1
|
Russell M, Řezáčová V, Miller KS, Nardi WH, Brown M, Weremijewicz J. Common mycorrhizal networks improve survival and mediate facilitative plant interactions among Andropogon gerardii seedlings under drought stress. MYCORRHIZA 2025; 35:8. [PMID: 39900749 PMCID: PMC11790713 DOI: 10.1007/s00572-025-01181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/14/2025] [Indexed: 02/05/2025]
Abstract
Under drought conditions, arbuscular mycorrhizal (AM) fungi may improve plant performance by facilitating the movement of water through extensive hyphal networks. When these networks interconnect neighboring plants in common mycorrhizal networks (CMNs), CMNs are likely to partition water among many individuals. The consequences of CMN-mediated water movement for plant interactions, however, are largely unknown. We set out to examine CMN-mediated interactions among Andropogon gerardii seedlings in a target-plant pot experiment, with watering (watered or long-term drought) and CMN status (intact or severed) as treatments. Intact CMNs improved the survival of seedlings under drought stress and mediated positive, facilitative plant interactions in both watering treatments. Watering increased mycorrhizal colonization rates and improved P uptake, particularly for large individuals. Under drought conditions, improved access to water most likely benefited neighboring plants interacting across CMNs. CMNs appear to have provided the most limiting resource within each treatment, whether P, water, or both, thereby improving survival and growth. Neighbors near large, photosynthate-fixing target plants likely benefited from their establishment of extensive hyphal networks that could access water and dissolved P within soil micropores. In plant communities, CMNs may be vital during drought, which is expected to increase in frequency, intensity, and length with climate change.
Collapse
Affiliation(s)
- Margaret Russell
- Department of Biology, North Central College, 30 N Brainard St., Naperville, IL, 60540-5461, U.S.A
| | - Veronika Řezáčová
- Czech Agrifood Research Center, Drnovská 507, Prague 6, Czech Republic
| | - Kirby Shane Miller
- Department of Biology, North Central College, 30 N Brainard St., Naperville, IL, 60540-5461, U.S.A
| | - Wynter Helene Nardi
- Department of Biology, North Central College, 30 N Brainard St., Naperville, IL, 60540-5461, U.S.A
| | - Morgan Brown
- Department of Biology, North Central College, 30 N Brainard St., Naperville, IL, 60540-5461, U.S.A
| | - Joanna Weremijewicz
- Department of Biology, North Central College, 30 N Brainard St., Naperville, IL, 60540-5461, U.S.A..
| |
Collapse
|
2
|
Zhang H, Wang W, Honnas L, Mazzola M, Somera T. Evaluating the stability of nursery-established arbuscular mycorrhizal fungal associations in apple rootstocks. Appl Environ Microbiol 2025; 91:e0193724. [PMID: 39655940 PMCID: PMC11784189 DOI: 10.1128/aem.01937-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/02/2024] [Indexed: 02/01/2025] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are promoted as commercial bioinoculants for sustainable agriculture. Little is known, however, about the survival of AMF inoculants in soil and their impacts on native or pre-established AMF communities in root tissue. The current study was designed to assess the stability of pre-existing/nursery-derived AMF in apple rootstocks after being planted into soil containing a known community of AMF with a limited number of species. Root-associated endophytic communities (bacteria and fungi) are known to differ depending on apple rootstock genotype. Thus, an additional aim of this study was to explore the effect of apple rootstock genotype on AMF community structure. A greenhouse experiment was conducted in which a variety of apple rootstock genotypes (G.890, G.935, M.26, and M.7) were inoculated with a commercially available, multi-species AMF consortium. Nursery-derived AMF communities were sequenced, and changes to AMF community structure following cultivation in pasteurized soil (inoculated and non-inoculated) were assessed using a Glomeromycota-specific phylogenetic tree, which included 91 different AMF species from 24 genera. Results show that inoculant colonization potential was limited and that apple rootstocks serve as a significant source of inoculum from the nursery where they are produced. Rootstocks established relationships with introduced AMF in a genotype-specific manner. Regardless of colonization success, however, the inoculant caused alterations to the resident AMF communities of both Geneva and Malling rootstocks, particularly low abundance taxa. In addition, phylogeny-based analysis revealed a unique, well-supported clade of unknown taxonomy, highlighting the importance of using phylogenetic-based classification for accurate characterization of AMF communities.IMPORTANCEUnderstanding the impacts of introduced AMF on residential AMF communities is essential to improving plant productivity in nursery and orchard systems. In general, there is a dearth of data on the interactions of commercial AMF inoculants with pre-established AMF communities living in symbiosis with the host plant. The interplay between apple rootstock genotype and the endophytic root microbiome is also an area where more research is needed. This study demonstrates the potential for nursery-established AMF associations to be maintained when transplanted into the field. In addition to providing insight into rootstock/AMF associations, our study calls attention to the current issues attendant with relying on web-based databases for determining AMF identity. The use of phylogenetic tools represents one possible solution and may be of value to industry practitioners in terms of improving product composition and consistency.
Collapse
Affiliation(s)
- Huiting Zhang
- Department of Horticulture, Washington State University, Pullman, Washington, USA
| | - Wanyan Wang
- Ecosystem Science and Management, Pennsylvania State University, State College, Pennsylvania, USA
| | - Loren Honnas
- USDA-ARS Tree Fruit Research Laboratory, Wenatchee, Washington, USA
| | - Mark Mazzola
- Department of Plant Pathology, Stellenbosch University, Matieland, South Africa
| | - Tracey Somera
- USDA-ARS Tree Fruit Research Laboratory, Wenatchee, Washington, USA
| |
Collapse
|
3
|
Gao Y, Long X, Liao Y, Lin Y, He Z, Kong Q, Kong X, He X. Influence of Arbuscular Mycorrhizal Fungi on Nitrogen Dynamics During Cinnamomum camphora Litter Decomposition. Microorganisms 2025; 13:151. [PMID: 39858918 PMCID: PMC11768061 DOI: 10.3390/microorganisms13010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can preferentially absorb the released ammonium (NH4+) over nitrate (NO3-) during litter decomposition. However, the impact of AMF's absorption of NH4+ on litter nitrogen (N) decomposition is still unclear. In this study, we investigated the effects of AMF uptake for NH4+ on litter N metabolic characteristics by enriching NH4+ via AMF suppression and nitrification inhibition in a subtropical Cinnamomum camphora forest. The results showed that AMF suppression and nitrification inhibition significantly decelerated litter decomposition in the early stage due to the repression of NH4+ in extracellular enzyme activity. In the late stage, when soil NH4+ content was low, in contrast, they promoted litter decomposition by increasing the extracellular enzyme activities. Nitrification inhibition mainly promoted the utilization of plant-derived N by promoting the degradation of the amide I, amide II, and III bands by increasing protease activity, and it promoted ammonification by increasing urease activities, whereas it reduced the utilization of microbial-derived N by decreasing chitinase activity. On the contrary, AMF suppression, which significantly reduced the ammonification rate and increased the nitrification rate, only facilitated the degradation of the amide II band. Moreover, it intensified the microbial-derived N decomposition by increasing chitinase activity. The degradation of the amide I and II bands still relied on the priming effects of AMF on soil saprotrophs. This was likely driven by AMF-mediated phosphorus (P) mineralization. Nutrient acquiring, especially P by phosphatase, were the main factors in predicting litter decomposition and protein degradation. Thus, AMF could relieve the end-product repression of locally enriched NH4+ in extracellular enzyme activity and promote early-stage litter decomposition. However, the promotive effects of AMF on litter protein degradation and NH4+ release rely on P mineralization. Our results demonstrated that AMF could alleviate the N limitation for net primary production via accelerating litter N decomposition and reducing N loss. Moreover, they could restrict the decomposition of recalcitrant components by competing with saprotrophs for nutrients. Both pathways will contribute to C sequestration in forest ecosystems, which advances our understanding of AMF's contribution to nutrient cycling and ecosystem processes in subtropical forests.
Collapse
Affiliation(s)
- Yuehong Gao
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.G.); (X.L.); (Y.L.); (Z.H.); (Q.K.)
| | - Xiaoyu Long
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.G.); (X.L.); (Y.L.); (Z.H.); (Q.K.)
| | - Yiqi Liao
- Key Laboratory for Ecotourism of Hunan Province, School of Tourism, Jishou University, Jishou 416000, China;
| | - Yonghui Lin
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.G.); (X.L.); (Y.L.); (Z.H.); (Q.K.)
| | - Zaihua He
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.G.); (X.L.); (Y.L.); (Z.H.); (Q.K.)
| | - Qin Kong
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.G.); (X.L.); (Y.L.); (Z.H.); (Q.K.)
| | - Xiangshi Kong
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.G.); (X.L.); (Y.L.); (Z.H.); (Q.K.)
- Key Laboratory for Ecotourism of Hunan Province, School of Tourism, Jishou University, Jishou 416000, China;
| | - Xingbing He
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.G.); (X.L.); (Y.L.); (Z.H.); (Q.K.)
| |
Collapse
|
4
|
Clark R, Miller WM, Osburn MR, Beddows PA, Evans M, Egerton-Warburton LM. Soil moisture and water redistribution patterns in white oak (Quercus alba) saplings and trees in fragmented urban woodlands. ENVIRONMENTAL RESEARCH 2024; 263:120106. [PMID: 39396603 DOI: 10.1016/j.envres.2024.120106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
In the midwestern United States, models predict extended summer heatwaves and increasingly frequent and prolonged drought conditions. In the Chicago region, the potential for large-scale mortality of white oak trees (Quercus alba) coupled with the ongoing decline of white oak sapling recruitment are major concerns for researchers and practitioners. In this study, we determined the sources of water used by mature white oak trees and saplings in three qualitatively different sites within a remnant oak forest in Chicago during the 2021 drought. We investigated soil moisture dynamics (volumetric water content, VWC) and water isotope composition of leaf tissues (δD, δ18O), rainwater, and groundwater. These data were linked to sapling height (proxy for biomass) and ectomycorrhizal (ECM) functional types. We predicted that: (i) mature oak trees use deeper water sources and conducted hydraulic redistribution (HR), and (ii) mature trees shared water with saplings during dry periods via long-distance ECM functional types. Soil moisture decreased progressively from June to October (spring to fall), with August and September having the lowest moisture (<20 % VWC). Following rainfall recharge, temporal patterns of soil moisture showed gravity drainage and then ongoing stair-stepwise drawdown consistent with plant evapotranspiration. Leaf δD and δ18O values in mature trees and saplings were consistent with water uptake from rainfall and subsequent enrichment via evapotranspiration. In two sites, mature trees and saplings demonstrated distinct δD: δ18O slopes, with mature trees more enriched than saplings. In the third site, mature trees and saplings δD: δ18O slopes overlapped but here, the ECM community was dominated by contact-type ECM and sapling height increased with distance from the mature oak. Our findings indicate that HR was not a component of site ecohydrology, and future climate conditions may present increasing challenges for white oak recruitment as both mature trees and saplings compete for limited rainfall-derived soil moisture.
Collapse
Affiliation(s)
- Ry'yan Clark
- Chicago Botanic Garden, 1000 Lake Cook Rd, Glencoe, IL, 60022, USA; Graduate Program in Plant Biology and Conservation, Northwestern University, Sheridan Rd, Evanston, IL, USA
| | - William M Miller
- Chemical and Biological Engineering, Northwestern University, IL, USA
| | | | | | - Matt Evans
- Chicago Botanic Garden, 1000 Lake Cook Rd, Glencoe, IL, 60022, USA
| | - Louise M Egerton-Warburton
- Chicago Botanic Garden, 1000 Lake Cook Rd, Glencoe, IL, 60022, USA; Graduate Program in Plant Biology and Conservation, Northwestern University, Sheridan Rd, Evanston, IL, USA.
| |
Collapse
|
5
|
Ndeko AB, Diedhiou AG, Founoune-Mboup H, Chuma GB, Mugumaarhahama Y, Diouf D, Fall S, Mushagalusa GN, Kane A. Site climate more than soil properties and topography shape the natural arbuscular mycorrhizal symbiosis in maize and spore density within rainfed maize (Zea mays L.) cropland in the eastern DR Congo. PLoS One 2024; 19:e0312581. [PMID: 39671445 PMCID: PMC11642996 DOI: 10.1371/journal.pone.0312581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/09/2024] [Indexed: 12/15/2024] Open
Abstract
Rhizosphere microorganisms, particularly arbuscular mycorrhizal fungi (AMF), play a vital role in enhancing sustainable maize production. However, uncertainty persist regarding the influence of climate variables and soil properties on mycorrhizal colonization (MC) of maize and the abundance of AM fungal spores in the field. This study aimed to explore the environmental factors such as site climate variables, soil physicochemical properties and topography and vegetation variable, affecting the natural MC of maize and the density of AMF spores. The study hypothesizes that natural maize mycorrhizal colonization and AMF spore density vary significantly across different sites and agroecological zones. It further posits that climatic and edaphic variables predominantly explain the observed variation in mycorrhizal parameters. To assess the impact of these factors, a field study was conducted in 32 sites across three territories in the province of South Kivu, namely Kabare, Walungu, and Uvira. Rhizospheric soil and maize roots were collected from different sites. Maize MC varied significantly among sites, with Kabare and Walungu showing high colonization rates (52.1% and 44.7%, respectively) compared to Uvira (26.40%). Meanwhile, spore density was significantly higher in Uvira (1331.7 spores g-1 soil) than in Kabare (518.9 spores g-1 soil) and Walungu (468.58 spores g-1 soil). Correlation analysis indicated that maize MC was influenced by site climate and soil properties. The PLS-SEM model demonstrated that 76.5% (R2) of the total variance in maize root MC was explained by climatic variables and soil chemical properties. Compared to soil chemical properties, climate characteristics had a more pronounced impact on maize MC. Maize MC was inversely correlated with temperature, C and available P content, while being directly and positively correlated with altitude, rainfall, and base saturation rate. Furthermore, 68.5% (R2) of the spore density variability of AMF was explained by climatic variables and soil physical properties. Spore density was inversely correlated with sand and clay content, field capacity, rainfall, and altitude, while being positively correlated with temperature. The results of this study indicate that climatic conditions exert a more pronounced influence on the mycorrhizal colonization of maize and the density of AMF spores than soil characteristics.
Collapse
Affiliation(s)
- Adrien Byamungu Ndeko
- Department of Crop Production, Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of the Congo
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal
| | - Abdala Gamby Diedhiou
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal
| | - Hassna Founoune-Mboup
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal
- ISRA_LNRPV, Laboratoire National de Recherches sur les Productions Végétales (LNRPV), Dakar, Senegal
| | - Géant Basimine Chuma
- Department of Crop Production, Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of the Congo
| | - Yannick Mugumaarhahama
- Department of Crop Production, Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of the Congo
- Unit of Applied Biostatistics, Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique, Bukavu, South Kivu, Democratic Republic of Congo
| | - Diegane Diouf
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal
| | - Saliou Fall
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal
- ISRA_LNRPV, Laboratoire National de Recherches sur les Productions Végétales (LNRPV), Dakar, Senegal
| | - Gustave Nachigera Mushagalusa
- Department of Crop Production, Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of the Congo
| | - Aboubacry Kane
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal
| |
Collapse
|
6
|
Zhao S, Yan L, Kamran M, Liu S, Riaz M. Arbuscular Mycorrhizal Fungi-Assisted Phytoremediation: A Promising Strategy for Cadmium-Contaminated Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:3289. [PMID: 39683082 DOI: 10.3390/plants13233289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) have been shown to play a major role in regulating the accumulation, transport, and toxicity of cadmium (Cd) in plant tissues. This review aims to highlight the current understanding of the mechanisms by which AMF alleviate Cd toxicity in plants. Cd accumulation in agricultural soils has become an increasing global concern due to industrial activities and the use of phosphatic fertilizers. Cd toxicity disrupts various physiological processes in plants, adversely affecting growth, photosynthesis, oxidative stress responses, and secondary metabolism. AMF alleviate Cd stress in plants through multiple mechanisms, including reduced Cd transport into plant roots, improved plant nutritional status, modulation of organic acid and protein exudation, enhanced antioxidant capacity, and maintenance of ion homeostasis. AMF colonization also influences Cd speciation, bioavailability, and compartmentalization within plant tissues. The expression of metal transporter genes, as well as the synthesis of phytochelatins and metallothioneins, are modulated by AMF during Cd stress. However, the efficacy of AMF in mitigating Cd toxicity depends on several factors, such as soil properties, plant species, AMF taxa, and experimental duration. Further knowledge of the intricate plant-AMF-Cd interactions is crucial for optimizing AMF-assisted phytoremediation strategies and developing Cd-tolerant and high-yielding crop varieties for cultivation in contaminated soils.
Collapse
Affiliation(s)
- Shaopeng Zhao
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shanshan Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Muhammad Riaz
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
7
|
Mao J, Wang Q, Yang Y, Pan F, Zou Z, Su X, Wang Y, Liu W, Tang Y. A Treasure Trove of Urban Microbial Diversity: Community and Diversity Characteristics of Urban Ancient Ginkgo biloba Rhizosphere Microorganisms in Shanghai. J Fungi (Basel) 2024; 10:720. [PMID: 39452672 PMCID: PMC11508599 DOI: 10.3390/jof10100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Rapid urbanization has exerted immense pressure on urban environments, severely constraining the growth of ancient trees. The growth of ancient trees is closely linked to the microbial communities in their rhizospheres, and studying their community characteristics may provide new insights into promoting the growth and rejuvenation of ancient trees. In this study, the rhizosphere soil and root systems of ancient Ginkgo biloba trees (approximately 200 years old) and adult G. biloba trees (approximately 50 years old) in Shanghai were selected as research subjects. Phospholipid fatty acid (PLFA) analysis and high-throughput sequencing were employed to investigate the diversity of microbial communities in the G. biloba rhizosphere. The results indicated that the 19 PLFA species selected to characterize the soil microbial community structure and biomass were present in the rhizosphere soil of both ancient and adult G. biloba trees. However, the total microbial biomass and the microbial biomass in the rhizosphere soil of ancient G. biloba were lower than the microbial biomass in the rhizosphere soil of adult G. biloba. The biomasses of Gram-negative bacteria (G-), arbuscular mycorrhizal fungi (AMF), and protozoans (P) were significantly different. Total phosphorus, organic matter, and pH may be the key factors influencing the soil microbial community in the rhizosphere zone of ancient G. biloba. An in-depth study of AMF showed that the roots and rhizosphere soil of G. biloba contained abundant AMF resources, which were assigned to 224 virtual taxa using the MaarjAM reference database, belonging to four orders, ten families, and nineteen genera. The first and second most dominant genera were Glomus and Paraglomus, respectively. Archaeospora and Ambispora were more dominant in the rhizosphere than the roots. Furthermore, the abundance of live AMF was significantly higher in ancient G. biloba than in adult G. biloba. Therefore, future research should focus on the improvement of soil environmental characteristics and the identification and cultivation of indigenous dominant AMF in the rhizosphere of ancient G. biloba, aiming for their effective application in the rejuvenation of ancient trees.
Collapse
Affiliation(s)
- Jieying Mao
- Jiangxi Provincial Key Laboratory of Conservation Biology, Nanchang 330045, China; (J.M.); (Q.W.); (Y.Y.); (Z.Z.); (X.S.); (Y.W.)
- School of Art and Landscape, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- Ningbo Yongneng Biomass Energy Development Co., Ltd., Ningbo 315000, China
| | - Qiong Wang
- Jiangxi Provincial Key Laboratory of Conservation Biology, Nanchang 330045, China; (J.M.); (Q.W.); (Y.Y.); (Z.Z.); (X.S.); (Y.W.)
- School of Art and Landscape, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yaying Yang
- Jiangxi Provincial Key Laboratory of Conservation Biology, Nanchang 330045, China; (J.M.); (Q.W.); (Y.Y.); (Z.Z.); (X.S.); (Y.W.)
- School of Art and Landscape, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- Ganzhou Vegetable and Flower Rrerarch Institute, Ganzhou 341413, China
| | - Feng Pan
- Jiangxi Academy of Water Science and Engineering, Nanchang 330029, China;
| | - Ziwei Zou
- Jiangxi Provincial Key Laboratory of Conservation Biology, Nanchang 330045, China; (J.M.); (Q.W.); (Y.Y.); (Z.Z.); (X.S.); (Y.W.)
- School of Art and Landscape, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaona Su
- Jiangxi Provincial Key Laboratory of Conservation Biology, Nanchang 330045, China; (J.M.); (Q.W.); (Y.Y.); (Z.Z.); (X.S.); (Y.W.)
- School of Art and Landscape, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi Wang
- Jiangxi Provincial Key Laboratory of Conservation Biology, Nanchang 330045, China; (J.M.); (Q.W.); (Y.Y.); (Z.Z.); (X.S.); (Y.W.)
- School of Art and Landscape, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Liu
- Jiangxi Provincial Key Laboratory of Conservation Biology, Nanchang 330045, China; (J.M.); (Q.W.); (Y.Y.); (Z.Z.); (X.S.); (Y.W.)
- School of Art and Landscape, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yaohua Tang
- Shanghai Municipal Landscape Management and Guidance Station, Shanghai 200020, China
| |
Collapse
|
8
|
Clark AJ, Masters-Clark E, Moratto E, Junier P, Stanley CE. Visualizing liquid distribution across hyphal networks with cellular resolution. BIOMICROFLUIDICS 2024; 18:054109. [PMID: 39381835 PMCID: PMC11460992 DOI: 10.1063/5.0231656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Filamentous fungi and fungal-like organisms contribute to a wide range of important ecosystem functions. Evidence has shown the movement of liquid across mycelial networks in unsaturated environments, such as soil. However, tools to investigate liquid movement along hyphae at the level of the single cell are still lacking. Microfluidic devices permit the study of fungal and fungal-like organisms with cellular resolution as they can confine hyphae to a single optical plane, which is compatible with microscopy imaging over longer timescales and allows for precise control of the microchannel environment. The aim of this study was to develop a method that enables the visualization and quantification of liquid movement on hyphae of fungal and fungal-like microorganisms. For this, the fungal-fungal interaction microfluidic device was modified to allow for the maintenance of unsaturated microchannel conditions. Fluorescein-containing growth medium solidified with agar was used to track liquid transported by hyphae via fluorescence microscopy. Our key findings highlight the suitability of this novel methodology for the visualization of liquid movement by hyphae over varying time scales and the ability to quantify the movement of liquid along hyphae. Furthermore, we showed that at the cellular level, extracellular movement of liquid along hyphae can be bidirectional and highly dynamic, uncovering a possible link between liquid movement and hyphal growth characteristics. We envisage that this method can be applied to facilitate future research probing the parameters contributing to hyphal liquid movement and is an essential step for studying the phenomenon of fungal highways.
Collapse
Affiliation(s)
- Amelia J. Clark
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Emily Masters-Clark
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Eleonora Moratto
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pilar Junier
- Laboritoire de microbiologie, University of Neuchâtel, Neuchâtel CH-2000, Switzerland
| | - Claire E. Stanley
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Abrar M, Zhu Y, Maqsood Ur Rehman M, Batool A, Duan HX, Ashraf U, Aqeel M, Gong XF, Peng YN, Khan W, Wang ZY, Xiong YC. Functionality of arbuscular mycorrhizal fungi varies across different growth stages of maize under drought conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108839. [PMID: 38879986 DOI: 10.1016/j.plaphy.2024.108839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Physio-biochemical regulations governing crop growth period are pivotal for drought adaptation. Yet, the extent to which functionality of arbuscular mycorrhizal fungi (AM fungi) varies across different stages of maize growth under drought conditions remains uncertain. Therefore, periodic functionality of two different AM fungi i.e., Rhizophagus irregularis SUN16 and Glomus monosporum WUM11 were assessed at jointing, silking, and pre-harvest stages of maize subjected to different soil moisture gradients i.e., well-watered (80% SMC (soil moisture contents)), moderate drought (60% SMC), and severe drought (40% SMC). The study found that AM fungi significantly (p < 0.05) affected various morpho-physiological and biochemical parameters at different growth stages of maize under drought. As the plants matured, AM fungi enhanced root colonization, glomalin contents, and microbial biomass, leading to increased nutrient uptake and antioxidant activity. This boosted AM fungal activity ultimately improved photosynthetic efficiency, evident in increased photosynthetic pigments and photosynthesis. Notably, R. irregularis and G. monosporum improved water use efficiency and mycorrhizal dependency at critical growth stages like silking and pre-harvest, indicating their potential for drought resilience to stabilize yield. The principal component analysis highlighted distinct plant responses to drought across growth stages and AM fungi, emphasizing the importance of early-stage sensitivity. These findings underscore the potential of incorporating AM fungi into agricultural management practices to enhance physiological and biochemical responses, ultimately improving drought tolerance and yield in dryland maize cultivation.
Collapse
Affiliation(s)
- Muhammad Abrar
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Ying Zhu
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, Gansu, China.
| | - Muhammad Maqsood Ur Rehman
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Asfa Batool
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Hai-Xia Duan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xiao-Fang Gong
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Yi-Nan Peng
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Wasim Khan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhi-Ye Wang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - You-Cai Xiong
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
10
|
David P, Jana R, Radka S, Jan J, Michael B. Soil compaction reversed the effect of arbuscular mycorrhizal fungi on soil hydraulic properties. MYCORRHIZA 2024; 34:361-368. [PMID: 38809313 PMCID: PMC11283390 DOI: 10.1007/s00572-024-01153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) typically provide a wide range of nutritional benefits to their host plants, and their role in plant water uptake, although still controversial, is often cited as one of the hallmarks of this symbiosis. Less attention has been dedicated to other effects relating to water dynamics that the presence of AMF in soils may have. Evidence that AMF can affect soil hydraulic properties is only beginning to emerge. In one of our recent experiments with dwarf tomato plants, we serendipitously found that the arbuscular mycorrhizal fungus (Rhizophagus irregularis 'PH5') can slightly but significantly reduce water holding capacity (WHC) of the substrate (a sand-zeolite-soil mixture). This was further investigated in a subsequent experiment, but there we found exactly the opposite effect as mycorrhizal substrate retained more water than did the non-mycorrhizal substrate. Because the same substrate was used and other conditions were mostly comparable in the two experiments, we explain the contrasting results by different substrate compaction, most likely caused by different pot shapes. It seems that in compacted substrates, AMF may have no effect upon or even decrease the substrates' WHC. On the other hand, the AMF hyphae interweaving the pores of less compacted substrates may increase the capillary movement of water throughout such substrates and cause slightly more water to remain in the pores after the free water has drained. We believe that this phenomenon is worthy of mycorrhizologists' attention and merits further investigation as to the role of AMF in soil hydraulic properties.
Collapse
Affiliation(s)
- Püschel David
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic.
| | - Rydlová Jana
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Sudová Radka
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Jansa Jan
- Laboratory of Fungal Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague 4, Vídeňská, 1083, 142 00, Czech Republic
| | - Bitterlich Michael
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Division Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Lentzeallee 55/57, Berlin, 14195, Germany
| |
Collapse
|
11
|
Bhardwaj AK, Chandra KK, Kumar R. Inoculants of Arbuscular Mycorrhizal Fungi Influence Growth and Biomass of Terminalia arjuna under Amendment and Anamendment Entisol. MYCOBIOLOGY 2024; 52:183-190. [PMID: 38948452 PMCID: PMC11210415 DOI: 10.1080/12298093.2024.2360750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024]
Abstract
Entisol soil is hard and compact in nature, rendering it high in bulk density, which influences root penetration adversely and thereby poor plant growth. In this experiment, used seven treatments in different combination in normal soil, were used as growth media for the Terminalia arjuna seedling. T3 (60% entisol) found the best as it gave the highest biomass in the species regardless of arbuscular mycorrhizal fungi (AMF) treatment. AMF treatment enhanced the growth and biomass of plants significantly in all the given treatments. AMF colonization observed a maximum in tertiary roots. T1 (100% entisol soil) exhibited the highest degree of AMF colonization in tertiary roots, resulting in the highest mycorrhiza dependency of plants for this soil. The addition of normal soil to entisol soil was found to decrease the bulk density, resulting in increased root diameter, and T3 plants exhibited the highest biomass and AMF compatibility for T. arjuna species. The T. arjuna plant's growth and biomass responded positively to AMF in all types of treatments. The plant's growth and biomass were highest in the T3 treatment, which had a bulk density of 1.50 g/cm3. In this study, we combined the entisol with mycorrhizal inoculation of the nursery growing medium to promote plant growth and biomass, improve the plant's ability to hold water and absorb nutrients, and lower the entisol's bulk density. The T. arjuna (Roxb) plant responds very favorably to mycorrhiza inoculation in nursery conditions with the entisol growth medium.
Collapse
Affiliation(s)
- Atul Kumar Bhardwaj
- Department of Forestry, Wildlife & Environmental Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - K. K. Chandra
- Department of Forestry, Wildlife & Environmental Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Rajesh Kumar
- Department of Forestry, Wildlife & Environmental Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
12
|
Grassi A, Pagliarani I, Avio L, Cristani C, Rossi F, Turrini A, Giovannetti M, Agnolucci M. Bioprospecting for plant resilience to climate change: mycorrhizal symbionts of European and American beachgrass (Ammophila arenaria and Ammophila breviligulata) from maritime sand dunes. MYCORRHIZA 2024; 34:159-171. [PMID: 38625427 PMCID: PMC11166759 DOI: 10.1007/s00572-024-01144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Climate change and global warming have contributed to increase terrestrial drought, causing negative impacts on agricultural production. Drought stress may be addressed using novel agronomic practices and beneficial soil microorganisms, such as arbuscular mycorrhizal fungi (AMF), able to enhance plant use efficiency of soil resources and water and increase plant antioxidant defence systems. Specific traits functional to plant resilience improvement in dry conditions could have developed in AMF growing in association with xerophytic plants in maritime sand dunes, a drought-stressed and low-fertility environment. The most studied of such plants are European beachgrass (Ammophila arenaria Link), native to Europe and the Mediterranean basin, and American beachgrass (Ammophila breviligulata Fern.), found in North America. Given the critical role of AMF for the survival of these beachgrasses, knowledge of the composition of AMF communities colonizing their roots and rhizospheres and their distribution worldwide is fundamental for the location and isolation of native AMF as potential candidates to be tested for promoting crop growth and resilience under climate change. This review provides quantitative and qualitative data on the occurrence of AMF communities of A. arenaria and A. breviligulata growing in European, Mediterranean basin and North American maritime sand dunes, as detected by morphological studies, trap culture isolation and molecular methods, and reports on their symbiotic performance. Moreover, the review indicates the dominant AMF species associated with the two Ammophila species and the common species to be further studied to assess possible specific traits increasing their host plants resilience toward drought stress under climate change.
Collapse
Affiliation(s)
- Arianna Grassi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Irene Pagliarani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Caterina Cristani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Federico Rossi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
13
|
Khan W, Zhu Y, Khan A, Zhao L, Yang YM, Wang N, Hao M, Ma Y, Nepal J, Ullah F, Rehman MMU, Abrar M, Xiong YC. Above-and below-ground feedback loop of maize is jointly enhanced by plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in drier soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170417. [PMID: 38280611 DOI: 10.1016/j.scitotenv.2024.170417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/23/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Drought is a potent abiotic stressor that arrests crop growth, significantly affecting crop health and yields. The arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR) can offer to protect plants from stressful environments through improving water, and nutrient use efficiency by strengthening plant root structure and harnessing favorable rhizosphere environments. When Acaulospora laevis (AMF) and Bacillus subtilus (PGPR) are introduced in combination, enhanced root growth and beneficial microbial colonization can mitigate drought stress. To assess this potential, a pot experiment was done with maize (Zea mays L.) to explore the effects of A. laevis and B. subtilus under different water levels (well-watered = 80 %; moderate water stress = 55 %; and severe water stress = 35 %) on maize yield, soil microbial activities, nutrients contents, root, and leaf functioning. Plants exposed to severe drought stress hampered their root and leaf functioning, and reduced grain yield compared with control plants. Combined use of AMF and PGPR increased root colonization (104.6 %-113.2 %) and microbial biomass carbon (36.38 %-40.23 %) under moderate to severe drought conditions over control. Higher root colonization was strongly linked with elevated ACC (aminocyclopropane-1-carboxylic acid) production, subsequently enhancing water use efficiency (21.62 %-12.77 %), root hydraulic conductivity (1.9 %-1.4 %) and root nutrient uptake under moderate to severe drought conditions. Enhanced nutrient uptake further promoted leaf photosynthetic rate by 27.3 %-29.8 % under moderate and severe drought stress. Improving leaf and root physiological functioning enhanced maize grain yield under stressful environments. Furthermore, co-inoculation with AMF-PGPR reduced cellular damage by lowering oxidative enzyme levels and increasing antioxidative enzyme activities, improving plant performance and grain yield under stressful environments. Conclusively, the synergistic interaction of AMF with PGPR ensured plant stress tolerance by reducing cellular injury, facilitating root-leaf functioning, enhancing nutrient-water-use-efficiencies, and increasing yield under drought stress.
Collapse
Affiliation(s)
- Wasim Khan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ying Zhu
- Key Laboratory of Microbial Resources Exploitation and Application, Institute of Biology, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China.
| | - Aziz Khan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ling Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yu-Miao Yang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ning Wang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Meng Hao
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yue Ma
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jaya Nepal
- Department of Soil, Water & Ecosystem Sciences, Indian River Research Center, University of Florida, Fort Pierce, FL, USA
| | - Fazal Ullah
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Muhammad Maqsood Ur Rehman
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Muhammad Abrar
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, School of Life Sciences/College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
14
|
Affortit P, Ahmed MA, Grondin A, Delzon S, Carminati A, Laplaze L. Keep in touch: the soil-root hydraulic continuum and its role in drought resistance in crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:584-593. [PMID: 37549338 DOI: 10.1093/jxb/erad312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Drought is a major threat to food security worldwide. Recently, the root-soil interface has emerged as a major site of hydraulic resistance during water stress. Here, we review the impact of soil drying on whole-plant hydraulics and discuss mechanisms by which plants can adapt by modifying the properties of the rhizosphere either directly or through interactions with the soil microbiome.
Collapse
Affiliation(s)
- Pablo Affortit
- DIADE, IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Mutez Ali Ahmed
- Root-Soil Interaction, School of Life Science, Technical University of Munich, Freising, Germany
| | | | | | - Andrea Carminati
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Laurent Laplaze
- DIADE, IRD, CIRAD, Université de Montpellier, Montpellier, France
| |
Collapse
|
15
|
Dreyling L, Penone C, Schenk NV, Schmitt I, Dal Grande F. Biotic interactions outweigh abiotic factors as drivers of bark microbial communities in Central European forests. ISME COMMUNICATIONS 2024; 4:ycae012. [PMID: 38500703 PMCID: PMC10945369 DOI: 10.1093/ismeco/ycae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Indexed: 03/20/2024]
Abstract
Bark surfaces are extensive areas within forest ecosystems, which provide an ideal habitat for microbial communities, through their longevity and seasonal stability. Here we provide a comprehensive account of the bark surface microbiome of living trees in Central European forests, and identify drivers of diversity and community composition. We examine algal, fungal, and bacterial communities and their interactions using metabarcoding on samples from over 750 trees collected in the Biodiversity Exploratories in northern, central, and southern Germany. We show that mutual biotic influence is more important than the abiotic environment with regard to community composition, whereas abiotic conditions and geography are more important for alpha diversity. Important abiotic factors are the relative humidity and light availability, which decrease the algal and bacterial alpha diversity but strongly increase fungal alpha diversity. In addition, temperature is important in shaping the microbial community, with higher temperature leading to homogeneous communities of dominant fungi, but high turnover in bacterial communities. Changes in the community dissimilarity of one organismal group occur in close relation to changes in the other two, suggesting that there are close interactions between the three major groups of the bark surface microbial communities, which may be linked to beneficial exchange. To understand the functioning of the forest microbiome as a whole, we need to further investigate the functionality of interactions within the bark surface microbiome and combine these results with findings from other forest habitats such as soil or canopy.
Collapse
Affiliation(s)
- Lukas Dreyling
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main 60325, Germany
- Goethe University Frankfurt, Institute of Ecology, Evolution and Diversity, Frankfurt am Main 60438, Germany
| | - Caterina Penone
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | | | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main 60325, Germany
- Goethe University Frankfurt, Institute of Ecology, Evolution and Diversity, Frankfurt am Main 60438, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main 60325, Germany
- Department of Biology, University of Padova, Padua 35122, Italy
- National Biodiversity Future Center (NBFC), Palermo 90133, Italy
| |
Collapse
|
16
|
Li A, Li A, Luo C, Liu B. Assessing heavy metal contamination in Amomum villosum Lour. fruits from plantations in Southern China: Soil-fungi-plant interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115789. [PMID: 38091669 DOI: 10.1016/j.ecoenv.2023.115789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024]
Abstract
Amomum villosum Lour. fruit is a common healthy food widely cultivated in southern China. Heavy metal contamination of farmland soils has becomes a serious environmental concern in China. Heavy metals in soil can be introduced into the food chain and pose health risks to humans. However, microbial communities may play beneficial roles in plants grown in metal-polluted soils. This study aimed to assess the potential health risks of heavy metals in soils and A. villosum fruits from different production areas and to explore the soil-microbe-plant regulation pattern for heavy metals in A. villosum fruits. Soil and A. villosum fruit samples were collected from nine planting fields in four provinces of southern China. The results showed that soils from seven areas were polluted with heavy metals to different degrees. Cr and Mn were the most serious contaminating elements. However, the accumulation of heavy metals in A. villosum fruit was negligible with no expected human health risks. Partial least squares path analysis of structural equation modeling showed that the accumulation of heavy metals in A. villosum fruits was influenced by multiple factors. More importantly, the PLS-SEM revealed that the heavy metal content in A. villosum fruits was indirectly affected by soil heavy metals through the regulation of the microbial community. Furthermore, some fungal phyla (e.g., Ascomycota and Chytridiomycota) and genera (e.g., Mucor) were related to the heavy metal content in the soil and in A. villosum fruits. The results of this study verified that soil fungal community play an important role in the accumulation of heavy metals in A. villosum fruits. Using fungi provides a potential biological strategy for reducing the health risk posed by heavy metals in food.
Collapse
Affiliation(s)
- Arong Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Aqian Li
- School of Psychology, South China Normal University, 510631 Guangzhou, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Bo Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China; Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
17
|
Abdalla M, Bitterlich M, Jansa J, Püschel D, Ahmed MA. The role of arbuscular mycorrhizal symbiosis in improving plant water status under drought. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4808-4824. [PMID: 37409696 DOI: 10.1093/jxb/erad249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) have been presumed to ameliorate crop tolerance to drought. Here, we review the role of AMF in maintaining water supply to plants from drying soils and the underlying biophysical mechanisms. We used a soil-plant hydraulic model to illustrate the impact of several AMF mechanisms on plant responses to edaphic drought. The AMF enhance the soil's capability to transport water and extend the effective root length, thereby attenuating the drop in matric potential at the root surface during soil drying. The synthesized evidence and the corresponding simulations demonstrate that symbiosis with AMF postpones the stress onset limit, which is defined as the disproportionality between transpiration rates and leaf water potentials, during soil drying. The symbiosis can thus help crops survive extended intervals of limited water availability. We also provide our perspective on future research needs and call for reconciling the dynamic changes in soil and root hydraulics in order to better understand the role of AMF in plant water relations in the face of climate changes.
Collapse
Affiliation(s)
- Mohanned Abdalla
- Chair of Root-Soil Interaction, School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
- Department of Horticulture, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan
| | - Michael Bitterlich
- Humboldt-Universität zu Berlin, Thaer-Institute, Division Urban Plant Ecophysiology, Berlin, Germany
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - David Püschel
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Mutez A Ahmed
- Chair of Root-Soil Interaction, School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|