1
|
Goodwin AT, John AE, Joseph C, Habgood A, Tatler AL, Susztak K, Palmer M, Offermanns S, Henderson NC, Jenkins RG. Stretch regulates alveologenesis and homeostasis via mesenchymal Gαq/11-mediated TGFβ2 activation. Development 2023; 150:dev201046. [PMID: 37102682 PMCID: PMC10259661 DOI: 10.1242/dev.201046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
Alveolar development and repair require tight spatiotemporal regulation of numerous signalling pathways that are influenced by chemical and mechanical stimuli. Mesenchymal cells play key roles in numerous developmental processes. Transforming growth factor-β (TGFβ) is essential for alveologenesis and lung repair, and the G protein α subunits Gαq and Gα11 (Gαq/11) transmit mechanical and chemical signals to activate TGFβ in epithelial cells. To understand the role of mesenchymal Gαq/11 in lung development, we generated constitutive (Pdgfrb-Cre+/-;Gnaqfl/fl;Gna11-/-) and inducible (Pdgfrb-Cre/ERT2+/-;Gnaqfl/fl;Gna11-/-) mesenchymal Gαq/11 deleted mice. Mice with constitutive Gαq/11 gene deletion exhibited abnormal alveolar development, with suppressed myofibroblast differentiation, altered mesenchymal cell synthetic function, and reduced lung TGFβ2 deposition, as well as kidney abnormalities. Tamoxifen-induced mesenchymal Gαq/11 gene deletion in adult mice resulted in emphysema associated with reduced TGFβ2 and elastin deposition. Cyclical mechanical stretch-induced TGFβ activation required Gαq/11 signalling and serine protease activity, but was independent of integrins, suggesting an isoform-specific role for TGFβ2 in this model. These data highlight a previously undescribed mechanism of cyclical stretch-induced Gαq/11-dependent TGFβ2 signalling in mesenchymal cells, which is imperative for normal alveologenesis and maintenance of lung homeostasis.
Collapse
Affiliation(s)
- Amanda T. Goodwin
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alison E. John
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Chitra Joseph
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Anthony Habgood
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Amanda L. Tatler
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Katalin Susztak
- Department of Medicine, Division of Nephrology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew Palmer
- Department of Pathology, Division of Nephrology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4238, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Neil C. Henderson
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - R. Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| |
Collapse
|
2
|
Young MP, Schug ZT, Booth DM, Yule DI, Mikoshiba K, Hajnόczky G, Joseph SK. Metabolic adaptation to the chronic loss of Ca 2+ signaling induced by KO of IP 3 receptors or the mitochondrial Ca 2+ uniporter. J Biol Chem 2021; 298:101436. [PMID: 34801549 PMCID: PMC8672050 DOI: 10.1016/j.jbc.2021.101436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Calcium signaling is essential for regulating many biological processes. Endoplasmic reticulum inositol trisphosphate receptors (IP3Rs) and the mitochondrial Ca2+ uniporter (MCU) are key proteins that regulate intracellular Ca2+ concentration. Mitochondrial Ca2+ accumulation activates Ca2+-sensitive dehydrogenases of the tricarboxylic acid (TCA) cycle that maintain the biosynthetic and bioenergetic needs of both normal and cancer cells. However, the interplay between calcium signaling and metabolism is not well understood. In this study, we used human cancer cell lines (HEK293 and HeLa) with stable KOs of all three IP3R isoforms (triple KO [TKO]) or MCU to examine metabolic and bioenergetic responses to the chronic loss of cytosolic and/or mitochondrial Ca2+ signaling. Our results show that TKO cells (exhibiting total loss of Ca2+ signaling) are viable, displaying a lower proliferation and oxygen consumption rate, with no significant changes in ATP levels, even when made to rely solely on the TCA cycle for energy production. MCU KO cells also maintained normal ATP levels but showed increased proliferation, oxygen consumption, and metabolism of both glucose and glutamine. However, MCU KO cells were unable to maintain ATP levels and died when relying solely on the TCA cycle for energy. We conclude that constitutive Ca2+ signaling is dispensable for the bioenergetic needs of both IP3R TKO and MCU KO human cancer cells, likely because of adequate basal glycolytic and TCA cycle flux. However, in MCU KO cells, the higher energy expenditure associated with increased proliferation and oxygen consumption makes these cells more prone to bioenergetic failure under conditions of metabolic stress.
Collapse
Affiliation(s)
- Michael P Young
- Department of Pathology, MitoCare Center, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Zachary T Schug
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - David M Booth
- Department of Pathology, MitoCare Center, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David I Yule
- Department of Pharmacology & Physiology, University of Rochester, Rochester, New York, USA
| | - Katsuhiko Mikoshiba
- Shanghai Institute of Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China; Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Japan
| | - Gyӧrgy Hajnόczky
- Department of Pathology, MitoCare Center, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Suresh K Joseph
- Department of Pathology, MitoCare Center, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Gastrointestinal Dysmotility Is a Significant Feature in 2 Siblings With a Novel Inositol 1,4,5-Triphosphate Receptor 1 ( ITPR1) Missense Variant. ACG Case Rep J 2021; 8:e00676. [PMID: 34722792 PMCID: PMC8549690 DOI: 10.14309/crj.0000000000000676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
We present 2 siblings with a novel type 1 inositol 1,4,5-triphosphate receptor (ITPR1) missense variant who exhibit gastrointestinal dysmotility (chronic constipation and gastroparesis). ITPR1 is expressed in the cerebellum and interstitial cells of Cajal. Periodic release of calcium by ITPR1 initiates pacemaker currents, resulting in smooth muscle contraction. ITPR1 mutations are known to be associated with neurologic syndromes, and these variants have not previously been associated with significant gastrointestinal manifestations in humans. Using whole-genome sequencing, in silico prediction software, biopsy samples, and manometry, the identified novel ITPR1 variant is likely pathogenic and may have neurogastroenterology implications.
Collapse
|
4
|
Lin H, Zhang X, Wang D, Liu J, Yuan L, Liu J, Wang C, Sun J, Chen J, Li H, Jing S. Anwulignan Ameliorates the Intestinal Ischemia/Reperfusion. J Pharmacol Exp Ther 2021; 378:222-234. [PMID: 34131018 DOI: 10.1124/jpet.121.000587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
Anwulignan is one of the monomer compounds in the lignans from Schisandra sphenanthera In this study, we observed the effect of anwulignan on intestinal ischemia/reperfusion (II/R) injury in male Sprague-Dawley rats and explored the underlying mechanisms. The results showed that pretreatment with oral anwulignan could significantly increase the mesenteric blood microcirculatory flow velocity; relieve the congestion and pathologic injury of jejunum; enhance the autonomic tension of jejunum smooth muscle and its reactivity to acetylcholine; increase the activities of superoxide dismutase, catalase, glutathione S-transferase, and choline acetyltransferase; increase the contents of acetylcholine and glutathione in the serum or jejunal tissue; decrease the activities of myeloperoxidase, protein kinase C, and nicotinamide adenine dinucleotide phosphate oxidase; reduce the contents of malondialdehyde, 8-hydroxy-2-deoxyguanosine, nicotinamide adenine, reactive oxygen species, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β; increase the expression levels of muscarinic receptor 3, PI3K, phosphorylation protein kinase B, p-GSK3β Ser9, Nrf2, p-Nrf2, heme oxygenase (decycling) 1, and b-cell lymphoma 2 in the jejunal tissue; and decrease the expression levels of p-GSK3β Tyr216, kelch-like ECH-associated protein 1, Bax, and cleaved caspase-3, suggesting that anwulignan can ameliorate II/R-induced jejunal tissue injury in rats and that the mechanism may be related to its activating the PI3K/protein kinase B pathway and then regulating the Nrf2/Anti-oxidative Response Element signaling pathway and the expression of apoptosis-related proteins to play antioxidant and antiapoptotic roles. SIGNIFICANCE STATEMENT: Anwulignan can significantly reduce jejunal tissue injury and the production of inflammatory factors in rats with intestinal ischemia-reperfusion injury, improve the antioxidant capacity, and reduce the apoptosis of jejunal tissue, and it has the effect of significantly improving intestinal ischemia-reperfusion injury in rats, suggesting that anwulignan may be used as a potential drug for the prevention and treatment of intestinal ischemia-reperfusion injury or a resource for the development of health food.
Collapse
Affiliation(s)
- Huijiao Lin
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Xinyun Zhang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Dan Wang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jiawei Liu
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Liwei Yuan
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jiale Liu
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - He Li
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Shu Jing
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| |
Collapse
|
5
|
Chen Z, Duan Y, Wang H, Tang H, Wang S, Wang X, Liu J, Fang X, Ouyang K. Atypical protein kinase C is essential for embryonic vascular development in mice. Genesis 2021; 59:e23412. [PMID: 33547760 DOI: 10.1002/dvg.23412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/10/2022]
Abstract
The atypical PKC (aPKC) subfamily constitutes PKCζ and PKCλ in mice, and both aPKC isoforms have been proposed to be involved in regulating various endothelial cell (EC) functions. However, the physiological function of aPKC in ECs during embryonic development has not been well understood. To address this question, we utilized Tie2-Cre to delete PKCλ alone (PKCλ-SKO) or both PKCλ and PKCζ (DKO) in ECs, and found that all DKO mice died at around the embryonic day 11.5 (E11.5), whereas a small proportion of PKCλ-SKO mice survived till birth. PKCλ-SKO embryos also exhibited less phenotypic severity than DKO embryos at E10.5 and E11.5, suggesting a potential compensatory role of PKCζ for PKCλ in embryonic ECs. We then focused on DKO embryos and investigated the effects of aPKC deficiency on embryonic vascular development. At E9.5, deletion of both aPKC isoforms reduced the diameters of vitelline artery and vein, and decreased branching from both vitelline vessels in yolk sac. Ablation of both aPKC isoforms also disrupted embryonic angiogenesis in head and trunk at the same stage, increasing apoptosis of both ECs and non-ECs. Taken together, our results demonstrated that aPKC in ECs plays an essential role in regulating cell apoptosis, angiogenesis, and embryonic survival.
Collapse
Affiliation(s)
- Zee Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yaoyun Duan
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hong Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huayuan Tang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shijia Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xinru Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
6
|
Kacmaz H, Alto A, Knutson K, Linden DR, Gibbons SJ, Farrugia G, Beyder A. A simple automated approach to measure mouse whole gut transit. Neurogastroenterol Motil 2021; 33:e13994. [PMID: 33000540 PMCID: PMC7899194 DOI: 10.1111/nmo.13994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 12/05/2022]
Abstract
BACKGROUND Gastrointestinal (GI) motility is a complex physiological process that is critical for normal GI function. Disruption of GI motility frequently occurs in GI diseases or as side effects of therapeutics. Whole gut transit measurements, like carmine red leading-edge transit, in mice form the cornerstone of in vivo preclinical GI motility studies. METHOD We have developed an easily achievable, labor-saving method to measure whole gut transit time in mice. This approach uses inexpensive, commercially available materials to monitor pellet production over time via high definition cameras capturing time-lapse video for offline analysis. KEY RESULT We describe the assembly of our automated gut transit setup and validate this approach by comparing the results with loperamide to delay transit and conventional transit measurements. We demonstrate that compared to the control group, the loperamide group had slowed transit, evidenced by a decrease in total pellet production and prolonged whole gut transit time. The control group had an extended transit time compared with the results reported in the literature. Whole gut transit rates accelerated to times comparable to the literature by disrupting cages every 10-15 min to imitate the conventional approach, suggesting that disruption affects the assay and supports the use of an automated approach. CONCLUSION & INFERENCES A novel automated, inexpensive, and easily assembled whole gut transit setup is labor-saving and allows minimal disruption to animal behavior compared with the conventional approach.
Collapse
Affiliation(s)
- Halil Kacmaz
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alecia Alto
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kaitlyn Knutson
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - David R. Linden
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon J. Gibbons
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Gianrico Farrugia
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur Beyder
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, Minnesota, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Corresponding author: Arthur Beyder, MD, PhD, Enteric NeuroScience Program (ENSP), Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology and Biomedical Engineering Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. Telephone: (507) 284-2511, Fax: (507) 284-0266,
| |
Collapse
|
7
|
Tanahashi Y, Komori S, Matsuyama H, Kitazawa T, Unno T. Functions of Muscarinic Receptor Subtypes in Gastrointestinal Smooth Muscle: A Review of Studies with Receptor-Knockout Mice. Int J Mol Sci 2021; 22:E926. [PMID: 33477687 PMCID: PMC7831928 DOI: 10.3390/ijms22020926] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/25/2023] Open
Abstract
Parasympathetic signalling via muscarinic acetylcholine receptors (mAChRs) regulates gastrointestinal smooth muscle function. In most instances, the mAChR population in smooth muscle consists mainly of M2 and M3 subtypes in a roughly 80% to 20% mixture. Stimulation of these mAChRs triggers a complex array of biochemical and electrical events in the cell via associated G proteins, leading to smooth muscle contraction and facilitating gastrointestinal motility. Major signalling events induced by mAChRs include adenylyl cyclase inhibition, phosphoinositide hydrolysis, intracellular Ca2+ mobilisation, myofilament Ca2+ sensitisation, generation of non-selective cationic and chloride currents, K+ current modulation, inhibition or potentiation of voltage-dependent Ca2+ currents and membrane depolarisation. A lack of ligands with a high degree of receptor subtype selectivity and the frequent contribution of multiple receptor subtypes to responses in the same cell type have hampered studies on the signal transduction mechanisms and functions of individual mAChR subtypes. Therefore, novel strategies such as genetic manipulation are required to elucidate both the contributions of specific AChR subtypes to smooth muscle function and the underlying molecular mechanisms. In this article, we review recent studies on muscarinic function in gastrointestinal smooth muscle using mAChR subtype-knockout mice.
Collapse
Affiliation(s)
- Yasuyuki Tanahashi
- Department of Advanced Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| | - Seiichi Komori
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.K.); (H.M.)
| | - Hayato Matsuyama
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.K.); (H.M.)
| | - Takio Kitazawa
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan;
| | - Toshihiro Unno
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.K.); (H.M.)
| |
Collapse
|
8
|
Zhang Y, Zeng F, Han X, Weng J, Gao Y. Lineage tracing: technology tool for exploring the development, regeneration, and disease of the digestive system. Stem Cell Res Ther 2020; 11:438. [PMID: 33059752 PMCID: PMC7559019 DOI: 10.1186/s13287-020-01941-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Lineage tracing is the most widely used technique to track the migration, proliferation, and differentiation of specific cells in vivo. The currently available gene-targeting technologies have been developing for decades to study organogenesis, tissue injury repairing, and tumor progression by tracing the fates of individual cells. Recently, lineage tracing has expanded the platforms available for disease model establishment, drug screening, cell plasticity research, and personalized medicine development in a molecular and cellular biology perspective. Lineage tracing provides new views for exploring digestive organ development and regeneration and techniques for digestive disease causes and progression. This review focuses on the lineage tracing technology and its application in digestive diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Fanhong Zeng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Xu Han
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China. .,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China. .,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Yang F, Huang L, Tso A, Wang H, Cui L, Lin L, Wang X, Ren M, Fang X, Liu J, Han Z, Chen J, Ouyang K. Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability. PLoS Genet 2020; 16:e1008739. [PMID: 32320395 PMCID: PMC7176088 DOI: 10.1371/journal.pgen.1008739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 01/28/2023] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of intracellular Ca2+ release channels located on the ER membrane, which in mammals consist of 3 different subtypes (IP3R1, IP3R2, and IP3R3) encoded by 3 genes, Itpr1, Itpr2, and Itpr3, respectively. Studies utilizing genetic knockout mouse models have demonstrated that IP3Rs are essential for embryonic survival in a redundant manner. Deletion of both IP3R1 and IP3R2 has been shown to cause cardiovascular defects and embryonic lethality. However, it remains unknown which cell types account for the cardiovascular defects in IP3R1 and IP3R2 double knockout (DKO) mice. In this study, we generated conditional IP3R1 and IP3R2 knockout mouse models with both genes deleted in specific cardiovascular cell lineages. Our results revealed that deletion of IP3R1 and IP3R2 in cardiomyocytes by TnT-Cre, in endothelial / hematopoietic cells by Tie2-Cre and Flk1-Cre, or in early precursors of the cardiovascular lineages by Mesp1-Cre, resulted in no phenotypes. This demonstrated that deletion of both IP3R genes in cardiovascular cell lineages cannot account for the cardiovascular defects and embryonic lethality observed in DKO mice. We then revisited and performed more detailed phenotypic analysis in DKO embryos, and found that DKO embryos developed cardiovascular defects including reduced size of aortas, enlarged cardiac chambers, as well as growth retardation at embryonic day (E) 9.5, but in varied degrees of severity. Interestingly, we also observed allantoic-placental defects including reduced sizes of umbilical vessels and reduced depth of placental labyrinth in DKO embryos, which could occur independently from other phenotypes in DKO embryos even without obvious growth retardation. Furthermore, deletion of both IP3R1 and IP3R2 by the epiblast-specific Meox2-Cre, which targets all the fetal tissues and extraembryonic mesoderm but not extraembryonic trophoblast cells, also resulted in embryonic lethality and similar allantoic-placental defects. Taken together, our results demonstrated that IP3R1 and IP3R2 play an essential and redundant role in maintaining the integrity of fetal-maternal connection and embryonic viability.
Collapse
Affiliation(s)
- Feili Yang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Alexandria Tso
- University of California San Diego, School of Medicine, Department of Medicine, La Jolla, CA, United States of America
| | - Hong Wang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Li Cui
- University of California San Diego, School of Medicine, Department of Medicine, La Jolla, CA, United States of America
| | - Lizhu Lin
- University of California San Diego, School of Medicine, Department of Medicine, La Jolla, CA, United States of America
| | - Xiaohong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xi Fang
- University of California San Diego, School of Medicine, Department of Medicine, La Jolla, CA, United States of America
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- * E-mail: (ZH); (JC); (KO)
| | - Ju Chen
- University of California San Diego, School of Medicine, Department of Medicine, La Jolla, CA, United States of America
- * E-mail: (ZH); (JC); (KO)
| | - Kunfu Ouyang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
- * E-mail: (ZH); (JC); (KO)
| |
Collapse
|
10
|
Heat shock protein 60 regulates yolk sac erythropoiesis in mice. Cell Death Dis 2019; 10:766. [PMID: 31601784 PMCID: PMC6786998 DOI: 10.1038/s41419-019-2014-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
The yolk sac is the first site of blood-cell production during embryonic development in both murine and human. Heat shock proteins (HSPs), including HSP70 and HSP27, have been shown to play regulatory roles during erythropoiesis. However, it remains unknown whether HSP60, a molecular chaperone that resides mainly in mitochondria, could also regulate early erythropoiesis. In this study, we used Tie2-Cre to deactivate the Hspd1 gene in both hematopoietic and vascular endothelial cells, and found that Tie2-Cre+Hspd1f/f (HSP60CKO) mice were embryonic lethal between the embryonic day 10.5 (E10.5) and E11.5, exhibiting growth retardation, anemia, and vascular defects. Of these, anemia was observed first, independently of vascular and growth phenotypes. Reduced numbers of erythrocytes, as well as an increase in cell apoptosis, were found in the HSP60CKO yolk sac as early as E9.0, indicating that deletion of HSP60 led to abnormality in yolk sac erythropoiesis. Deletion of HSP60 was also able to reduce mitochondrial membrane potential and the expression of the voltage-dependent anion channel (VDAC) in yolk sac erythrocytes. Furthermore, cyclosporine A (CsA), which is a well-recognized modulator in regulating the opening of the mitochondrial permeability transition pore (mPTP) by interacting with Cyclophilin D (CypD), could significantly decrease cell apoptosis and partially restore VDAC expression in mutant yolk sac erythrocytes. Taken together, we demonstrated an essential role of HSP60 in regulating yolk sac cell survival partially via a mPTP-dependent mechanism.
Collapse
|
11
|
Lin Q, Zhao L, Jing R, Trexler C, Wang H, Li Y, Tang H, Huang F, Zhang F, Fang X, Liu J, Jia N, Chen J, Ouyang K. Inositol 1,4,5-Trisphosphate Receptors in Endothelial Cells Play an Essential Role in Vasodilation and Blood Pressure Regulation. J Am Heart Assoc 2019; 8:e011704. [PMID: 30755057 PMCID: PMC6405661 DOI: 10.1161/jaha.118.011704] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/17/2019] [Indexed: 01/06/2023]
Abstract
Background Endothelial NO synthase plays a central role in regulating vasodilation and blood pressure. Intracellular Ca2+ mobilization is a critical modulator of endothelial NO synthase function, and increased cytosolic Ca2+ concentration in endothelial cells is able to induce endothelial NO synthase phosphorylation. Ca2+ release mediated by 3 subtypes of inositol 1,4,5-trisphosphate receptors ( IP 3Rs) from the endoplasmic reticulum and subsequent Ca2+ entry after endoplasmic reticulum Ca2+ store depletion has been proposed to be the major pathway to mobilize Ca2+ in endothelial cells. However, the physiological role of IP 3Rs in regulating blood pressure remains largely unclear. Methods and Results To investigate the role of endothelial IP 3Rs in blood pressure regulation, we first generated an inducible endothelial cell-specific IP 3R1 knockout mouse model and found that deletion of IP 3R1 in adult endothelial cells did not affect vasodilation and blood pressure. Considering all 3 subtypes of IP 3Rs are expressed in mouse endothelial cells, we further generated inducible endothelial cell-specific IP 3R triple knockout mice and found that deletion of all 3 IP 3R subtypes decreased plasma NO concentration and increased basal blood pressure. Furthermore, IP 3R deficiency reduced acetylcholine-induced vasodilation and endothelial NO synthase phosphorylation at Ser1177. Conclusions Our results reveal that IP 3R-mediated Ca2+ release in vascular endothelial cells plays an important role in regulating vasodilation and physiological blood pressure.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Blood Pressure/physiology
- Calcium/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/physiopathology
- Immunoblotting
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myography
- Vasodilation/physiology
Collapse
Affiliation(s)
- Qingsong Lin
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Lingyun Zhao
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Ran Jing
- Department of CardiologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Christa Trexler
- Department of MedicineSchool of MedicineUniversity of California San DiegoLa JollaCA
| | - Hong Wang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Yali Li
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Huayuan Tang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Fang Huang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Fei Zhang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Xi Fang
- Department of MedicineSchool of MedicineUniversity of California San DiegoLa JollaCA
| | - Jie Liu
- Department of PathophysiologySchool of MedicineShenzhen UniversityShenzhenChina
| | - Nan Jia
- Department of CardiologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Ju Chen
- Department of MedicineSchool of MedicineUniversity of California San DiegoLa JollaCA
| | - Kunfu Ouyang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|