Business, Shi Yao Group European Pharmaceutical Co., Ltd., Shijiazhuang, Hebei 050035, P.R. China
| | - Dansong Wang
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Liang Liu
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Wenquan Wang
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
- Cancer Center, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
- Center of Evidence-Based Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
- Cancer Center, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
7
|
Okuno N, Hara K. Endoscopic ultrasound-guided tissue acquisition for comprehensive genomic profiling. J Med Ultrason (2001) 2024; 51:253-260. [PMID: 38281237 DOI: 10.1007/s10396-023-01403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/18/2023] [Indexed: 01/30/2024]
Abstract
Advances in next-generation sequencing have made comprehensive genomic profiling (CGP) using tumor tissue specimens and liquid biopsy using blood samples feasible in routine clinical practice. In the context of pancreaticobiliary cancer, it is necessary to consider CGP in formulating individualized treatment strategies. Performing CGP with tumor tissue specimens requires a sufficient number of high-quality samples. EUS-guided tissue acquisition (EUS-TA) is expected to play a significant role in this regard, and endosonographers need to address this role. Here, we review the current status of EUS-TA for CGP focusing on pancreatic cancer and biliary tract cancer.
Collapse
Affiliation(s)
- Nozomi Okuno
- Department of Gastroenterology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan.
| | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| |
Collapse
|
8
|
Kikuchi Y, Shimada H, Hatanaka Y, Kinoshita I, Ikarashi D, Nakatsura T, Kitano S, Naito Y, Tanaka T, Yamashita K, Oshima Y, Nanami T. Clinical practice guidelines for molecular tumor markers, 2nd edition review part 1. Int J Clin Oncol 2024; 29:1-19. [PMID: 38019341 DOI: 10.1007/s10147-023-02430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/14/2023] [Indexed: 11/30/2023]
Abstract
With advances in gene and protein analysis technologies, many target molecules that may be useful in cancer diagnosis have been reported. Therefore, the "Tumor Marker Study Group" was established in 1981 with the aim of "discovering clinically" useful molecules. Later, the name was changed to "Japanese Society for Molecular Tumor Marker Research" in 2000 in response to the remarkable progress in gene-related research. Currently, the world of cancer treatment is shifting from the era of representative tumor markers of each cancer type used for tumor diagnosis and treatment evaluation to the study of companion markers for molecular-targeted therapeutics that target cancer cells. Therefore, the first edition of the Molecular Tumor Marker Guidelines, which summarizes tumor markers and companion markers in each cancer type, was published in 2016. After publication of the first edition, the gene panel testing using next-generation sequencing became available in Japan in June 2019 for insured patients. In addition, immune checkpoint inhibitors have been indicated for a wide range of cancer types. Therefore, the 2nd edition of the Molecular Tumor Marker Guidelines was published in September 2021 to address the need to revise the guidelines. Here, we present an English version of the review (Part 1) of the Molecular Tumor Marker Guidelines, Second Edition.
Collapse
Affiliation(s)
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University, Tokyo, Japan.
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan.
| | - Yutaka Hatanaka
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Ichiro Kinoshita
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Hokkaido, Japan
| | - Daiki Ikarashi
- Department of Urology, Iwate Medical University, Iwate, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shigehisa Kitano
- Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoichi Naito
- Department of General Internal Medicine, National Cancer Center Hospital East, Chiba, Japan
| | - Toshimichi Tanaka
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Tokyo, Japan
| | - Keishi Yamashita
- Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Tokyo, Japan
| | - Yoko Oshima
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan
| | - Tatsuki Nanami
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan
| |
Collapse
|
9
|
Cheng C, Hou K, Hsu C, Chiang L. Ultrasensitive and High-Resolution Protein Spatially Decoding Framework for Tumor Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304926. [PMID: 37984870 PMCID: PMC10797477 DOI: 10.1002/advs.202304926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/28/2023] [Indexed: 11/22/2023]
Abstract
Proteins localized on the surface or within the lumen of tumor-derived extracellular vesicles (EVs) play distinct roles in cancer progression. However, quantifying both populations of proteins within EVs has been hampered due to the limited sensitivity of the existing protein detection methods and inefficient EV isolation techniques. In this study, the eSimoa framework, an innovative approach enabling spatial decoding of EV protein biomarkers with unmatched sensitivity and specificity is presented. Using the luminal eSimoa pipeline, the absolute concentration of luminal RAS or KRASG12D proteins is released and measured, uncovering their prevalence in pancreatic tumor-derived EVs. The pulldown eSimoa pipeline measured absolute protein concentrations from low-abundance EV subpopulations. The eSimoa assays detected EVs in both PBS and plasma samples, confirming their applicability across diverse clinical sample types. Overall, the eSimoa framework offers a valuable tool to (1) detect EVs at concentrations as low as 105 EV mL-1 in plasma, (2) quantify absolute EV protein concentrations as low as fM, and (3) decode the spatial distribution of EV proteins. This study highlights the potential of eSimoa in identifying disease-specific EV protein biomarkers in clinical samples with minimal pre-purification, thereby driving advancements in clinical translation.
Collapse
Affiliation(s)
- Chi‐An Cheng
- School of PharmacyCollege of MedicineNational Taiwan UniversityTaipei10050Taiwan
| | - Kuan‐Chu Hou
- Department of MedicineCollege of MedicineNational Taiwan UniversityTaipei10050Taiwan
| | - Chen‐Wei Hsu
- School of PharmacyCollege of MedicineNational Taiwan UniversityTaipei10050Taiwan
| | - Li‐Chiao Chiang
- School of PharmacyCollege of MedicineNational Taiwan UniversityTaipei10050Taiwan
| |
Collapse
|
10
|
Hao J, Zhou C, Wang Z, Ma Z, Wu Z, Lv Y, Wu R. An amino acid metabolism-based seventeen-gene signature correlates with the clinical outcome and immune features in pancreatic cancer. Front Genet 2023; 14:1084275. [PMID: 37333498 PMCID: PMC10272610 DOI: 10.3389/fgene.2023.1084275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Background: Pancreatic cancer is an aggressive tumor with a low 5-year survival rate and primary resistance to most therapy. Amino acid (AA) metabolism is highly correlated with tumor growth, crucial to the aggressive biological behavior of pancreatic cancer; nevertheless, the comprehensive predictive significance of genes that regulate AA metabolism in pancreatic cancer remains unknown. Methods: The mRNA expression data downloaded from The Cancer Genome Atlas (TCGA) were derived as the training cohort, and the GSE57495 cohort from Gene Expression Omnibus (GEO) database was applied as the validation cohort. Random survival forest (RSF) and the least absolute shrinkage and selection operator (LASSO) regression analysis were employed to screen genes and construct an AA metabolism-related risk signature (AMRS). Kaplan-Meier analysis and receiver operating characteristic (ROC) curve were performed to assess the prognostic value of AMRS. We performed genomic alteration analysis and explored the difference in tumor microenvironment (TME) landscape associated with KRAS and TP53 mutation in both high- and low-AMRS groups. Subsequently, the relationships between AMRS and immunotherapy and chemotherapy sensitivity were evaluated. Results: A 17-gene AA metabolism-related risk model in the TCGA cohort was constructed according to RSF and LASSO. After stratifying patients into high- and low-AMRS groups based on the optimal cut-off value, we found that high-AMRS patients had worse overall survival (OS) in the training cohort (a median OS: 13.1 months vs. 50.1 months, p < 0.0001) and validation cohort (a median OS: 16.2 vs. 30.5 months, p = 1e-04). Genetic mutation analysis revealed that KRAS and TP53 were significantly more mutated in high-AMRS group, and patients with KRAS and TP53 alterations had significantly higher risk scores than those without. Based on the analysis of TME, low-AMRS group displayed significantly higher immune score and more enrichment of T Cell CD8+ cells. In addition, high-AMRS-group exhibited higher TMB and significantly lower tumor immune dysfunction and exclusion (TIDE) score and T Cells dysfunction score, which suggested a higher sensitive to immunotherapy. Moreover, high-AMRS group was also more sensitive to paclitaxel, cisplatin, and docetaxel. Conclusion: Overall, we constructed an AA-metabolism prognostic model, which provided a powerful prognostic predictor for the clinical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jie Hao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Liu J, Mroczek M, Mach A, Stępień M, Aplas A, Pronobis-Szczylik B, Bukowski S, Mielczarek M, Gajewska E, Topolski P, Król ZJ, Szyda J, Dobosz P. Genetics, Genomics and Emerging Molecular Therapies of Pancreatic Cancer. Cancers (Basel) 2023; 15:779. [PMID: 36765737 PMCID: PMC9913594 DOI: 10.3390/cancers15030779] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
The number of cases of pancreatic cancers in 2019 in Poland was 3852 (approx. 2% of all cancers). The course of the disease is very fast, and the average survival time from the diagnosis is 6 months. Only <2% of patients live for 5 years from the diagnosis, 8% live for 2 years, and almost half live for only about 3 months. A family predisposition to pancreatic cancer occurs in about 10% of cases. Several oncogenes in which somatic changes lead to the development of tumours, including genes BRCA1/2 and PALB2, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1, are involved in pancreatic cancer. Between 4% and 10% of individuals with pancreatic cancer will have a mutation in one of these genes. Six percent of patients with pancreatic cancer have NTRK pathogenic fusion. The pathogenesis of pancreatic cancer can in many cases be characterised by homologous recombination deficiency (HRD)-cell inability to effectively repair DNA. It is estimated that from 24% to as many as 44% of pancreatic cancers show HRD. The most common cause of HRD are inactivating mutations in the genes regulating this DNA repair system, mainly BRCA1 and BRCA2, but also PALB2, RAD51C and several dozen others.
Collapse
Affiliation(s)
- Jakub Liu
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
| | - Magdalena Mroczek
- Centre for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Wagistrasse 25, 8952 Schlieren, Switzerland
| | - Anna Mach
- Department of Psychiatry, Medical University of Warsaw, 00-665 Warsaw, Poland
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Maria Stępień
- Department of Infectious Diseases, Doctoral School, Medical University of Lublin, 20-059 Lublin, Poland
| | - Angelika Aplas
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Bartosz Pronobis-Szczylik
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Szymon Bukowski
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Magda Mielczarek
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
- National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Ewelina Gajewska
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Piotr Topolski
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Zbigniew J. Król
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Joanna Szyda
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
- National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Paula Dobosz
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| |
Collapse
|
12
|
Dai M, Jahanzaib R, Liao Y, Yao F, Li J, Teng X, Chen K, Cheng W. Prognostic value of KRAS subtype in patients with PDAC undergoing radical resection. Front Oncol 2022; 12:1074538. [PMID: 36582783 PMCID: PMC9793713 DOI: 10.3389/fonc.2022.1074538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Objective To explore the frequency distribution of KRAS mutant subtypes in patients with resectable PDAC in China and then evaluate the prognostic value of different KRAS subtypes in patients with PDAC undergoing radical resection. Methods The clinicopathological data and gene test reports of 227 patients undergoing PDAC radical surgery at Hunan Provincial People's Hospital from 1 January 2016 to 1 January 1 2020 were retrospectively evaluated. There were 118 men (52%) and 109 women (48%). The mean age was 58.8 ± 10.3 years. After univariate analysis of the clinicopathological factors (sex, age, presence or absence of underlying disease, location of the primary tumour, tumour TNM stage, T stage, N stage, presence or absence of vascular invasion, presence or absence of nerve invasion, surgical margin, KRAS mutation subtype), variables with P < 0.1 were included in the multivariate Cox regression model analysis, and the log-rank sum test and Kaplan-Meier curves were used to assess the correlation of the KRAS mutation subtype with the overall survival time. Results KRAS mutations were detected in 184 of 227 patients (81.1%) (G12D: 66; G12V: 65; G12R: 27; Q61:26) and were not detected in 43 patients (18.9%). KRAS mutations were associated with tumour differentiation (P = 0.001), TNM stage (P = 0.013), and T stage (P < 0.001). Multivariate Cox regression model analysis showed that N stage, surgical margin, tumour differentiation, and KRAS-G12D mutation were independent prognostic factors for DFS and OS. Patients with the KRAS-G12D subtype had shorter OS with a median OS of 12 months (HR: 0.55, CI: 0.39-0.77, P < 0.001), and patients with KRAS wild-type had longer OS with a median OS of 19 months (HR: 0.57, CI: 0.42-0.76, P < 0.001). Conclusion KRAS wild-type individuals are more prevalent in the Chinese population than in European or American populations. Patients undergoing surgery had a reduced percentage of tumors with KRAS-G12D. When determining the prognosis of individuals with radically resected PDAC, reference markers for KRAS mutation subtypes can be employed.
Collapse
Affiliation(s)
- Manxiong Dai
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha, China
| | - Raja Jahanzaib
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yan Liao
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha, China
| | - Fengxuan Yao
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha, China
| | - Jia Li
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha, China
| | - Xiong Teng
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha, China
| | - Kang Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha, China,*Correspondence: Wei Cheng, ; Kang Chen,
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha, China,Xiangyue Hospital Affiliated to Hunan Institute of Parasitic Diseases, National Clinical Center for Schistosomiasis Treatment, Yueyang, Hunan, China,*Correspondence: Wei Cheng, ; Kang Chen,
| |
Collapse
|
13
|
Diehl AC, Hannan LM, Zhen DB, Coveler AL, King G, Cohen SA, Harris WP, Shankaran V, Wong KM, Green S, Ng N, Pillarisetty VG, Sham JG, Park JO, Reddi D, Konnick EQ, Pritchard CC, Baker K, Redman M, Chiorean EG. KRAS Mutation Variants and Co-occurring PI3K Pathway Alterations Impact Survival for Patients with Pancreatic Ductal Adenocarcinomas. Oncologist 2022; 27:1025-1033. [PMID: 36124727 DOI: 10.1093/oncolo/oyac179] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/29/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND KRAS variant alleles may have differential biological properties which impact prognosis and therapeutic options in pancreatic ductal adenocarcinomas (PDA). MATERIALS AND METHODS We retrospectively identified patients with advanced PDA who received first-line therapy and underwent blood and/or tumor genomic sequencing at the University of Washington between 2013 and 2020. We examined the incidence of KRAS mutation variants with and without co-occurring PI3K or other genomic alterations and evaluated the association of these mutations with clinicopathological characteristics and survival using a Cox proportional hazards model. RESULTS One hundred twenty-six patients had genomic sequencing data; KRAS mutations were identified in 111 PDA and included the following variants: G12D (43)/G12V (35)/G12R (23)/other (10). PI3K pathway mutations (26% vs. 8%) and homologous recombination DNA repair (HRR) defects (35% vs. 12.5%) were more common among KRAS G12R vs. non-G12R mutated cancers. Patients with KRAS G12R vs. non-G12R cancers had significantly longer overall survival (OS) (HR 0.55) and progression-free survival (PFS) (HR 0.58), adjusted for HRR pathway co-mutations among other covariates. Within the KRAS G12R group, co-occurring PI3K pathway mutations were associated with numerically shorter OS (HR 1.58), while no effect was observed on PFS. CONCLUSIONS Patients with PDA harboring KRAS G12R vs. non-G12R mutations have longer survival, but this advantage was offset by co-occurring PI3K alterations. The KRAS/PI3K genomic profile could inform therapeutic vulnerabilities in patients with PDA.
Collapse
Affiliation(s)
- Adam C Diehl
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lindsay M Hannan
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David B Zhen
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew L Coveler
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gentry King
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stacey A Cohen
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - William P Harris
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Veena Shankaran
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kit M Wong
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Natasha Ng
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Jonathan G Sham
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - James O Park
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Deepti Reddi
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Eric Q Konnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Mary Redman
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - E Gabriela Chiorean
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
14
|
Wang Y, Wang B, Xiang L, Deng J, Xu B, He P, Pu W, Wang H, Fan Y, Chen H. Case Report: Anlotinib combined with PD-1 inhibitor and sequential GA regimen or FOLFIRINOX Chemotherapy in treatment of KRAS G12V mutated pancreatic ductal adenocarcinoma with liver metastasis: A case and literature review. Front Immunol 2022; 13:1016647. [PMID: 36311715 PMCID: PMC9606775 DOI: 10.3389/fimmu.2022.1016647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
There is a high mortality rate associated with pancreatic cancer, and the incidence has been rising globally in recent decades. When patients are diagnosed, there is little chance that surgery will be beneficial. Systemic chemotherapy is the currently accepted treatment option for patients with metastatic advanced pancreatic cancer. However, a very limited survival improvement is possible with chemotherapy for advanced pancreatic cancer, and chemotherapy resistance plays a significant role in poor prognosis. Despite the fact that targeting growth factor receptor inhibitors such as anti-vascular endothelial growth factor (VEGFR) antibodies significantly improves survival in pancreatic cancer, only a very small number of patients benefit from the treatment. As emerging drugs, immune checkpoint inhibitors (ICIs) have demonstrated significant therapeutic effects in several tumor types, but monotherapy is not effective in pancreatic cancer. In the first-line treatment of solid tumors, combination therapy may result in remarkable outcomes. Here in, we have reported a younger patient with pancreatic ductal adenocarcinoma with liver metastasis (PDACLM) who had a long-term partial response and good tolerance to the combination of anlotinib and programmed cell death protein 1 (PD-1) inhibitor and chemotherapy. Gene analysis suggested only one mutation in the Kirsten rat sarcoma viral oncogene (KRAS) G12V gene. Consequently, there is some hope for patients with pancreatic cancer, especially for KRAS G12V gene mutated patients. Upon reviewing the literature, this patient’s combination therapy is the first to have been reported.
Collapse
Affiliation(s)
- Yunpeng Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Bofang Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Xiang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Junge Deng
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Bo Xu
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Puyi He
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Weigao Pu
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Haiyun Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yong Fan
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Yong Fan, ; Hao Chen,
| | - Hao Chen
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
- Department of Cancer Center, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Yong Fan, ; Hao Chen,
| |
Collapse
|
15
|
Shen H, Lundy J, Strickland AH, Harris M, Swan M, Desmond C, Jenkins BJ, Croagh D. KRAS G12D Mutation Subtype in Pancreatic Ductal Adenocarcinoma: Does It Influence Prognosis or Stage of Disease at Presentation? Cells 2022; 11:cells11193175. [PMID: 36231137 PMCID: PMC9562007 DOI: 10.3390/cells11193175] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: KRAS G12D mutation subtype is present in over 40% of pancreatic ductal adenocarcinoma (PDAC), one of the leading global causes of cancer death. This retrospective cohort study aims to investigate whether detection of the KRAS G12D mutation subtype in PDAC patients is a determinant of prognosis across all stages of disease. Methods: We reviewed the medical records of 231 patients presenting with PDAC at a large tertiary hospital, and compared survival using the Kaplan Meier, log-rank test and Cox proportional hazards regression model. Results: KRAS G12D mutation subtype was not significantly associated with poorer survival compared across the whole population of PDAC patients (p = 0.107; HR 1.293 95% CI (0.946-1.767)). However, KRAS G12D patients who were resectable had a shorter median survival time of 356 days compared to all other genotypes (median survival 810 days) (p = 0.019; HR 1.991 95% CI (1.121-3.537)). Conclusions: KRAS G12D patients who were resectable at diagnosis had shorter survival compared to all other PDAC patients. These data suggest that KRAS G12D may be a clinically useful prognostic biomarker of PDAC.
Collapse
Affiliation(s)
- Henry Shen
- Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Joanne Lundy
- Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Andrew H. Strickland
- Department of Oncology, Faculty of Medicine, Nursing and Health Sciences, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Marion Harris
- Department of Oncology, Faculty of Medicine, Nursing and Health Sciences, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Michael Swan
- Department of Gastroenterology, Monash Medical Centre, Monash Health, Clayton, VIC 3168, Australia
| | - Christopher Desmond
- Department of Gastroenterology, Monash Medical Centre, Monash Health, Clayton, VIC 3168, Australia
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Daniel Croagh
- Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
- Correspondence: ; Tel.: +61-428-121-121; Fax: +61-3-9543-3805
| |
Collapse
|
16
|
Turpin A, Neuzillet C, Colle E, Dusetti N, Nicolle R, Cros J, de Mestier L, Bachet JB, Hammel P. Therapeutic advances in metastatic pancreatic cancer: a focus on targeted therapies. Ther Adv Med Oncol 2022; 14:17588359221118019. [PMID: 36090800 PMCID: PMC9459481 DOI: 10.1177/17588359221118019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Mortality from pancreatic ductal adenocarcinoma (PDAC) is increasing worldwide and effective new treatments are urgently needed. The current treatment of metastatic PDAC in fit patients is based on two chemotherapy combinations (FOLFIRINOX and gemcitabine plus nab-paclitaxel) which were validated more than 8 years ago. Although almost all treatments targeting specific molecular alterations have failed so far when administered to unselected patients, encouraging results were observed in the small subpopulations of patients with germline BRCA 1/2 mutations, and somatic gene fusions (neurotrophic tyrosine receptor kinase, Neuregulin 1, which are enriched in KRAS wild-type PDAC), KRAS G12C mutations, or microsatellite instability. While targeted tumor metabolism therapies and immunotherapy have been disappointing, they are still under investigation in combination with other drugs. Optimizing pharmacokinetics and adapting available chemotherapies based on molecular signatures are other promising avenues of research. This review evaluates the current expectations and limits of available treatments and analyses the existing trials. A permanent search for actionable vulnerabilities in PDAC tumor cells and microenvironments will probably result in a more personalized therapeutic approach, keeping in mind that supportive care must also play a major role if real clinical efficacy is to be achieved in these patients.
Collapse
Affiliation(s)
- Anthony Turpin
- Department of Medical Oncology, CNRS UMR9020,
Inserm UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to
Therapies, University Lille, CHU Lille, Lille, France
| | - Cindy Neuzillet
- Department of Medical Oncology, Curie
Institute, Versailles Saint-Quentin University, Paris-Saclay University,
Saint-Cloud, France
| | - Elise Colle
- Department of Digestive and Medical Oncology,
Hospital Paul Brousse (AP-HP), Villejuif, University of Paris Saclay,
France
| | - Nelson Dusetti
- Cancer Research Center of Marseille, CRCM,
Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille,
France
| | - Rémy Nicolle
- Centre de Recherche sur l’Inflammation, INSERM,
U1149, CNRS, ERL 8252, Université de Paris Cité, Paris, France
| | - Jérôme Cros
- Department of Pathology, University of Paris
Cité, Hospital Beaujon (AP-HP), Clichy, France
| | - Louis de Mestier
- Department of Gastroenterology and
Pancreatology, University of Paris Cité, Hospital Beaujon (AP-HP), Clichy,
France
| | - Jean-Baptiste Bachet
- Department of Gastroenterology and Digestive
Oncology, Pitié-Salpêtrière Hospital, Sorbonne University, UPMC University,
Paris, France
| | - Pascal Hammel
- Department of Digestive and Medical Oncology,
Hôpital Paul Brousse (AP-HP), 12 Avenue Paul Vaillant-Couturier, Villejuif
94800, University of Paris Saclay, France
| |
Collapse
|
17
|
Suzuki T, Masugi Y, Inoue Y, Hamada T, Tanaka M, Takamatsu M, Arita J, Kato T, Kawaguchi Y, Kunita A, Nakai Y, Nakano Y, Ono Y, Sasahira N, Takeda T, Tateishi K, Uemura S, Koike K, Ushiku T, Takeuchi K, Sakamoto M, Hasegawa K, Kitago M, Takahashi Y, Fujishiro M. KRAS variant allele frequency, but not mutation positivity, associates with survival of patients with pancreatic cancer. Cancer Sci 2022; 113:3097-3109. [PMID: 35567350 PMCID: PMC9459293 DOI: 10.1111/cas.15398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 11/27/2022] Open
Abstract
KRAS mutation is a major driver of pancreatic carcinogenesis and will likely be a therapeutic target. Due to lack of sensitive assays for clinical samples of pancreatic cancer with low cellularity, KRAS mutations and their prognostic association have not been fully examined in large populations. In a multi-institutional cohort of 1162 pancreatic cancer patients with formalin-fixed paraffin-embedded tumor samples, we undertook droplet digital PCR (ddPCR) for KRAS codons 12/13/61. We examined detection rates of KRAS mutations by clinicopathological parameters and survival associations of KRAS mutation status. Multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) for disease-free survival (DFS) and overall survival (OS) were computed using the Cox regression model with adjustment for potential confounders. KRAS mutations were detected in 1139 (98%) patients. The detection rate did not differ by age of tissue blocks, tumor cellularity, or receipt of neoadjuvant chemotherapy. KRAS mutations were not associated with DFS or OS (multivariable HR comparing KRAS-mutant to KRAS-wild-type tumors, 1.04 [95% CI, 0.62-1.75] and 1.05 [95% CI, 0.60-1.84], respectively). Among KRAS-mutant tumors, KRAS variant allele frequency (VAF) was inversely associated with DFS and OS with HRs per 20% VAF increase of 1.27 (95% CI, 1.13-1.42; ptrend <0.001) and 1.31 (95% CI, 1.16-1.48; ptrend <0.001), respectively. In summary, ddPCR detected KRAS mutations in clinical specimens of pancreatic cancer with high sensitivity irrespective of parameters potentially affecting mutation detections. KRAS VAF, but not mutation positivity, was associated with survival of pancreatic cancer patients.
Collapse
Affiliation(s)
- Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yohei Masugi
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Yosuke Inoue
- Department of Hepatobiliary and Pancreatic SurgeryThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Hepato‐Biliary‐Pancreatic MedicineThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Manabu Takamatsu
- Division of PathologyThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Junichi Arita
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tomotaka Kato
- Department of Hepatobiliary and Pancreatic SurgeryThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Yoshikuni Kawaguchi
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Akiko Kunita
- Next‐Generation Precision Medicine Development Laboratory, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Endoscopy and Endoscopic SurgeryThe University of Tokyo HospitalTokyoJapan
| | - Yutaka Nakano
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yoshihiro Ono
- Department of Hepatobiliary and Pancreatic SurgeryThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Naoki Sasahira
- Department of Hepato‐Biliary‐Pancreatic MedicineThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tsuyoshi Takeda
- Department of Hepato‐Biliary‐Pancreatic MedicineThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Sho Uemura
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kengo Takeuchi
- Division of PathologyThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Michiie Sakamoto
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Kiyoshi Hasegawa
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Minoru Kitago
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yu Takahashi
- Department of Hepatobiliary and Pancreatic SurgeryThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | | |
Collapse
|
18
|
Keyl J, Kasper S, Wiesweg M, Götze J, Schönrock M, Sinn M, Berger A, Nasca E, Kostbade K, Schumacher B, Markus P, Albers D, Treckmann J, Schmid KW, Schildhaus HU, Siveke JT, Schuler M, Kleesiek J. Multimodal survival prediction in advanced pancreatic cancer using machine learning. ESMO Open 2022; 7:100555. [PMID: 35988455 PMCID: PMC9588888 DOI: 10.1016/j.esmoop.2022.100555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background Existing risk scores appear insufficient to assess the individual survival risk of patients with advanced pancreatic ductal adenocarcinoma (PDAC) and do not take advantage of the variety of parameters that are collected during clinical care. Methods In this retrospective study, we built a random survival forest model from clinical data of 203 patients with advanced PDAC. The parameters were assessed before initiation of systemic treatment and included age, CA19-9, C-reactive protein, metastatic status, neutrophil-to-lymphocyte ratio and total serum protein level. Separate models including imaging and molecular parameters were built for subgroups. Results Over the entire cohort, a model based on clinical parameters achieved a c-index of 0.71. Our approach outperformed the American Joint Committee on Cancer (AJCC) staging system and the modified Glasgow Prognostic Score (mGPS) in the identification of high- and low-risk subgroups. Inclusion of the KRAS p.G12D mutational status could further improve the prediction, whereas radiomics data of the primary tumor only showed little benefit. In an external validation cohort of PDAC patients with liver metastases, our model achieved a c-index of 0.67 (mGPS: 0.59). Conclusions The combination of multimodal data and machine-learning algorithms holds potential for personalized prognostication in advanced PDAC already at diagnosis. We developed a machine-learning-based prediction model that outperforms the AJCC staging system and mGPS. Applying our model to an external validation cohort demonstrates generalizability. Explainable machine learning enables to understand the decision making of our model and identifies relevant parameters. Combining clinical, imaging and genetic data holds potential for personalized prognostication in advanced PDAC.
Collapse
Affiliation(s)
- J Keyl
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen (AöR), University of Duisburg-Essen, Essen, Germany; Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Essen, Germany; German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany.
| | - S Kasper
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen (AöR), University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany; Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - M Wiesweg
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen (AöR), University of Duisburg-Essen, Essen, Germany; Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - J Götze
- Department of Internal Medicine II, Oncology, Hematology, BMT and Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Schönrock
- Department of Internal Medicine II, Oncology, Hematology, BMT and Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Sinn
- Department of Internal Medicine II, Oncology, Hematology, BMT and Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Berger
- Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Essen, Germany
| | - E Nasca
- Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Essen, Germany
| | - K Kostbade
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen (AöR), University of Duisburg-Essen, Essen, Germany; Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - B Schumacher
- Department of Gastroenterology, Elisabeth Hospital Essen, Essen, Germany
| | - P Markus
- Department of General Surgery and Traumatology, Elisabeth Hospital Essen, Essen, Germany
| | - D Albers
- Department of Gastroenterology, Elisabeth Hospital Essen, Essen, Germany
| | - J Treckmann
- Department of General, Visceral and Transplant Surgery, West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
| | - K W Schmid
- Medical Faculty, University of Duisburg-Essen, Essen, Germany; Institute of Pathology, West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
| | - H-U Schildhaus
- Medical Faculty, University of Duisburg-Essen, Essen, Germany; Institute of Pathology, West German Cancer Center, University Hospital Essen (AöR), Essen, Germany
| | - J T Siveke
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen (AöR), University of Duisburg-Essen, Essen, Germany; Medical Faculty, University of Duisburg-Essen, Essen, Germany; Bridge Institute of Experimental Tumor Therapy (BIT), West German Cancer Center, University Hospital Essen (AöR), Essen, Germany; Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK) Partner site Essen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen (AöR), University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner site University Hospital Essen (AöR), Essen, Germany; Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - J Kleesiek
- Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Essen, Germany; Medical Faculty, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Li W, Zhang X, Li Y, Yue Q, Cui M, Liu J. Prognostic Value of KRAS Mutations in the Peripheral Blood of Patients with Pancreatic Cancer: a Systematic Review and Meta-analysis. Indian J Surg 2022. [DOI: 10.1007/s12262-021-03142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
20
|
Du J, Qiu X, Lu C, Zhu Y, Kong W, Xu M, Zhang X, Tang M, Chen J, Li Q, Li A, He J, Gu Q, Wang L, Qiu Y, Liu B. Molecular Landscape and Prognostic Biomarker Analysis of Advanced Pancreatic Cancer and Predictors of Treatment Efficacy of AG Chemotherapy. Front Oncol 2022; 12:844527. [PMID: 35664782 PMCID: PMC9157486 DOI: 10.3389/fonc.2022.844527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Although mutational analysis of pancreatic cancer has provided valuable clinical information, it has not significantly changed treatment prospects. The purpose of this study is to further investigate molecular alterations in locally advanced pancreatic cancer and identify predictors of the efficacy of nab-paclitaxel plus gemcitabine (AG) chemotherapy. Experimental design Tumor samples from 118 pancreatic cancer patients who received AG chemotherapy as first-line treatment were sequenced and genomic profile was generated. Molecular alterations and the involved signaling pathways were analyzed. Genes with a significant difference in mutation frequency between primary and metastatic tumors were identified, and prognostic-related mutant genes were screened using SPSS version 22.0. Results The most common altered genes in the patients were KRAS (94.9%), TP53 (81.4%), CDKN2A (36.4%), and SMAD4 (22.9%). The mutational frequencies of CDKN2B (14.8% vs. 0%, p = 0.001), FAT3 (7.4% vs. 0%, p = 0.041), MTAP (13% vs. 1.6%, p = 0.023), and SMAD4 (31.4% vs. 15.6%, p = 0.049) in metastatic tumors were significantly higher than that in primary tumors. TP35 and KRAS mutations were significantly correlated with objective response rate, while EPHA7, RNF43, and HMGA2 mutations were significantly correlated with disease control rate. Additionally, patients with TGFR2B, FGF23, EPHA7, SMARCA4, CARD11, ADGRA2, CCNE1, and ACVR2A alterations had a worse overall survival. Further, EPHA7, CARD11, NOTCH1, GATA6, ACVR2A, and HMGA2 mutations indicated undesirable progression-free survival. Conclusions CDKN2B, FAT3, MTAP, and SMAD4 may be biomarkers that distinguish primary tumors from metastases. EPHA7 mutation may serve as a prognostic biomarker to predict the treatment efficacy of AG chemotherapy in locally advanced pancreatic cancer.
Collapse
Affiliation(s)
- Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xin Qiu
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changchang Lu
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yahui Zhu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Weiwei Kong
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Mian Xu
- Shanghai OrigiMed Co, Ltd, Shanghai, China
| | - Xin Zhang
- Shanghai OrigiMed Co, Ltd, Shanghai, China
| | - Min Tang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Chen
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qi Li
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Aimei Li
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian He
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Gu
- State Key Lab of Novel Software Technology, Nanjing University, Nanjing, China
| | - Lei Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Yang Y, Ding Y, Gong Y, Zhao S, Li M, Li X, Song G, Zhai B, Liu J, Shao Y, Zhu L, Pang J, Ma Y, Ou Q, Wu X, Zhang Z. The genetic landscape of pancreatic head ductal adenocarcinoma in China and prognosis stratification. BMC Cancer 2022; 22:186. [PMID: 35180847 PMCID: PMC8855595 DOI: 10.1186/s12885-022-09279-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is the major subtype of pancreatic cancer and head PDACs show distinct characteristics from body/tail PDACs. With limited studies based on Asian population, the mutational landscape of Asian PDAC remains unclear. Methods One hundred fifty-one Chinese patients with head PDAC were selected and underwent targeted 425-gene sequencing. Genomic alterations, tumor mutational burden, and microsatellite instability were analyzed and compared with a TCGA cohort. Results The genomic landscape of Chinese and Western head PDAC had identical frequently-mutated genes including KRAS, TP53, SMAD4, and CDKN2A. KRAS hotspot in both cohorts was codon 12 but Chinese PDACs containing more G12V but fewer G12R variants. Potentially pathogenic fusions, CHD2-BRAF and KANK1-MET were identified in two KRAS wild-type patients. Serum cancer antigens CA125 and CA19-9 were positively associated with SMAD4 alterations while high CEA was enriched in wild-type CDKN2A subgroup. The probability of vascular invasion was lower in patients with RNF43 alterations. The nomogram developed including histology grade, the mutation status of SMAD4, TGFBR2, and PREX2 could calculate the risk score of prognoses validated by Chinese and TCGA cohort. Conclusions Chinese head PDAC contained more KRAS G12V mutation than Western population. The well-performed nomogram may improve post-operation care in real-world practice. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09279-9.
Collapse
Affiliation(s)
- Yefan Yang
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Ying Ding
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yuxi Gong
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Sha Zhao
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Mingna Li
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Xiao Li
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Guoxin Song
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Boya Zhai
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jin Liu
- Clinical Medicine Research Institution, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc, Nanjing, 210032, Jiangsu Province, China
| | - Liuqing Zhu
- Nanjing Geneseeq Technology Inc, Nanjing, 210032, Jiangsu Province, China
| | - Jiaohui Pang
- Nanjing Geneseeq Technology Inc, Nanjing, 210032, Jiangsu Province, China
| | - Yutong Ma
- Nanjing Geneseeq Technology Inc, Nanjing, 210032, Jiangsu Province, China
| | - Qiuxiang Ou
- Nanjing Geneseeq Technology Inc, Nanjing, 210032, Jiangsu Province, China
| | - Xue Wu
- Nanjing Geneseeq Technology Inc, Nanjing, 210032, Jiangsu Province, China
| | - Zhihong Zhang
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
22
|
Ardalan B, Azqueta J, Sleeman D. Cobimetinib Plus Gemcitabine: An Active Combination in KRAS G12R-Mutated Pancreatic Ductal Adenocarcinoma Patients in Previously Treated and Failed Multiple Chemotherapies. J Pancreat Cancer 2021; 7:65-70. [PMID: 34901697 PMCID: PMC8655806 DOI: 10.1089/pancan.2021.0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose: The KRAS proto-oncogene is involved in the RAS/MAPK pathway. KRAS is present in the wild type or mutated forms. The oncogene KRAS is frequently mutated in various cancers. At the time that amino acid glycine is mutated, KRAS protein acquires oncogenic properties that result in the tumor cell growth, proliferation, and cancer progression. There has been limited understanding of the different mutations at codon 12. The consequences of such mutations is not fully understood. Various G12X mutations in pancreatic cancer patients have been examined, with the most common mutations being G12D (40%), G12V (30%), and G12R (15-20%). Now we are understanding that G12X mutations in the KRAS are not all equal. Methods: In a single-arm exploratory study, we accrued 13 KRAS-G12X-mutated pancreatic patients (KRAS G12D, G12V, and G12R). They were divided into two groups: group 1 consisted of seven patients with G12D and G12V and group 2 included six patients with the KRAS G12R mutation. All patients were treated with the combination of gemcitabine at 1250 mg/m2 intravenous weekly for 3 weeks and oral cobimetinib 20 mg b.i.d. for 3 weeks. This was followed by a week of rest before the initiation of the next cycle. Results: In the first cohort, seven patients were on treatment, all of whom progressed and died within the 2 months of the study. In the second cohort, one of six patients achieved partial response, and five achieved stable disease. Median progression-free survival was 6 months (9% confidence interval 3.0-9.3 months) and overall survival has been reached at 8 months. Common adverse reactions included rash, fatigue, nausea, and vomiting (grades 2 and 3). Cancer antigen CA19-9 decreased by >50% in all group 2 patients. Conclusion: Our pancreatic cancer patients were heavily pretreated (all had received FOLFIRINOX and gemcitabine/nab-paclitaxel) before the entry into our trial. Upon entry into our trial, all patients were treated with the combination of gemcitabine and oral cobimetinib. Therefore, this constituted the second exposure of the patients to gemcitabine. This study illustrates a new discovery, which can potentially target 15-20% of pancreatic cancer patients and allow for a significant improvement in their prognosis. We will be conducting randomized phase II trials to substantiate our findings.
Collapse
Affiliation(s)
- Bach Ardalan
- Department of Hematology Oncology, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | - Jose Azqueta
- Department of Hematology Oncology, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | - Danny Sleeman
- Department of Surgical Oncology, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| |
Collapse
|
23
|
Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: An update and perspective. Drug Resist Updat 2021; 59:100796. [PMID: 34953682 PMCID: PMC8810687 DOI: 10.1016/j.drup.2021.100796] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Driver mutations promote initiation and progression of cancer. Pharmacological treatment can inhibit the action of the mutant protein; however, drug resistance almost invariably emerges. Multiple studies revealed that cancer drug resistance is based upon a plethora of distinct mechanisms. Drug resistance mutations can occur in the same protein or in different proteins; as well as in the same pathway or in parallel pathways, bypassing the intercepted signaling. The dilemma that the clinical oncologist is facing is that not all the genomic alterations as well as alterations in the tumor microenvironment that facilitate cancer cell proliferation are known, and neither are the alterations that are likely to promote metastasis. For example, the common KRasG12C driver mutation emerges in different cancers. Most occur in NSCLC, but some occur, albeit to a lower extent, in colorectal cancer and pancreatic ductal carcinoma. The responses to KRasG12C inhibitors are variable and fall into three categories, (i) new point mutations in KRas, or multiple copies of KRAS G12C which lead to higher expression level of the mutant protein; (ii) mutations in genes other than KRAS; (iii) original cancer transitioning to other cancer(s). Resistance to adagrasib, an experimental antitumor agent exerting its cytotoxic effect as a covalent inhibitor of the G12C KRas, indicated that half of the cases present multiple KRas mutations as well as allele amplification. Redundant or parallel pathways included MET amplification; emerging driver mutations in NRAS, BRAF, MAP2K1, and RET; gene fusion events in ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN tumor suppressors. In the current review we discuss the molecular mechanisms underlying drug resistance while focusing on those emerging to common targeted cancer drivers. We also address questions of why cancers with a common driver mutation are unlikely to evolve a common drug resistance mechanism, and whether one can predict the likely mechanisms that the tumor cell may develop. These vastly important and tantalizing questions in drug discovery, and broadly in precision medicine, are the focus of our present review. We end with our perspective, which calls for target combinations to be selected and prioritized with the help of the emerging massive compute power which enables artificial intelligence, and the increased gathering of data to overcome its insatiable needs.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA
| |
Collapse
|
24
|
Kinugasa H, Kanzaki H, Tanaka T, Yamamoto S, Yamasaki Y, Nouso K, Ichimura K, Nakagawa M, Mitsuhashi T, Okada H. The Impact of KRAS Mutation in Patients With Sporadic Nonampullary Duodenal Epithelial Tumors. Clin Transl Gastroenterol 2021; 12:e00424. [PMID: 34797780 PMCID: PMC8604005 DOI: 10.14309/ctg.0000000000000424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The genomic characterization of primary nonampullary duodenal adenocarcinoma indicates a genetic resemblance to gastric and colorectal cancers. However, a correlation between the clinical and molecular characteristics of these cancers has not been established. This study aimed to elucidate the clinicopathological features of sporadic nonampullary duodenal epithelial tumors, including their molecular characteristics and prognostic factors. METHODS One hundred forty-eight patients with sporadic nonampullary duodenal epithelial tumors were examined in this study. Patient sex, age, TNM stage, tumor location, treatment methods, histology, KRAS mutation, BRAF mutation, Fusobacterium nucleatum, mucin phenotype, and programmed death-ligand 1 (PD-L1) status were evaluated. KRAS and BRAF mutations, Fusobacterium nucleatum, mucin phenotype, and PD-L1 status were analyzed by direct sequencing, quantitative polymerase chain reaction, and immunochemical staining. RESULTS The median follow-up duration was 119.4 months. There were no deaths from duodenal adenoma (the primary disease). Kaplan-Meier analysis for duodenal adenocarcinoma showed a significant effect of TNM stage (P < 0.01). In univariate analysis of primary deaths from duodenal adenocarcinoma, TNM stage II or higher, undifferentiated, KRAS mutations, gastric phenotype, intestinal phenotype, and PD-L1 status were significant factors. In multivariate analysis, TNM stage II or higher (hazard ratio: 1.63 × 1010, 95% confidence interval: 18.66-6.69 × 1036) and KRAS mutation (hazard ratio: 3.49, confidence interval: 1.52-7.91) were significant factors. DISCUSSION Only KRAS mutation was a significant prognostic factor in primary sporadic nonampullary duodenal adenocarcinoma in cases in which TNM stage was considered.
Collapse
Affiliation(s)
- Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Hiromitsu Kanzaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Shumpei Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Yasushi Yamasaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kouichi Ichimura
- Department of Pathology, Hiroshima City Hiroshima Citizens Hospital, Naka-ku, Hirosima, Japan
| | - Masahiro Nakagawa
- Department of Endoscopy, Hiroshima City Hiroshima Citizens Hospital, Naka-ku, Hirosima, Japan
| | - Toshiharu Mitsuhashi
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| |
Collapse
|
25
|
Hata T, Mizuma M, Motoi F, Ishida M, Ohtsuka H, Nakagawa K, Morikawa T, Furukawa T, Unno M. Germline DNA damage repair gene mutations in pancreatic cancer patients with personal/family histories of pancreas/breast/ovarian/prostate cancer in a Japanese population. Ann Gastroenterol Surg 2021; 5:853-864. [PMID: 34755017 PMCID: PMC8560614 DOI: 10.1002/ags3.12482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/26/2021] [Accepted: 05/23/2021] [Indexed: 11/08/2022] Open
Abstract
AIM Cancer patients with personal/family histories of pancreatic/breast/ovarian/prostate cancer are associated with a higher likelihood of harboring DNA damage repair (DDR)-related germline mutations. Here, we aimed to obtain a better understanding of DDR-related germline mutations in Japanese pancreatic ductal adenocarcinoma (PDAC) patients with personal and/or family histories of BRCA-related cancers of the pancreas, breast, ovary, and prostate. METHODS We performed next-generation sequencing (NGS) and evaluated germline mutations in nine DDR-related genes (BRCA1, BRCA2, ATM, PALB2, CHEK2, MLH1, MSH2, MSH6, and PMS2) in PDAC patients with personal and/or family histories. RESULTS Of 196 patients with PDAC, 39 (19.9%) fulfilled the criteria for at least one family history of pancreatic/breast/ovarian/prostate cancer in first-degree relatives (sibling-sibling or parent-child) or the personal history of these malignancies. Targeted NGS revealed that four (10.2%) of 39 patients with personal/family histories harbored deleterious germline mutations-two in BRCA2, one in ATM, and one in MLH1. Both the BRCA2 variants showed frameshift mutations due to short insertion/deletions. In the 39 patients undergoing NGS, a similar distribution of the clinicopathological characteristics was observed between those with deleterious mutations/variants of unknown significance (VUSs) and with benign/wild types. Patients with deleterious germline mutations/VUSs in DDR-related genes showed a significantly more favorable prognosis than those with benign mutations/wild-type genes (hazard ratio: 0.160, P = .040). CONCLUSIONS A significant fraction of PDAC patients with personal/family histories of BRCA-related cancers harbored deleterious germline mutations in DDR-related genes. DDR-related germline gene mutations might be a favorable prognostic factor in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Tatsuo Hata
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Masamichi Mizuma
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Fuyuhiko Motoi
- Department of Surgery IYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Masaharu Ishida
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Hideo Ohtsuka
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Kei Nakagawa
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Takanori Morikawa
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Toru Furukawa
- Department of Investigative PathologyTohoku University Graduate School of MedicineSendaiJapan
| | - Michiaki Unno
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
26
|
Hu HF, Ye Z, Qin Y, Xu XW, Yu XJ, Zhuo QF, Ji SR. Mutations in key driver genes of pancreatic cancer: molecularly targeted therapies and other clinical implications. Acta Pharmacol Sin 2021; 42:1725-1741. [PMID: 33574569 PMCID: PMC8563973 DOI: 10.1038/s41401-020-00584-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a minimal difference between its incidence rate and mortality rate. Advances in oncology over the past several decades have dramatically improved the overall survival of patients with multiple cancers due to the implementation of new techniques in early diagnosis, therapeutic drugs, and personalized therapy. However, pancreatic cancers remain recalcitrant, with a 5-year relative survival rate of <9%. The lack of measures for early diagnosis, strong resistance to chemotherapy, ineffective adjuvant chemotherapy and the unavailability of molecularly targeted therapy are responsible for the high mortality rate of this notorious disease. Genetically, PDAC progresses as a complex result of the activation of oncogenes and inactivation of tumor suppressors. Although next-generation sequencing has identified numerous new genetic alterations, their clinical implications remain unknown. Classically, oncogenic mutations in genes such as KRAS and loss-of-function mutations in tumor suppressors, such as TP53, CDNK2A, DPC4/SMAD4, and BRCA2, are frequently observed in PDAC. Currently, research on these key driver genes is still the main focus. Therefore, studies assessing the functions of these genes and their potential clinical implications are of paramount importance. In this review, we summarize the biological function of key driver genes and pharmaceutical targets in PDAC. In addition, we conclude the results of molecularly targeted therapies in clinical trials and discuss how to utilize these genetic alterations in further clinical practice.
Collapse
Affiliation(s)
- Hai-feng Hu
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Zeng Ye
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Yi Qin
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Xiao-wu Xu
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Xian-jun Yu
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Qi-feng Zhuo
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Shun-rong Ji
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| |
Collapse
|
27
|
Tang D, Kroemer G, Kang R. Oncogenic KRAS blockade therapy: renewed enthusiasm and persistent challenges. Mol Cancer 2021; 20:128. [PMID: 34607583 PMCID: PMC8489073 DOI: 10.1186/s12943-021-01422-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Across a broad range of human cancers, gain-of-function mutations in RAS genes (HRAS, NRAS, and KRAS) lead to constitutive activity of oncoproteins responsible for tumorigenesis and cancer progression. The targeting of RAS with drugs is challenging because RAS lacks classic and tractable drug binding sites. Over the past 30 years, this perception has led to the pursuit of indirect routes for targeting RAS expression, processing, upstream regulators, or downstream effectors. After the discovery that the KRAS-G12C variant contains a druggable pocket below the switch-II loop region, it has become possible to design irreversible covalent inhibitors for the variant with improved potency, selectivity and bioavailability. Two such inhibitors, sotorasib (AMG 510) and adagrasib (MRTX849), were recently evaluated in phase I-III trials for the treatment of non-small cell lung cancer with KRAS-G12C mutations, heralding a new era of precision oncology. In this review, we outline the mutations and functions of KRAS in human tumors and then analyze indirect and direct approaches to shut down the oncogenic KRAS network. Specifically, we discuss the mechanistic principles, clinical features, and strategies for overcoming primary or secondary resistance to KRAS-G12C blockade.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
28
|
Masoumi-Moghaddam S, Lundy J, Gao H, Rathi V, Swan M, Desmond C, Bhutani MS, Southey MC, Vaughan R, Varma P, Tagkalidis P, Holt BA, C Pilgrim CH, Segelov E, Lee B, Harris M, Strickland A, Frentzas S, Zalcberg J, Jenkins B, Croagh D. The EUS molecular evaluation of pancreatic cancer: A prospective multicenter cohort trial. Endosc Ultrasound 2021; 10:335-343. [PMID: 34558422 PMCID: PMC8544009 DOI: 10.4103/eus-d-20-00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives: Patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (A-PDAC) are not candidates for surgical resection and are often offered palliative chemotherapy. The ready availability of a safe and effective tumor sampling technique to provide material for both diagnosis and comprehensive genetic profiling is critical for informing precision medicine in A-PDAC, thus potentially increasing survival. The aim of this study is to examine the feasibility and benefits of routine comprehensive genomic profiling (CGP) of A-PDAC using EUS-FNA material. Methods: This is a prospective cohort study to test the clinical utility of fresh frozen or archival EUS-FNA samples in providing genetic material for CGP. The results of the CGP will be reviewed at a molecular tumor board. The proportion of participants that have a change in their treatment recommendations based on their individual genomic profiling will be assessed. Correlations between CGP and stage, prognosis, response to treatment and overall survival will also be investigated. This study will open to recruitment in 2020, with a target accrual of 150 A-PDAC patients within 36 months, with a 2-year follow-up. It is expected that the majority of participants will be those who have already consented for their tissue to be biobanked in the Victorian Pancreatic Cancer Biobank at the time of diagnostic EUS-FNA. Patients without archival or biobanked material that is suitable for CGP may be offered a EUS-FNA procedure for the purposes of obtaining fresh frozen material. Discussion: This trial is expected to provide crucial data regarding the feasibility of routine CGP of A-PDAC using EUS-FNA material. It will also provide important information about the impact of this methodology on patients’ survival.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University; Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Joanne Lundy
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University; Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Hugh Gao
- Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vivek Rathi
- Department of Genetics and Molecular Pathology, Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Michael Swan
- Department of Gastroenterology, Monash Medical Centre, Monash Health, Clayton, Victoria, Australia
| | - Christopher Desmond
- Department of Gastroenterology, Monash Medical Centre, Monash Health, Clayton, Victoria, Australia
| | - Manoop S Bhutani
- Department of Gastroenterology, Hepatology and Nutrition, UT MD Anderson Cancer Centre, Houston, TX, USA
| | - Melissa C Southey
- Department of Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton; Department of Pathology, Epidemiology Laboratory, The University of Melbourne, Parkville, Victoria, Australia
| | - Rhys Vaughan
- Department of Gastroenterology, Austin Health, Heidelberg; Department of Medicine, The University of Melbourne (Austin Health), Melbourne, Victoria, Australia
| | - Poornima Varma
- Department of Gastroenterology, Austin Health, Heidelberg, Victoria, Australia
| | - Peter Tagkalidis
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Bronte A Holt
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
| | | | - Eva Segelov
- Department of Oncology, Faculty of Medicine, Nursing and Health Sciences and School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Belinda Lee
- Department of Oncology, Northern Health, Epping, Victoria; Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Marion Harris
- Department of Oncology, Faculty of Medicine, Nursing and Health Sciences and School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Andrew Strickland
- Department of Oncology, Faculty of Medicine, Nursing and Health Sciences and School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Sophia Frentzas
- Department of Oncology, Faculty of Medicine, Nursing and Health Sciences and School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - John Zalcberg
- Department of Gastroenterology, Royal Melbourne Hospital; School of Public Health and Preventative Medicine, Monash University, Melbourne, Victoria, Australia
| | - Brendan Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Daniel Croagh
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
29
|
Bannoura SF, Uddin MH, Nagasaka M, Fazili F, Al-Hallak MN, Philip PA, El-Rayes B, Azmi AS. Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer Metastasis Rev 2021; 40:819-835. [PMID: 34499267 PMCID: PMC8556325 DOI: 10.1007/s10555-021-09990-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Kirsten Rat Sarcoma (KRAS) is a master oncogene involved in cellular proliferation and survival and is the most commonly mutated oncogene in all cancers. Activating KRAS mutations are present in over 90% of pancreatic ductal adenocarcinoma (PDAC) cases and are implicated in tumor initiation and progression. Although KRAS is a critical oncogene, and therefore an important therapeutic target, its therapeutic inhibition has been very challenging, and only recently specific mutant KRAS inhibitors have been discovered. In this review, we discuss the activation of KRAS signaling and the role of mutant KRAS in PDAC development. KRAS has long been considered undruggable, and many drug discovery efforts which focused on indirect targeting have been unsuccessful. We discuss the various efforts for therapeutic targeting of KRAS. Further, we explore the reasons behind these obstacles, novel successful approaches to target mutant KRAS including G12C mutation as well as the mechanisms of resistance.
Collapse
Affiliation(s)
- Sahar F Bannoura
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Misako Nagasaka
- Division of Hematology/Oncology, Department of Medicine, UCI Health, Orange, CA, 92868, USA
| | - Farzeen Fazili
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al-Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bassel El-Rayes
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
30
|
Umemoto K, Sunakawa Y. The potential targeted drugs for fusion genes including NRG1 in pancreatic cancer. Crit Rev Oncol Hematol 2021; 166:103465. [PMID: 34454058 DOI: 10.1016/j.critrevonc.2021.103465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer (PC) remains an incurable disease with few treatment options Recently, promising targets have been identified and novel therapeutic drugs are currently under development in KRAS wild-type PC. It has been reported that KRAS wild-type PC has the genomic alterations such as oncogenic derivers and kinase fusions. NRG1 fusion, which encodes the neuregulin 1 and is the main ligands for ERRB3, has been identified in approximately half of younger patients with PC with KRAS wild-type tumors by RNA sequencing. There are several promising targeted therapies for NRG1 fusion-positive tumors, such as EGFR-tyrosine kinase inhibitor, HER3, HER2 antibodies. BRAF, NTRK, and ALK fusion are also potentially actionable alterations in KRAS wild-type PC and novel therapies targeting certain aberrations have shown activity in clinical trials.
Collapse
Affiliation(s)
- Kumiko Umemoto
- Department of Clinical Oncology, St. Marianna University School of Medicine, Japan
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Japan.
| |
Collapse
|
31
|
Liu Y, Wu W, Wang Y, Han S, Yuan Y, Huang J, Shuai X, Peng Z. Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater Sci 2021; 9:6673-6690. [PMID: 34378568 DOI: 10.1039/d1bm00748c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer (PC), characterized by its dense desmoplastic stroma and hypovascularity, is one of the most lethal cancers with a poor prognosis in the world. Traditional treatments such as chemotherapy, radiotherapy, and targeted therapy show little benefit in the survival rate in patients with advanced PC due to the poor penetration and resistance of drugs, low radiosensitivity, or severe side effects. Gene therapy can modify the morbific and drug-resistant genes as well as insert the tumor-suppressing genes, which has been shown to have great potential in PC treatment. The development of safe non-viral vectors for the highly efficient delivery of nucleic acids is essential for effective gene therapy, and has been attracting much attention. In this review, we first summarized the PC-promoting genes and gene therapies using plasmid DNA, mRNA, miRNA/siRNA-based RNA interference technology, and genome editing technology. Second, the commonly used non-viral nanovector and theranostic gene delivery nanosystem, especially the tumor microenvironment-sensitive delivery nanosystem and the cell/tumor-penetrating delivery nanosystem, were introduced. Third, a combination of non-viral nanovector-based gene therapy and other therapies, such as immunotherapy, chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT), for PDAC treatment was discussed. Finally, a number of clinical trials have demonstrated the proof-of-principle that gene therapy or the combination of gene therapy and chemotherapy using non-viral vectors can inhibit the progression of PC. Although most of the non-viral vector-based gene therapies and their combination therapy are still under preclinical research, the development of genetics, molecular biology, and novel vectors would promote the clinical transformation of gene therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wei Wu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhao Peng
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
32
|
Dong Y, Tian J, Yan B, Lv K, Li J, Fu D. Liver-Metastasis-Related Genes are Potential Biomarkers for Predicting the Clinical Outcomes of Patients with Pancreatic Adenocarcinoma. Pathol Oncol Res 2021; 27:1609822. [PMID: 34290570 PMCID: PMC8286999 DOI: 10.3389/pore.2021.1609822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
It is widely acknowledged that metastasis determines the prognosis of pancreatic adenocarcinoma (PAAD), and the liver is the most primary distant metastatic location of PAAD. It is worth exploring the value of liver-metastasis-related genetic prognostic signature (LM-PS) in predicting the clinical outcomes of PAAD patients post R0 resection. We collected 65 tumors and 165 normal pancreatic data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression project (GTEx), respectively. Differentially expressed genes (DEGs) between primary tumor and normal pancreatic samples were intersected with DEGs between primary tumor samples with liver metastasis and those without new tumor events. The intersected 45 genes were input into univariate Cox regression analysis to identify the prognostic genes. Thirty-three prognostic liver-metastasis-related genes were identified and included in least absolute shrinkage and selection operator (LASSO) analysis to develop a seven-gene LM-PS, which included six risk genes (ANO1, FAM83A, GPR87, ITGB6, KLK10, and SERPINE1) and one protective gene (SMIM32). The PAAD patients were grouped into low- and high-risk groups based on the median value of risk scores. The LM-PS harbored an independent predictive ability to distinguish patients with a high-risk of death and liver metastasis after R0 resection. Moreover, a robust prognostic nomogram based on LM-PS, the number of positive lymph nodes, and histologic grade were established to predict the overall survival of PAAD patients. Besides, a transcription factor‐microRNA coregulatory network was constructed for the seven LM-PS genes, and the immune infiltration and genomic alterations were systematically explored in the TGCA-PAAD cohort.
Collapse
Affiliation(s)
- Yinlei Dong
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Junjie Tian
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingqian Yan
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji Li
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Deliang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Alzhrani R, Alsaab HO, Vanamal K, Bhise K, Tatiparti K, Barari A, Sau S, Iyer AK. Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. ADVANCED THERAPEUTICS 2021; 4:2000262. [PMID: 34212073 PMCID: PMC8240487 DOI: 10.1002/adtp.202000262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the tumor to metastasize and develop resistance against chemo and radiation therapy. A highly complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest responders of ICIs therapy. The immunologically "cold" phenotype of PDAC is attributed to the low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, contributing to a significant immunotherapy resistance mechanism. Thus, the development of innovative strategies for turning immunologically "cold" tumor into "hot" ones is an unmet need to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic agents' efficiency by disrupting the PDAC stroma. This review highlights the current challenges and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus significantly advancing PDAC research knowledge.
Collapse
Affiliation(s)
- Rami Alzhrani
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kushal Vanamal
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ayatakshi Barari
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
34
|
Cazacu IM, Semaan A, Stephens B, Swartzlander DB, Guerrero PA, Singh BS, Lungulescu CV, Danciulescu MM, Cherciu Harbiyeli IF, Streata I, Popescu C, Saftoiu A, Roy-Chowdhuri S, Maitra A, Bhutani MS. Diagnostic value of digital droplet polymerase chain reaction and digital multiplexed detection of single-nucleotide variants in pancreatic cytology specimens collected by EUS-guided FNA. Gastrointest Endosc 2021; 93:1142-1151.e2. [PMID: 33058885 DOI: 10.1016/j.gie.2020.09.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS EUS-guided FNA is recommended as a first-line procedure for the histopathologic diagnosis of pancreatic cancer. Molecular analysis of EUS-FNA samples might be used as an auxiliary tool to strengthen the diagnosis. The current study aimed to evaluate the diagnostic performances of K-ras testing using droplet digital polymerase chain reaction (ddPCR) and a novel single-nucleotide variant (SNV) assay performed on pancreatic EUS-FNA samples. METHODS EUS-FNA specimens from 31 patients with pancreatic masses (22 pancreatic ductal adenocarcinomas, 7 chronic pancreatitis, and 2 pancreatic neuroendocrine tumors) were included in the study. K-ras testing was initially performed by ddPCR. In addition, mutational status was evaluated using an SNV assay by NanoString technology, using digital enumeration of unique barcoded probes to detect 97 SNVs from 24 genes of clinical significance. RESULTS The overall specificity and sensitivity of cytologic examination were 100% and 63%, respectively. K-ras mutation testing was performed using ddPCR, and the sensitivity increased to 87% with specificity 90%. The SNV assay detected at least 1 variant in 90% of pancreatic ductal adenocarcinoma samples; the test was able to detect 2 K-ras codon 61 mutations in 2 cases of pancreatic ductal adenocarcinoma, which were missed by ddPCR. The overall diagnostic accuracy of the cytologic examination alone was 74%, and it increased to 91% when the results of both molecular tests were considered for the cases with negative and inconclusive results. CONCLUSIONS The current study illustrated that integration of K-ras analysis with cytologic evaluation, especially in inconclusive cases, can enhance the diagnostic accuracy of EUS-FNA for pancreatic lesions.
Collapse
Affiliation(s)
- Irina M Cazacu
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA; Research Center of Gastroenterology and Hepatology, Craiova, Romania
| | - Alexander Semaan
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Bret Stephens
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel B Swartzlander
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Paola A Guerrero
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Ben S Singh
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | - Ioana Streata
- Research Center of Gastroenterology and Hepatology, Craiova, Romania
| | - Carmen Popescu
- Research Center of Gastroenterology and Hepatology, Craiova, Romania
| | - Adrian Saftoiu
- Research Center of Gastroenterology and Hepatology, Craiova, Romania
| | - Sinchita Roy-Chowdhuri
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anirban Maitra
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Manoop S Bhutani
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
35
|
Phase II study of selumetinib, an orally active inhibitor of MEK1 and MEK2 kinases, in KRAS G12R-mutant pancreatic ductal adenocarcinoma. Invest New Drugs 2021; 39:821-828. [PMID: 33405090 PMCID: PMC8068685 DOI: 10.1007/s10637-020-01044-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Abstract
Background Preclinical evidence has suggested that a subset of pancreatic cancers with the G12R mutational isoform of the KRAS oncogene is more sensitive to MAPK pathway blockade than pancreatic tumors with other KRAS isoforms. We conducted a biomarker-driven trial of selumetinib (KOSELUGO™; ARRY-142886), an orally active, allosteric mitogen-activated protein kinase 1 and 2 (MEK1/2) inhibitor, in pancreas cancer patients with somatic KRASG12R mutations. Methods In this two-stage, phase II study (NCT03040986) patients with advanced pancreas cancer harboring somatic KRASG12R variants who had received at least one standard-of-care systemic therapy regimen received 75 mg selumetinib orally twice a day until disease progression or unacceptable toxicity occurred. The primary outcome of the study was best objective response (BOR). Results From August 2017 to February 2018 a total of 8 patients with confirmed somatic KRASG12R mutations and a median age of 61.5 years were treated with selumetinib. Seven out of eight (87.5%) had received two or more lines of prior systemic chemotherapy. After a median follow-up period of 8.5 months (range 2 to 20), three patients had stable disease for more than 6 months while receiving selumetinib. No patients achieved an objective partial response. Median progression-free survival (PFS) was 3.0 months (95% CI, 0.8–8.2) and median overall survival (OS) 9 months (95% CI, 2.5–20.9). Conclusion This study in heavily pre-treated pancreatic adenocarcinoma patients suggests alternative strategies beyond single agent MEK inhibition are required for this unique, molecular subset of pancreatic cancer patients. The trial was registered on February 2nd, 2017 under identifier NCT03040986 with ClinicalTrials.gov.
Collapse
|
36
|
Bameri O, Salarzaei M, Parooie F. KRAS/BRAF mutations in brain arteriovenous malformations: A systematic review and meta-analysis. Interv Neuroradiol 2021; 27:539-546. [PMID: 33401991 DOI: 10.1177/1591019920982810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Somatic KRAS mutations have been identified in the majority of brain arteriovenous malformations (AVM) specimens. The aim of our study was to evaluate the prevalence of Kirsten rat sarcoma (KRAS)/murine sarcoma viral oncogene homolog B1 (BRAF) mutations in brain AVM. METHODS A systematic literature review was performed in November 2019. We reviewed MEDLINE/PubMed, Cochrane Library, and ClinicalTrials.gov for citation or ongoing trials from January 2010 to March 2020. RESULTS 6 studies were identified as meeting the inclusion criteria of this review. The total frequency of KRAS mutations in 1726 patients with AVM was 55%. The prevalence of BRAF mutation was 7.5%. The prevalence of AVMs with grade 2 was the most (39%). Frontal and parietal lobes were the commonest sites of AVMs (21%). the most prevalent presentation of patients with AVM was hemorrhage (62%). CONCLUSION Our findings support a high prevalence of somatic activating mutations in KRAS and less commonly, BRAF in the overwhelming majority of brain AVMs. Practically and importantly, this pathway homogeneity in CNS arteriovenous malformations also supports the development of targeted therapies with RAS/RAF pathway inhibitors. However, more studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Omid Bameri
- Department of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Morteza Salarzaei
- Department of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Fateme Parooie
- Department of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
37
|
Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol 2020; 17:153-168. [PMID: 32005945 DOI: 10.1038/s41575-019-0245-4] [Citation(s) in RCA: 381] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to be the second most common cause of death within the next 10 years. The prognosis for this disease is poor despite diagnostic progress and new chemotherapeutic regimens. The oncogenic KRAS mutation is the major event in pancreatic cancer; it confers permanent activation of the KRAS protein, which acts as a molecular switch to activate various intracellular signalling pathways and transcription factors inducing cell proliferation, migration, transformation and survival. Several laboratory methods have been developed to detect KRAS mutations in biological samples, including digital droplet PCR (which displays high sensitivity). Clinical studies have revealed that a KRAS mutation assay in fine-needle aspiration material combined with cytopathology increases the sensitivity, accuracy and negative predictive value of cytopathology for a positive diagnosis of pancreatic cancer. In addition, the presence of KRAS mutations in serum and plasma (liquid biopsies) correlates with a worse prognosis. The presence of mutated KRAS can also have therapeutic implications, whether at the gene level per se, during its post-translational maturation, interaction with nucleotides and after activation of the various oncogenic signals. Further pharmacokinetic and toxicological studies on new molecules are required, especially small synthetic molecules, before they can be used in the therapeutic arsenal for pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Louis Buscail
- Department of Gastroenterology, University of Toulouse III, Rangueil Hospital, Toulouse, France. .,INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France.
| | - Barbara Bournet
- Department of Gastroenterology, University of Toulouse III, Rangueil Hospital, Toulouse, France.,INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France
| | - Pierre Cordelier
- INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France
| |
Collapse
|
38
|
Fujita A, Ryozawa S, Mizuide M, Araki R, Nagata K, Tanisaka Y, Harada M, Ogawa T, Tashima T, Nonaka K. Does endoscopic ultrasound-guided fine needle biopsy using a Franseen needle really offer high diagnostic accuracy? A propensity-matched analysis. Endosc Int Open 2019; 7:E1327-E1332. [PMID: 31673602 PMCID: PMC6805192 DOI: 10.1055/a-0957-3005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background and study aims This study aimed to investigate the diagnostic accuracy and utility of endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB) performed using a Franseen needle on solid pancreatic lesions. Patients and methods This study included 132 consecutive lesions sampled by endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) using a 22-G conventional needle and 95 consecutive lesions evaluated by EUS-FNB using a 22-G Franseen needle to evaluate solid pancreatic lesions at our medical center between July 2013 and November 2018. We used propensity-matched analysis with adjustment for confounders. Patient data were analyzed retrospectively. Results Diagnostic accuracy was higher in the Franseen needle group (Group F; 91.6 %, 87 /95) than in the conventional needle group (Group C; 86.3 %, 82 /95), showing no significant difference ( P = 0.36). In Group F, diagnostic accuracies for pancreatic head lesions and lesions sampled by transduodenal puncture were 98.0 % (48/49) and 97.9 % (46/47), respectively. These values were significantly higher than values in Group C ( P = 0.013, 0.01). Group F displayed a significantly lower number of punctures. In terms of differentiating benign from malignant lesions, Group C showed 85.1 % sensitivity (74/87), 100 % specificity (8/8), 100 % positive predictive value (74/74), and 38.1 % negative predictive value (8/21), compared to values of 90.1 % (73/81), 100 % (14/14), 100 % (73/73), and 63.6 % (14/22), respectively, in Group F. Sensitivity and negative predictive value were better in Group F. Conclusions Franseen needles for EUS-FNB of solid pancreatic lesions offer similar puncture performance at different lesion sites while requiring fewer punctures than conventional needles.
Collapse
Affiliation(s)
- Akashi Fujita
- Department of Gastroenterology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Shomei Ryozawa
- Department of Gastroenterology, Saitama Medical University International Medical Center, Saitama, Japan,Corresponding author Shomei Ryozawa, MD, PhD Department of GastroenterologySaitama Medical University International Medical Center1397-1, Yamane, HidakaSaitama 350-1298Japan+81-42-984-0432
| | - Masafumi Mizuide
- Department of Gastroenterology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Ryuichiro Araki
- Community Health Science Center, Saitama Medical University, Saitama, Japan
| | - Koji Nagata
- Department of Pathology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yuki Tanisaka
- Department of Gastroenterology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Maiko Harada
- Department of Gastroenterology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Tomoya Ogawa
- Department of Gastroenterology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Tomoaki Tashima
- Department of Gastroenterology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Kouichi Nonaka
- Department of Gastroenterology, Saitama Medical University International Medical Center, Saitama, Japan
| |
Collapse
|
39
|
New Era of Endoscopic Ultrasound-Guided Tissue Acquisition: Next-Generation Sequencing by Endoscopic Ultrasound-Guided Sampling for Pancreatic Cancer. J Clin Med 2019; 8:jcm8081173. [PMID: 31387310 PMCID: PMC6723875 DOI: 10.3390/jcm8081173] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is a lethal cancer with an increasing incidence. Despite improvements in chemotherapy, patients with pancreatic cancer continue to face poor prognoses. Endoscopic ultrasound-guided tissue acquisition (EUS-TA) is the primary method for obtaining tissue samples of pancreatic cancer. Due to advancements in next-generation sequencing (NGS) technologies, multiple parallel sequencing can be applied to EUS-TA samples. Genomic biomarkers for therapeutic stratification in pancreatic cancer are still lacking, however, NGS can unveil potential predictive genomic biomarkers of treatment response. Thus, the importance of NGS using EUS-TA samples is becoming recognized. In this review, we discuss the recent advances in EUS-TA application for NGS of pancreatic cancer.
Collapse
|
40
|
Buscail E, Maulat C, Muscari F, Chiche L, Cordelier P, Dabernat S, Alix-Panabières C, Buscail L. Liquid Biopsy Approach for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11060852. [PMID: 31248203 PMCID: PMC6627808 DOI: 10.3390/cancers11060852] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/01/2019] [Accepted: 06/14/2019] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is a public health problem because of its increasing incidence, the absence of early diagnostic tools, and its aggressiveness. Despite recent progress in chemotherapy, the 5-year survival rate remains below 5%. Liquid biopsies are of particular interest from a clinical point of view because they are non-invasive biomarkers released by primary tumours and metastases, remotely reflecting disease burden. Pilot studies have been conducted in pancreatic cancer patients evaluating the detection of circulating tumour cells, cell-free circulating tumour DNA, exosomes, and tumour-educated platelets. There is heterogeneity between the methods used to isolate circulating tumour elements as well as the targets used for their identification. Performances for the diagnosis of pancreatic cancer vary depending of the technique but also the stage of the disease: 30–50% of resectable tumours are positive and 50–100% are positive in locally advanced and/or metastatic cases. A significant prognostic value is demonstrated in 50–70% of clinical studies, irrespective of the type of liquid biopsy. Large prospective studies of homogeneous cohorts of patients are lacking. One way to improve diagnostic and prognostic performances would be to use a combined technological approach for the detection of circulating tumour cells, exosomes, and DNA.
Collapse
Affiliation(s)
- Etienne Buscail
- INSERM U1035, Bordeaux University, 33000 Bordeaux, France.
- Department of Digestive Surgery, Bordeaux University Hospital, 33600 Pessac, France.
| | - Charlotte Maulat
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Digestive Surgery, Toulouse University Hospital, 31059 Toulouse, France.
| | - Fabrice Muscari
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Digestive Surgery, Toulouse University Hospital, 31059 Toulouse, France.
| | - Laurence Chiche
- INSERM U1035, Bordeaux University, 33000 Bordeaux, France.
- Department of Digestive Surgery, Bordeaux University Hospital, 33600 Pessac, France.
| | - Pierre Cordelier
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
| | | | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), Montpellier Hospital and University of Montpellier, 34295 Montpellier, France.
| | - Louis Buscail
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Gastroenterology and Pancreatology, Toulouse University Hospital, 31059 Toulouse, France.
| |
Collapse
|
41
|
Lee HS, Lee JS, Lee J, Kim EK, Kim H, Chung MJ, Park JY, Park SW, Song SY, Bang S. Establishment of pancreatic cancer cell lines with endoscopic ultrasound-guided biopsy via conditionally reprogrammed cell culture. Cancer Med 2019; 8:3339-3348. [PMID: 31044541 PMCID: PMC6601705 DOI: 10.1002/cam4.2210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Recent studies have identified the mutational landscape of pancreatic cancer and suggested tumor‐specific subtypes. However, the major hurdle against personalized treatment is the difficulty to obtain sufficient cancer tissues from most inoperable cases. We investigated whether patient‐derived conditionally reprogrammed cells (CRCs) can be constructed using a small piece of tumor tissue using endoscopic ultrasound (EUS)‐guided fine needle biopsy (FNB). Thirty patients with pancreatic solid mass (mean size, 34.6 mm) were enrolled prospectively. Among 22 patients who were diagnosed with pancreatic ductal adenocarcinoma, we established patient‐derived pancreatic cancer cell lines from eight patients (36.4%). Immunofluorescence colony staining for CRCs showed that the cytoplasm of cancer cells was clearly stained with anti‐cytokeratin 19 monoclonal antibody. In the soft agar colony formation assay, CRCs formed colonies compared with the negative control by day 15. In vivo, implanted CRCs showed tumor engraftment and hematoxylin and eosin staining showed pancreatic cancer ductal structure. All established CRCs showed a KRAS mutation. In conclusion, we established patient‐derived pancreatic cancer cell lines with a small tumor tissue obtained by EUS‐FNB. With in vitro drug sensitivity and genomic studies, established patient‐derived cell lines can be used in identification of new targets for diagnosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jinyoung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Kyung Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Hoguen Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Tomasello G, Ghidini M, Costanzo A, Ghidini A, Russo A, Barni S, Passalacqua R, Petrelli F. Outcome of head compared to body and tail pancreatic cancer: a systematic review and meta-analysis of 93 studies. J Gastrointest Oncol 2019; 10:259-269. [PMID: 31032093 DOI: 10.21037/jgo.2018.12.08] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Even when resectable pancreatic cancer (PC) is associated with a dismal prognosis. Initial presentation varies according with primary tumor location. Aim of this systematic review and meta-analysis was to evaluate the prognosis associated with site (head versus body/tail) in patients with PC. Methods We searched PubMed, Cochrane Library, SCOPUS, Web of Science, EMBASE, Google Scholar, LILACS, and CINAHL databases from inception to March 2018. Studies reporting information on the independent prognostic role of site in PC and comparing overall survival (OS) in head versus body/tail tumors were selected. Data were aggregated using hazard ratios (HRs) for OS of head versus body/tail PC according to fixed- or random-effect model. Results A total of 93 studies including 254,429 patients were identified. Long-term prognosis of head was better than body/tail cancers (HR =0.96, 95% CI: 0.92-0.99; P=0.02). A pooled HR of 0.95 (95% CI: 0.92-0.99, P=0.02) from multivariate analysis only (n=77 publications) showed that head site was an independent prognostic factor for survival. Conclusions Primary tumor location in the head of the pancreas at the time of diagnosis is a predictor of better survival. Such indicator should be acknowledged when designing future studies, in particular in the operable and neoadjuvant setting.
Collapse
Affiliation(s)
| | - Michele Ghidini
- Oncology Department, ASST Ospedale di Cremona, Cremona, Italy
| | - Antonio Costanzo
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | | | - Alessandro Russo
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Sandro Barni
- Oncology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | | | - Fausto Petrelli
- Oncology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| |
Collapse
|
43
|
Analysis of BRCAness with multiplex ligation-dependent probe amplification using formalin-fixed and paraffin-embedded pancreatic ductal adenocarcinoma tissue obtained via endoscopic ultrasound-guided fine-needle aspiration biopsy. Pancreatology 2019; 19:419-423. [PMID: 30819577 DOI: 10.1016/j.pan.2019.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES A breakthrough in chemotherapy for pancreatic ductal adenocarcinoma (PDAC) may be achieved using precision medicine, which involves identifying cases that are highly likely to respond to a certain treatment and then performing that treatment. BRCAness has been receiving attention as a novel predictor of anticancer drug sensitivity in PDAC, making the screening of BRCAness paramount. METHODS We conducted the first-ever examination of the feasibility of analyzing BRCAness using multiplex ligation-dependent probe amplification (MLPA). Formalin-fixed paraffin-embedded (FFPE) tissue samples obtained via endoscopic ultrasound-guided fine-needle aspiration biopsy (EUS-FNAB) from 20 patients with the highest pancreatic carcinoma cell counts in tissue samples out of 40 consecutive PDAC patients who underwent EUS-FNAB at our hospital were analyzed by MLPA for BRCAness. RESULTS We were able to accurately analyze BRCAness in 75% of the 20 cases of PDAC using FFPE tissue obtained by EUS-FNAB. BRCAness was observed in one of the 20 cases. CONCLUSIONS In PDAC, analyzing BRCAness by MLPA using FFPE tissue obtained by EUS-FNAB offers the remarkable benefit of yielding results in a short period of time and at a low cost. In addition, this method of BRCAness analysis may prove to be a feasible and effective approach for performing precision medicine.
Collapse
|
44
|
Oka M, Kushamae M, Aoki T, Yamaguchi T, Kitazato K, Abekura Y, Kawamata T, Mizutani T, Miyamoto S, Takagi Y. KRAS G12D or G12V Mutation in Human Brain Arteriovenous Malformations. World Neurosurg 2019; 126:e1365-e1373. [PMID: 30902772 DOI: 10.1016/j.wneu.2019.03.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Brain arteriovenous malformations (BAVMs) are vascular malformations composed of tangles of abnormally developed vasculature without capillaries. Abnormal shunting of arteries and veins is formed, resulting in high-pressure vascular channels, which potentially lead to rupture. BAVMs are generally considered a congenital disorder. But clinical evidence regarding involution, regrowth, and de novo formation argue against the static condition of this disease. Recently, the presence of the somatic activating KRAS mutations in more than half of BAVM cases was reported, suggesting the role of KRAS function in the pathogenesis. METHODS KRAS mutation in codon35 (G→A, G12D; G→T, G12V) was examined by a digital polymerase chain reaction analysis using genome purified from paraffin-embedded slides of human BAVMs. We also examined protein expression of KRAS G12D in lesions to corroborate results from digital polymerase chain reaction analysis. RESULTS We detected codon35 G→A mutation in 15 (39.5%) among 38 samples and codon35 G→T mutation in 10 (27.0%) among 37 samples we could assess mutations. There were no samples positive for both codon35 G→A and G→T mutation. The ratio of codon35 G→A mutation ranged from 0.60% to 12.28% and that of G→T was from 1.20% to 8.99%. We next examined protein expression of KRAS G12D in BAVM lesions in immunohistochemistry. A KRAS G12D mutant was detected mainly in endothelial cells of dilated vessels in lesions. CONCLUSIONS KRAS mutations in codon35 were detected in about two thirds of specimens examined. KRAS function may actively contribute to the pathobiology of BAVM and can become a therapeutic target.
Collapse
Affiliation(s)
- Mieko Oka
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan; Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan; Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Mika Kushamae
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan; Department of Neurosurgery, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Tomohiro Aoki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan; Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan
| | - Tadashi Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Keiko Kitazato
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Yu Abekura
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto City, Kyoto, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Tohru Mizutani
- Department of Neurosurgery, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto City, Kyoto, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima City, Tokushima, Japan.
| |
Collapse
|
45
|
Cheng H, Fan K, Luo G, Fan Z, Yang C, Huang Q, Jin K, Xu J, Yu X, Liu C. Kras G12D mutation contributes to regulatory T cell conversion through activation of the MEK/ERK pathway in pancreatic cancer. Cancer Lett 2019; 446:103-111. [PMID: 30664964 DOI: 10.1016/j.canlet.2019.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/04/2018] [Accepted: 01/10/2019] [Indexed: 01/06/2023]
Abstract
Genetic alterations have been attributed to the abnormal immune microenvironment in cancer. However, the relationship between the KrasG12D mutation and regulatory T cells (Tregs) in pancreatic cancer remains unclear. In this study, we found that KrasG12D mutation status as determined by ddPCR correlated with high levels of Treg infiltration in resectable pancreatic cancer tissues. Compared to wild-type tumour cells, tumours cells with the KrasG12D mutation were associated with higher levels of Tregs, and knockout of the KrasG12D mutation reversed this effect. In addition, overexpression of the KrasG12D mutation in wild-type Kras tumour cells resulted in conversion of CD4+CD25- T cells into Tregs. We also found that in tumour cells, the KrasG12D mutation activated the MEK/ERK pathway, thereby up-regulating the levels of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), which induced Treg conversion. In summary, KrasG12D mutation plays a critical role in Treg conversion and contributes to an immunosuppressive tumour microenvironment in pancreatic cancer. These results provide new insights into the relationship between gene mutation and immune escape.
Collapse
Affiliation(s)
- He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Chao Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China.
| |
Collapse
|
46
|
Two Case Reports of Resectable Cancer in the Remnant Pancreas after Pancreatectomy for Invasive Ductal Carcinoma of the Pancreas. Int Surg 2018. [DOI: 10.9738/intsurg-d-16-00182.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pancreatic cancer has an extremely poor prognosis. There are several reports on resectable cancer in the remnant pancreas after pancreatectomy; however, few have compared K-ras mutation patterns to clarify recurrent or second primary cancers. Here, we report on 2 cases of cancer in the remnant pancreas after total pancreatectomy for invasive ductal carcinoma. Case 1 is a 56-year-old man who underwent pancreaticoduodenectomy for cancer of the pancreatic head. However, serum carbohydrate antigen (CA19-9) was again elevated 23 months later. A tumor in the pancreatic tail was detected on abdominal computed tomography (CT), and total pancreatectomy was performed. Histologic examination of the tumors from both operations revealed moderately differentiated adenocarcinoma, and the surgical margins of both resected specimens were free of cancerous cells. The K-ras gene mutation was detected at codon 12V of exon 1 in both cancers. Case 2 is a 72-year-old woman who underwent distal pancreatectomy for cancer of the pancreatic body. However, serum CA19-9 was again elevated 4 years postoperatively. A tumor of the pancreatic head was detected on abdominal CT, and total pancreatectomy was performed. Histologic examination of the first and second tumors revealed poorly and moderately differentiated adenocarcinomas, respectively. The surgical margins of both resected specimens were free of cancerous cells. The K-ras gene mutation was detected at codon 12D of exon 1 in both cancers. These patients with rare pancreatic cancers both had metachronous carcinogenesis in the remnant pancreas.
Collapse
|
47
|
Stimuli-Triggered Strand Displacement-Based Multifunctional Gene Detection Platform Controlled By A Multi-Input DNA Logic Gate. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61084-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Maity G, Haque I, Ghosh A, Dhar G, Gupta V, Sarkar S, Azeem I, McGregor D, Choudhary A, Campbell DR, Kambhampati S, Banerjee SK, Banerjee S. The MAZ transcription factor is a downstream target of the oncoprotein Cyr61/CCN1 and promotes pancreatic cancer cell invasion via CRAF-ERK signaling. J Biol Chem 2018; 293:4334-4349. [PMID: 29414775 PMCID: PMC5868262 DOI: 10.1074/jbc.ra117.000333] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/01/2018] [Indexed: 01/18/2023] Open
Abstract
Myc-associated zinc-finger protein (MAZ) is a transcription factor with dual roles in transcription initiation and termination. Deregulation of MAZ expression is associated with the progression of pancreatic ductal adenocarcinoma (PDAC). However, the mechanism of action of MAZ in PDAC progression is largely unknown. Here, we present evidence that MAZ mRNA expression and protein levels are increased in human PDAC cell lines, tissue samples, a subcutaneous tumor xenograft in a nude mouse model, and spontaneous cancer in the genetically engineered PDAC mouse model. We also found that MAZ is predominantly expressed in pancreatic cancer stem cells. Functional analysis indicated that MAZ depletion in PDAC cells inhibits invasive phenotypes such as the epithelial-to-mesenchymal transition, migration, invasion, and the sphere-forming ability of PDAC cells. Mechanistically, we detected no direct effects of MAZ on the expression of K-Ras mutants, but MAZ increased the activity of CRAF-ERK signaling, a downstream signaling target of K-Ras. The MAZ-induced activation of CRAF-ERK signaling was mediated via p21-activated protein kinase (PAK) and protein kinase B (AKT/PKB) signaling cascades and promoted PDAC cell invasiveness. Moreover, we found that the matricellular oncoprotein cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) regulates MAZ expression via Notch-1-sonic hedgehog signaling in PDAC cells. We propose that Cyr61/CCN1-induced expression of MAZ promotes invasive phenotypes of PDAC cells not through direct K-Ras activation but instead through the activation of CRAF-ERK signaling. Collectively, these results highlight key molecular players in PDAC invasiveness and may help inform therapeutic strategies to improve clinical management and outcomes of PDAC.
Collapse
Affiliation(s)
- Gargi Maity
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
| | - Inamul Haque
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
| | - Arnab Ghosh
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Gopal Dhar
- From the Cancer Research Unit, Veterans Affairs Medical Center
| | | | - Sandipto Sarkar
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Imaan Azeem
- From the Cancer Research Unit, Veterans Affairs Medical Center
| | - Douglas McGregor
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
- the Pathology Department, Veterans Affairs Medical Center, Kansas City, Missouri 64128
| | - Abhishek Choudhary
- the Gastroenterology Department, Veterans Affairs Medical Center, Kansas City, Missouri 64128
| | - Donald R Campbell
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the University of Missouri Kansas City and Saint Luke's Hospital of Kansas City, Kansas City, Missouri, and
| | - Suman Kambhampati
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Sarah Cannon Cancer Center at HCA Midwest Health, Kansas City, Missouri 64131
| | - Sushanta K Banerjee
- From the Cancer Research Unit, Veterans Affairs Medical Center,
- the Department of Pathology and Laboratory Medicine, and
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Snigdha Banerjee
- From the Cancer Research Unit, Veterans Affairs Medical Center,
- the Department of Pathology and Laboratory Medicine, and
| |
Collapse
|
49
|
Sekita-Hatakeyama Y, Nishikawa T, Takeuchi M, Morita K, Takeda M, Hatakeyama K, Nakai T, Uchiyama T, Itami H, Fujii T, Mitoro A, Sho M, Ohbayashi C. K-ras mutation analysis of residual liquid-based cytology specimens from endoscopic ultrasound-guided fine needle aspiration improves cell block diagnosis of pancreatic ductal adenocarcinoma. PLoS One 2018; 13:e0193692. [PMID: 29494669 PMCID: PMC5832306 DOI: 10.1371/journal.pone.0193692] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/19/2018] [Indexed: 01/17/2023] Open
Abstract
Background Endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) technology is widely used for the diagnosis of pancreatic masses. However, in some cases, inadequate tissue volume or difficulty of morphological diagnosis are constraining factors for adequate cytopathological evaluation. K-ras mutation is the most frequently acquired genetic abnormality, occurring in approximately 90% of all patients with pancreatic ductal adenocarcinoma (PDAC). In the present study, the clinical utility of residual liquid-based cytology (LBC) specimens obtained using EUS-FNA for K-ras mutation analysis was evaluated. Methods In this study, 81 patients with pancreatic lesions were examined. The cell block (CB) specimens separated from EUS-FNA samples were morphologically evaluated by hematoxylin–eosin (HE) staining. Final diagnoses were confirmed by CB specimens, surgical resection specimens, diagnostic imaging, and clinical follow-up. Genomic DNA of residual LBC specimens stored at 4°C for several months were extracted and assessed for K-ras mutations using a fluorescence resonance energy transfer-based preferential homoduplex formation assay. Results K-ras mutation analysis using residual LBC samples was successful in all cases. The sensitivity, specificity, and accuracy of CB examination alone were 77.4%, 100%, and 81.3%, respectively, and those of the combination of CB examination and K-ras mutation analysis were 90.3%, 92.3%, and 90.7%, respectively. Furthermore, K-ras mutations were detected in 8 (57.1%) of 14 PDAC samples for which the CB results were inconclusive. Conclusion These findings suggest that K-ras mutation analysis using residual LBC specimens improves the diagnostic accuracy of EUS-FNA.
Collapse
Affiliation(s)
| | - Takeshi Nishikawa
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Mao Takeuchi
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Kouhei Morita
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Maiko Takeda
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Kinta Hatakeyama
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
- * E-mail:
| | - Tokiko Nakai
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Tomoko Uchiyama
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroe Itami
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Tomomi Fujii
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Akira Mitoro
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
50
|
Pathological and Molecular Aspects to Improve Endoscopic Ultrasonography-Guided Fine-Needle Aspiration From Solid Pancreatic Lesions. Pancreas 2018; 47:163-172. [PMID: 29346217 DOI: 10.1097/mpa.0000000000000986] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endoscopic ultrasonography-guided fine-needle aspiration (EUS-FNA) has been applied to pancreatic lesions since the 1990s, and its use is now widespread. Improvements in endoscopic devices and sampling techniques have resulted in excellent diagnostic ability for solid pancreatic lesions. However, clinical improvements alone are not responsible for it; pathological aspects have also played important roles. Rapid on-site evaluation minimizes endoscopic procedures, although its value at improving the diagnostic ratio is still debated. Diagnostic efficacy differs by sample preparations (direct smear, cytospin, liquid-based cytology, cell block, and biopsy) and by staining methods (Papanicoloau, Diff-Quik, hematoxylin-eosin, and Giemsa). Several immunocytochemistry protocols aid in diagnosing epithelial components with cytological atypia and in differentiating various tumor types. One cytopathology diagnostic system is telecytology, which uses transmitted digital images and enables real-time diagnosis of EUS-FNA samples by expert cytologists at remote locations. However, EUS-FNA samples are useful for more than just diagnoses, as molecular analysis of these samples allows the identification of prognostic markers, such as genetic alterations in K-ras and EGFR. Expression of drug-metabolizing enzymes, human equilibrative nucleoside transporter 1, correlates with the response to gemcitabine-based chemotherapy. These pathology efforts have enhanced the diagnostic efficacy of EUS-FNA, thereby leading to better outcomes for patients with pancreatic diseases.
Collapse
|