1
|
Abulaban AA, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Alanazi A, Alexiou A, Papadakis M, Batiha GES. Role of fenofibrate in multiple sclerosis. Eur J Med Res 2024; 29:113. [PMID: 38336772 PMCID: PMC10854163 DOI: 10.1186/s40001-024-01700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the central nervous system (CNS). The underlying pathophysiology of MS is the destruction of myelin sheath by immune cells. The formation of myelin plaques, inflammation, and injury of neuronal myelin sheath characterizes its neuropathology. MS plaques are multiple focal regions of demyelination disseminated in the brain's white matter, spinal cords, deep grey matter, and cerebral cortex. Fenofibrate is a peroxisome proliferative activated receptor alpha (PPAR-α) that attenuates the inflammatory reactions in MS. Fenofibrate inhibits differentiation of Th17 by inhibiting the expression of pro-inflammatory signaling. According to these findings, this review intended to illuminate the mechanistic immunoinflammatory role of fenofibrate in mitigating MS neuropathology. In conclusion, fenofibrate can attenuate MS neuropathology by modulating different pathways, including oxidative stress, autophagy, mitochondrial dysfunction, inflammatory-signaling pathways, and neuroinflammation.
Collapse
Affiliation(s)
- Ahmad A Abulaban
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Departments, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Asma Alanazi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Wang X, Liu X, Tzekov R, Yu C, Yang J, Feng Y, Wu Y, Xu Y, Li S, Li W. Fenofibrate Ameliorates Retinal Pigment Epithelium Injury Induced by Excessive Fat Through Upregulation of PI3K/AKT Signaling. Drug Des Devel Ther 2023; 17:3439-3452. [PMID: 38024539 PMCID: PMC10676092 DOI: 10.2147/dddt.s420178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This study aimed to determine the effect and its mechanism of fenofibrate on retinal pigment epithelium (RPE) injury induced by excessive fat in vitro and in vivo. Methods ARPE-19 cells were co-incubated with palmitic acid (PA) and fenofibric acid (the active form of fenofibrate after metabolism in vivo) and mice fed with high-fat diet (HFD) were supplemented with fenofibrate. The following methods were used: Western blot and immunofluorescent staining to determine expressions of reactive oxygen species (ROS)-associated factors and proinflammatory cytokines; electroretinogram (ERG) c-wave to evaluate RPE function; TUNEL staining to detect the apoptotic cell in RPE tissue. Additionally, ARPE19 cells were treated with PI3K/AKT inhibitor or agonist to investigate the mechanism of fenofibric acid inhibiting PA-induced RPE damage. Results We found that the application of PA inhibited RPE cell viability in a dose-dependent manner, and increased the levels of NAPDH oxidase 4 (NOX4), 3-nitrotyrosin (3-NT), intracellular adhesion molecule-1(ICAM1), tumor necrosis factor alpha (TNFα) and vascular endothelial growth factor (VEGF) at 400μM. The application of fenofibric acid resulted in the inhibition of NOX4, 3-NT, TNFα, ICAM1 and VEGF expression in ARPE-19 cells treated with PA. Moreover, wortmannin, as a selective inhibitor of PI3K/AKT pathway, abolished the effects of fenofibrate on the oxidative stress and inflammation in ARPE-19 cells. In addition, 740Y-P, a selective agonist of PI3K/AKT pathway, enhanced the protective action of fenofibrate. Meanwhile, in vivo dosing of fenofibrate ameliorated the downregulated amplitudes of ERG c-wave in HFD-fed mice and suppressed the HFD-induced oxidative injury and inflammatory response in RPE tissues. Conclusion Our results suggested that fenofibrate ameliorated RPE cell damage induced by excessive fat in vitro and in vivo, in part, through activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xue Wang
- Aier School of Ophthalmology, Central South University, Changsha, People’s Republic of China
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, People’s Republic of China
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaomei Liu
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, People’s Republic of China
| | - Radouil Tzekov
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Chaofeng Yu
- Aier School of Ophthalmology, Central South University, Changsha, People’s Republic of China
| | - Jiasong Yang
- Aier School of Ophthalmology, Central South University, Changsha, People’s Republic of China
- Shanghai Aier Eye Hospital, Shanghai, People’s Republic of China
| | - Yuliang Feng
- Aier School of Ophthalmology, Central South University, Changsha, People’s Republic of China
| | - Yajun Wu
- Aier School of Ophthalmology, Central South University, Changsha, People’s Republic of China
| | - Yali Xu
- Aier School of Ophthalmology, Central South University, Changsha, People’s Republic of China
| | - Shiying Li
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, People’s Republic of China
| | - Wensheng Li
- Aier School of Ophthalmology, Central South University, Changsha, People’s Republic of China
- Shanghai Aier Eye Hospital, Shanghai, People’s Republic of China
- Shanghai Aier Eye Insititute, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Alruwaili M, Al-kuraishy HM, Alexiou A, Papadakis M, ALRashdi BM, Elhussieny O, Saad HM, Batiha GES. Pathogenic Role of Fibrinogen in the Neuropathology of Multiple Sclerosis: A Tale of Sorrows and Fears. Neurochem Res 2023; 48:3255-3269. [PMID: 37442896 PMCID: PMC10514123 DOI: 10.1007/s11064-023-03981-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating neurodegenerative disease of the central nervous system (CNS) due to injury of the myelin sheath by immune cells. The clotting factor fibrinogen is involved in the pathogenesis of MS by triggering microglia and the progress of neuroinflammation. Fibrinogen level is correlated with MS severity; consequently, inhibition of the fibrinogen cascade may reduce MS neuropathology. Thus, this review aimed to clarify the potential role of fibrinogen in the pathogenesis of MS and how targeting of fibrinogen affects MS neuropathology. Accumulation of fibrinogen in the CNS may occur independently or due to disruption of blood-brain barrier (BBB) integrity in MS. Fibrinogen acts as transduction and increases microglia activation which induces the progression of inflammation, oxidative stress, and neuronal injury. Besides, brain fibrinogen impairs the remyelination process by inhibiting the differentiation of oligodendrocyte precursor cells. These findings proposed that fibrinogen is associated with MS neuropathology through interruption of BBB integrity, induction of neuroinflammation, and demyelination with inhibition of the remyelination process by suppressing oligodendrocytes. Therefore, targeting of fibrinogen and/or CD11b/CD18 receptors by metformin and statins might decrease MS neuropathology. In conclusion, inhibiting the expression of CD11b/CD18 receptors by metformin and statins may decrease the pro-inflammatory effect of fibrinogen on microglia which is involved in the progression of MS.
Collapse
Affiliation(s)
- Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Barakat M. ALRashdi
- Biology Department, College of Science, Jouf University, Sakaka, 41412 Saudi Arabia
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Egypt
| |
Collapse
|
4
|
Chen CH, Lin HC, Lin HL, Keller JJ, Wang LH. Association between Antihyperlipidemic Agent Use and Age-Related Macular Degeneration in Patients with Hyperlipidemia: A Population-Based Retrospective Cohort Study. Biomedicines 2023; 11:1508. [PMID: 37371603 PMCID: PMC10294800 DOI: 10.3390/biomedicines11061508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have indicated that lipoproteins might contribute to the pathogenesis of age-related macular degeneration (AMD). In this population-based retrospective cohort study, patients with hyperlipidemia were divided into two groups (study groups I and II) based on whether or not they were receiving antihyperlipidemic agents. The comparison group included patients without hyperlipidemia who were randomly selected and matched with study group II patients. A Cox proportional hazard model was used to evaluate the risk of AMD among the groups. Patients with hyperlipidemia receiving antihyperlipidemic agents (study group I, n = 15,482) had a significantly increased AMD risk (adjusted hazard ratio (HR) = 1.23, 95% confidence interval (CI) = 1.04-1.45) compared to those not receiving antihyperlipidemic agents (study group II, n = 15,482). However, with an increase in cumulative exposure, a reduced risk of AMD was observed in patients using a defined daily dose of more than 721, with an adjusted HR of 0.34 (95% CI = 0.22-0.53, p < 0.001). Additionally, the adjusted HR of AMD for study group II was 1.40 (95% CI = 1.20-1.63, p < 0.001) relative to the comparison group (n = 61,928). In conclusion, the study results indicated that patients with hyperlipidemia have a higher AMD risk than patients without hyperlipidemia. Furthermore, patients with hyperlipidemia who received antihyperlipidemic agents had a significantly increased AMD risk. However, a dose-dependent reduction in the risk of AMD was observed in patients with hyperlipidemia using statins or/and fibrates.
Collapse
Affiliation(s)
- Chun-Hao Chen
- Division of Clinical Pharmacy, Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Hsiu-Chen Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Clinical Pathology, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Hsiu-Li Lin
- Department of Neurology, General Cathay Hospital, Sijhih Branch, New Taipei City 221, Taiwan
| | - Joseph Jordan Keller
- Department of Psychiatry, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA
| | - Li-Hsuan Wang
- Department of Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Department of Pharmacy, Taipei Medical University Hospital, Taipei 110, Taiwan
| |
Collapse
|
5
|
Alkhayyat SS, Al-kuraishy HM, Al-Gareeb AI, El-Bouseary MM, AboKamer AM, Batiha GES, Simal-Gandara J. Fenofibrate for COVID-19 and related complications as an approach to improve treatment outcomes: the missed key for Holy Grail. Inflamm Res 2022; 71:1159-1167. [PMID: 35941297 PMCID: PMC9360649 DOI: 10.1007/s00011-022-01615-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Fenofibrate is an agonist of peroxisome proliferator activated receptor alpha (PPAR-α), that possesses anti-inflammatory, antioxidant, and anti-thrombotic properties. Fenofibrate is effective against a variety of viral infections and different inflammatory disorders. Therefore, the aim of critical review was to overview the potential role of fenofibrate in the pathogenesis of SARS-CoV-2 and related complications. RESULTS By destabilizing SARS-CoV-2 spike protein and preventing it from binding angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2 entry, fenofibrate can reduce SARS-CoV-2 entry in human cells Fenofibrate also suppresses inflammatory signaling pathways, which decreases SARS-CoV-2 infection-related inflammatory alterations. In conclusion, fenofibrate anti-inflammatory, antioxidant, and antithrombotic capabilities may help to minimize the inflammatory and thrombotic consequences associated with SARSCoV-2 infection. Through attenuating the interaction between SARS-CoV-2 and ACE2, fenofibrate can directly reduce the risk of SARS-CoV-2 infection. CONCLUSIONS As a result, fenofibrate could be a potential treatment approach for COVID-19 control.
Collapse
Affiliation(s)
- Shadi Salem Alkhayyat
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amal M. AboKamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty Science, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
6
|
Shukal DK, Malaviya PB, Sharma T. Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Hum Exp Toxicol 2022; 41:9603271211063165. [PMID: 35196887 DOI: 10.1177/09603271211063165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) plays a precise role as a master regulator of cellular energy homeostasis. AMPK is activated in response to the signalling cues that exhaust cellular ATP levels such as hypoxia, ischaemia, glucose depletion and heat shock. As a central regulator of both lipid and glucose metabolism, AMPK is considered to be a potential therapeutic target for the treatment of various diseases, including eye disorders. OBJECTIVE To review all the shreds of evidence concerning the role of the AMPK signalling pathway in the pathogenesis of ocular diseases. METHOD Scientific data search and review of available information evaluating the influence of AMPK signalling on ocular diseases. RESULTS Review highlights the significance of AMPK signalling in the aetiopathogenesis of ocular diseases, including cataract, glaucoma, diabetic retinopathy, retinoblastoma, age-related macular degeneration, corneal diseases, etc. The review also provides the information on the AMPK-associated pathways with reference to ocular disease, which includes mitochondrial biogenesis, autophagy and regulation of inflammatory response. CONCLUSION The study concludes the role of AMPK in ocular diseases. There is growing interest in the therapeutic utilization of the AMPK pathway for ocular disease treatment. Furthermore, inhibition of AMPK signalling might represent more pertinent strategy than AMPK activation for ocular disease treatment. Such information will guide the development of more effective AMPK modulators for ocular diseases.[Formula: see text].
Collapse
Affiliation(s)
- Dhaval K Shukal
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Pooja B Malaviya
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Tusha Sharma
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India
| |
Collapse
|
7
|
Simó R, Simó-Servat O, Bogdanov P, Hernández C. Neurovascular Unit: A New Target for Treating Early Stages of Diabetic Retinopathy. Pharmaceutics 2021; 13:pharmaceutics13081320. [PMID: 34452281 PMCID: PMC8399715 DOI: 10.3390/pharmaceutics13081320] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Abstract
The concept of diabetic retinopathy as a microvascular disease has evolved and is now considered a more complex diabetic complication in which neurovascular unit impairment plays an essential role and, therefore, can be considered as a main therapeutic target in the early stages of the disease. However, neurodegeneration is not always the apparent primary event in the natural story of diabetic retinopathy, and a phenotyping characterization is recommendable to identify those patients in whom neuroprotective treatment might be of benefit. In recent years, a myriad of treatments based on neuroprotection have been tested in experimental models, but more interestingly, there are drugs with a dual activity (neuroprotective and vasculotropic). In this review, the recent evidence concerning the therapeutic approaches targeting neurovascular unit impairment will be presented, along with a critical review of the scientific gaps and problems which remain to be overcome before our knowledge can be transferred to clinical practice.
Collapse
Affiliation(s)
- Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
- Correspondence:
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| |
Collapse
|
8
|
Polymeric nanomicelles based on inulin D α-tocopherol succinate for the treatment of diabetic retinopathy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Mazzeo A, Gai C, Trento M, Porta M, Beltramo E. Effects of thiamine and fenofibrate on high glucose and hypoxia-induced damage in cell models of the inner blood-retinal barrier. Acta Diabetol 2020; 57:1423-1433. [PMID: 32656709 DOI: 10.1007/s00592-020-01565-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
AIMS Although diabetic retinopathy has long been considered a microvascular complication, retinal neurodegeneration and inflammation may precede its clinical manifestations. Despite all research efforts, the primary treatment options remain laser photocoagulation and anti-vascular endothelial growth factor (VEGF) intravitreal injections, both aggressive and targeting the late stages of the disease. Medical treatments addressing the early phases of diabetic retinopathy are therefore needed. We aimed at verifying if thiamine and fenofibrate protect the cells of the inner blood-retinal barrier from the metabolic stress induced by diabetic-like conditions. METHODS Human microvascular endothelial cells (HMECs), retinal pericytes (HRPs) and Müller cells (MIO-M1) were cultured in intermittent high glucose (intHG) and/or hypoxia, with addition of fenofibrate or thiamine. Modulation of adhesion molecules and angiogenic factors was addressed. RESULTS Integrins β1/αVβ3 and ICAM1 were upregulated in HMECs/HRPs cultured in diabetic-like conditions, as well as metalloproteases MMP2/9 in HRP, with a reduction in their inhibitor TIMP1; MMP2 increased also in HMEC, and TIMP1 decreased in MIO-M1. VEGF and HIF-1α were strongly increased in HMEC in intHG + hypoxia, and VEGF also in HRP. Ang-1/2 augmented in HMEC/MIO-M1, and MCP-1 in HRP/MIO-M1 in intHG + hypoxia. Thiamine was able to normalize all such abnormal modulations, while fenofibrate had effects in few cases only. CONCLUSIONS We suggest that endothelial cells and pericytes are more affected than Müller cells by diabetic-like conditions. Fenofibrate shows a controversial behavior, potentially positive on Müller cells and pericytes, but possibly detrimental to endothelium, while thiamine confirms once more to be an effective agent in reducing diabetes-induced retinal damage.
Collapse
Affiliation(s)
- Aurora Mazzeo
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Chiara Gai
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Marina Trento
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Massimo Porta
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Elena Beltramo
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| |
Collapse
|
10
|
Fu D, Yu JY, Connell AR, Hookham MB, McLeese RH, Lyons TJ. Effects of Modified Low-Density Lipoproteins and Fenofibrate on an Outer Blood-Retina Barrier Model: Implications for Diabetic Retinopathy. J Ocul Pharmacol Ther 2020; 36:754-764. [PMID: 33107777 PMCID: PMC7757531 DOI: 10.1089/jop.2020.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose: There is a lack of treatment for early diabetic retinopathy (DR), including blood-retina barrier (BRB) breakdown. The robust clinical benefit of fenofibrate in DR provides an opportunity to explore disease mechanisms and therapeutic targets. We have previously found that modified lipoproteins contribute to DR and that fenofibrate protects the inner BRB. We now investigate (1) whether modified lipoproteins elicit outer BRB injury and (2) whether fenofibrate may alleviate such damage. Methods: Human retinal pigment epithelium ARPE-19 cells were cultured in semipermeable transwells to establish a monolayer barrier and then exposed to heavily oxidized, glycated low-density lipoprotein (HOG-LDL, 25–300 mg/L, up to 24 h) versus native (N)-LDL. Transepithelial electric resistance (TEER) and FITC-dextran permeability were measured. The effects of fenofibrate, its active metabolite fenofibric acid, and other peroxisome proliferator-activated receptor (PPARα) agonists (gemfibrozil, bezafibrate, and WY14643) were evaluated, with and without the PPARα antagonist GW6471 or the adenosine monophosphate-activated protein kinase (AMPK) inhibitor Compound C. Results: HOG-LDL induced concentration- and time-dependent barrier impairment, decreasing TEER and increasing dextran leakage, effects that were amplified by high glucose. Fenofibric acid, but not fenofibrate, gemfibrozil, bezafibrate, or WY14643, attenuated barrier impairment. This effect was reversed significantly by Compound C, but not by GW6471. Conclusions: Modified lipoproteins elicited outer BRB injury in an experimental model, which was reduced by fenofibric acid through a PPARα-independent, AMPK-mediated mechanism. These findings suggest a protective role of fenofibric acid on the outer BRB in diabetic retina.
Collapse
Affiliation(s)
- Dongxu Fu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Jeremy Y Yu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.,Division of Endocrinology, Diabetes and Metabolic Diseases, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Anna R Connell
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Michelle B Hookham
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Rebecca H McLeese
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.,Division of Endocrinology, Diabetes and Metabolic Diseases, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Timothy J Lyons
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.,Division of Endocrinology, Diabetes and Metabolic Diseases, Medical University of South Carolina, Charleston, South Carolina, USA.,Diabetes Free SC, BlueCross BlueShield of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
11
|
Effect of Topical Administration of Somatostatin on Retinal Inflammation and Neurodegeneration in an Experimental Model of Diabetes. J Clin Med 2020; 9:jcm9082579. [PMID: 32784955 PMCID: PMC7463891 DOI: 10.3390/jcm9082579] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Somatostatin (SST) is a neuroprotective peptide but little is known regarding the potential role of its anti-inflammatory effects on retinal neuroprotection. In a previous study, we provided the first evidence that topical (eye drops) administration of SST prevents retinal neurodegeneration in streptozotocin (STZ)-induced diabetic rats. However, STZ by itself could cause neurotoxicity, thus acting as a confounding factor. The aims of the present study were: (1) to test the effect of topical administration of SST in the db/db mouse model, a spontaneous model of type 2 diabetes, thus avoiding the confounding effect of STZ on neurodegeneration; (2) to further explore the anti-inflammatory mechanisms of SST in glial cells. This task was performed by using mouse retinal explants and cell cultures. In summary, we confirm that SST topically administered was able to prevent retinal neurodysfunction and neurodegeneration in db/db mice. Furthermore, we found that SST prevented the activation of the classical M1 response of Bv.2 microglial cells upon Lipopolysaccharide (LPS) stimulation as a potent pro-inflammatory trigger. The anti-inflammatory effect of SST in Bv.2 cells was also observed in response to hypoxia. In conclusion, we provide evidence that the neuroprotective effect of SST in diabetic retinas can be largely attributed to anti-inflammatory mechanisms.
Collapse
|
12
|
Intracellular amyloid-β disrupts tight junctions of the retinal pigment epithelium via NF-κB activation. Neurobiol Aging 2020; 95:115-122. [PMID: 32795848 DOI: 10.1016/j.neurobiolaging.2020.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
Drusen are focal deposits between the retinal pigment epithelium (RPE) and Bruch's membrane in the retina of patients with age-related macular degeneration. Amyloid-β is one of the important components of drusen, which leads to local inflammation. Furthermore, intracellular amyloid-β disrupts tight junctions of the RPE. However, the intracellular mechanisms linking intracellular amyloid-β and tight-junction disruption are not clear. In this study, intracellular amyloid-β oligomers activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65, leading to the disorganization of tight junctions of the RPE in mice after subretinal injection of amyloid-β. Amyloid-β also triggered NF-κB activation in the RPE cells in confluent culture, which was inhibited by the suppression of the advanced glycosylation end product-specific receptor. NF-κB inhibition by an IκB kinase inhibitor prevented the suppression of expression of tight-junction proteins, zonula occuludens-1 and occludin in RPE cells. In addition, tight-junction complexes remained intact in the RPE of mice with NF-κB inhibition, although there were intracellular amyloid-β oligomers. These data suggested that NF-κB inhibition might be a therapeutic approach to prevent amyloid-β-mediated tight-junction disruption.
Collapse
|
13
|
Kuo C, Green CR, Rupenthal ID, Mugisho OO. Connexin43 hemichannel block protects against retinal pigment epithelial cell barrier breakdown. Acta Diabetol 2020; 57:13-22. [PMID: 31030263 DOI: 10.1007/s00592-019-01352-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/16/2019] [Indexed: 01/05/2023]
Abstract
AIMS The retinal pigment epithelium (RPE) is an important component of the outer blood-retinal barrier (BRB) that separates the choroid from the rest of the retina. Loss of RPE-mediated BRB integrity is a key feature of diabetic macular oedema (DME), a chronic pathology resulting from diabetic retinopathy (DR). Recent studies have shown that connexin43 hemichannel opening mediates key inflammatory pathways in DR, though its effect on the barrier properties of RPE cells remains unknown. Therefore, RPE breakdown was induced by exposing a monolayer of ARPE-19 cells to high glucose (HG) and 10 ng/mL each of the pro-inflammatory cytokines IL-1β and TNF-α. The role of connexin43 hemichannels was assessed using a connexin43 hemichannel blocker, Peptide5. METHODS Transepithelial resistance (TEER) and FITC-dextran dye leak across the ARPE-19 monolayer were used to measure RPE layer permeability. Immunohistochemistry was used to assess changes in connexin43, collagen IV and ZO-1 expression. ATP and lactate dehydrogenase (LDH) release were measured using commercially available kits. RESULTS Connexin43 hemichannel block with Peptide5 prevented TEER reduction and FITC-dextran dye leak induced by a combination of HG and inflammatory cytokines. Peptide5 also blocked LDH and ATP release induced by the addition of HG and inflammatory cytokines. ZO-1 and connexin43 disruption and internalisation as well as upregulated secretion of collagen IV following HG and inflammatory cytokine exposure were also prevented. The addition of exogenous ATP into the culture medium was able to reverse Peptide5 protection against LDH release and change in connexin43 localisation, indicating that the initiating pathway in RPE disruption is connexin43 hemichannel-mediated ATP release. CONCLUSION These findings support the idea that connexin43 hemichannels may mediate RPE disruption (and its role within the BRB) that occurs in DME through an ATP release/inflammasome pathway activation dependent manner. Connexin43 hemichannels are therefore a potential therapeutic target for the treatment of DME.
Collapse
Affiliation(s)
- Charisse Kuo
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
14
|
Guo ZL, Li Y, Liu XW, Wu MY, Guo Q, Yao XC, Wang YD, Wu WY. Sodium Tanshinone IIA Silate Alleviates High Glucose Induced Barrier Impairment of Human Retinal Pigment Epithelium through the Reduction of NF-κB Activation via the AMPK/p300 Pathway. Curr Eye Res 2019; 45:177-183. [DOI: 10.1080/02713683.2019.1668419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ze-Li Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiao-Wen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Miao-Yan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Qi Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiang-Chao Yao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yan-Dong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Wen-Yu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
15
|
Kern TS, Antonetti DA, Smith LEH. Pathophysiology of Diabetic Retinopathy: Contribution and Limitations of Laboratory Research. Ophthalmic Res 2019; 62:196-202. [PMID: 31362288 PMCID: PMC6872907 DOI: 10.1159/000500026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Abstract
Preclinical models of diabetic retinopathy are indispensable in the drug discovery and development of new therapies. They are, however, imperfect facsimiles of diabetic retinopathy in humans. This chapter discusses the advantages, limitations, and physiological and pathological relevance of preclinical models of diabetic retinopathy. The judicious interpretation and extrapolation of data derived from these models to humans and a correspondingly greater emphasis placed on translational medical research in early-stage clinical trials are essential to more successfully inhibit the development and progression of diabetic retinopathy in the future.
Collapse
Affiliation(s)
- Timothy S Kern
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA,
- Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, USA,
| | - David A Antonetti
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Pearsall EA, Cheng R, Matsuzaki S, Zhou K, Ding L, Ahn B, Kinter M, Humphries KM, Quiambao AB, Farjo RA, Ma JX. Neuroprotective effects of PPARα in retinopathy of type 1 diabetes. PLoS One 2019; 14:e0208399. [PMID: 30716067 PMCID: PMC6361421 DOI: 10.1371/journal.pone.0208399] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 11/16/2018] [Indexed: 01/01/2023] Open
Abstract
Diabetic retinopathy (DR) is a common neurovascular complication of type 1 diabetes. Current therapeutics target neovascularization characteristic of end-stage disease, but are associated with significant adverse effects. Targeting early events of DR such as neurodegeneration may lead to safer and more effective approaches to treatment. Two independent prospective clinical trials unexpectedly identified that the PPARα agonist fenofibrate had unprecedented therapeutic effects in DR, but gave little insight into the physiological and molecular mechanisms of action. The objective of the present study was to evaluate potential neuroprotective effects of PPARα in DR, and subsequently to identify the responsible mechanism of action. Here we reveal that activation of PPARα had a robust protective effect on retinal function as shown by Optokinetic tracking in a rat model of type 1 diabetes, and also decreased retinal cell death, as demonstrated by a DNA fragmentation ELISA. Further, PPARα ablation exacerbated diabetes-induced decline of visual function as demonstrated by ERG analysis. We further found that PPARα improved mitochondrial efficiency in DR, and decreased ROS production and cell death in cultured retinal neurons. Oxidative stress biomarkers were elevated in diabetic Pparα-/- mice, suggesting increased oxidative stress. Mitochondrially mediated apoptosis and oxidative stress secondary to mitochondrial dysfunction contribute to neurodegeneration in DR. Taken together, these findings identify a robust neuroprotective effect for PPARα in DR, which may be due to improved mitochondrial function and subsequent alleviation of energetic deficits, oxidative stress and mitochondrially mediated apoptosis.
Collapse
Affiliation(s)
- Elizabeth A. Pearsall
- Angiogenesis Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kelu Zhou
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Lexi Ding
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Bumsoo Ahn
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kenneth M. Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | | | - Jian-xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Harold Hamm Oklahoma Diabetes Center, Oklahoma City, OK, United States
- * E-mail:
| |
Collapse
|
17
|
Li J, Wang P, Chen Z, Yu S, Xu H. Fenofibrate Ameliorates Oxidative Stress-Induced Retinal Microvascular Dysfunction in Diabetic Rats. Curr Eye Res 2018; 43:1395-1403. [PMID: 30024319 DOI: 10.1080/02713683.2018.1501072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jun Li
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| | - Peipei Wang
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
- Department of Stomatology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| | - Zhen Chen
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| | - Songping Yu
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| | - Huiwen Xu
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| |
Collapse
|
18
|
Arthur E, Papay JA, Haggerty BP, Clark CA, Elsner AE. Subtle changes in diabetic retinas localised in 3D using OCT. Ophthalmic Physiol Opt 2018; 38:477-491. [PMID: 30051487 DOI: 10.1111/opo.12578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE To detect and localise subtle changes in retinas of diabetic patients who clinically have no diabetic retinopathy (DR) or non-proliferative DR (NPDR) as compared to age- and sex- matched controls. Spectral Domain Optical Coherence Tomography (SD-OCT) and software to examine all retinal layers, including deeper layers, were used to quantify foveal avascular zone size and inner and outer retinal layer thicknesses, as well as to detect axial location of prominent lesions. METHODS Diabetic subjects, 19 total with 16 having no DR and three having non-proliferative retinopathy, were matched with 19 controls with respect to age and sex. Macular-centred SD-OCT grids of 20 × 15° were taken with the Spectralis. En face or transverse images were generated from the SD-OCT data by automatically segmenting all retinal layers. The transverse images were investigated for foveal avascular zone (FAZ) size, retinal vessel calibre, and structural changes. The size of the FAZ was compared for diabetics vs controls using vendor software and manual marking in Photoshop. Inner retinal layer (IRLFAZ ) and outer nuclear layer (ONLFAZ ) thicknesses at the margins of the FAZ were measured using vendor software. RESULTS The FAZ area was larger for diabetics (mean ± S.D. = 0.388 ± 0.074 mm2 ) than controls (0.243 ± 0.113 mm2 ), t18 = 5.27, p < 0.0001, using vendor software. The mean IRLFAZ was thicker for the diabetics (86.8 ± 14.5 μm) than controls (65.2 ± 16.3 μm), t18 = 4.59, p = 0.00023, despite lack of exudation by clinical exam. There was no significant association between FAZ area and mean IRLFAZ for the diabetics, r = 0.099, p = 0.69. Vessels not clinically detected were visible in the NFL transverse image of most diabetics, especially for a mild NPDR patient. A prominent lesion found in the en face infra-red image of a mild NPDR subject was localised in the photoreceptor layer by SD-OCT, as well as additional outer retinal changes in other subjects. CONCLUSIONS Our results demonstrate changes in inner and outer diabetic retinas not readily detectable by clinical exam. IRLFAZ had not thinned at the margins of the large FAZs, indicating neural mass did not yet decrease despite potential ischemia.
Collapse
Affiliation(s)
- Edmund Arthur
- Indiana University School of Optometry, Bloomington, USA
| | - Joel A Papay
- Indiana University School of Optometry, Bloomington, USA
| | | | | | - Ann E Elsner
- Indiana University School of Optometry, Bloomington, USA
| |
Collapse
|
19
|
'Statins in retinal disease'. Eye (Lond) 2018; 32:981-991. [PMID: 29556012 DOI: 10.1038/s41433-018-0066-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/05/2018] [Accepted: 02/12/2018] [Indexed: 01/14/2023] Open
Abstract
Statins are known for their blood cholesterol-lowering effect and are widely used in patients with cardiovascular and metabolic diseases. Research over the past three decades shows that statins have diverse effects on different pathophysiological pathways involved in angiogenesis, inflammation, apoptosis, and anti-oxidation, leading to new therapeutic options. Recently, statins have attracted considerable attention for their immunomodulatory effect. Since immune reactivity has been implicated in a number of retinal diseases, such as uveitis, age-related macular degeneration (AMD) and diabetic retinopathy, there is now a growing body of evidence supporting the beneficial effects of statins in these retinopathies. This review evaluates the relationship between statins and the pathophysiological basis of these diseases, focusing on their potential role in treatment. A PubMed database search and literature review was conducted. Among AMD patients, there is inconsistent evidence regarding protection against development of early AMD or delaying disease progression; though they have been found to reduce the risk of developing choroidal neovascular membranes (CNV). In patients with retinal vein occlusion, there was no evidence to support a therapeutic benefit or a protective role with statins. In patients with diabetic retinopathy, statins demonstrate a reduction in disease progression and improved resolution of diabetic macular oedema (DMO). Among patients with uveitis, statins have a protective effect by reducing the likelihood of uveitis development.
Collapse
|
20
|
Cevey ÁC, Mirkin GA, Donato M, Rada MJ, Penas FN, Gelpi RJ, Goren NB. Treatment with Fenofibrate plus a low dose of Benznidazole attenuates cardiac dysfunction in experimental Chagas disease. Int J Parasitol Drugs Drug Resist 2017; 7:378-387. [PMID: 29040909 PMCID: PMC5727348 DOI: 10.1016/j.ijpddr.2017.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/30/2017] [Accepted: 10/06/2017] [Indexed: 12/24/2022]
Abstract
Trypanosoma cruzi induces serious cardiac alterations during the chronic infection. Intense inflammatory response observed from the beginning of infection, is critical for the control of parasite proliferation and evolution of Chagas disease. Peroxisome proliferator-activated receptors (PPAR)-α, are known to modulate inflammation. In this study we investigated whether a PPAR-α agonist, Fenofibrate, improves cardiac function and inflammatory parameters in a murine model of T. cruzi infection. BALB/c mice were sequentially infected with two T. cruzi strains of different genetic background. Benznidazole, commonly used as trypanocidal drug, cleared parasites but did not preclude cardiac pathology, resembling what is found in human chronic chagasic cardiomyopathy. Fenofibrate treatment restored to normal values the ejection and shortening fractions, left ventricular end-diastolic, left ventricular end-systolic diameter, and isovolumic relaxation time. Moreover, it reduced cardiac inflammation and fibrosis, decreased the expression of pro-inflammatory (IL-6, TNF-α and NOS2) and heart remodeling mediators (MMP-9 and CTGF), and reduced serum creatine kinase activity. The fact that Fenofibrate partially inhibited NOS2 expression and NO release in the presence of a PPAR-α non-competitive inhibitor, suggested it also acted through PPAR-α-independent pathways. Since IκBα cytosolic degradation was inhibited by Fenofibrate, it can be concluded that the NFκB pathway has a role in its effects. Thus, we demonstrate that Fenofibrate acts through PPAR-α-dependent and -independent pathways. Our study shows that combined treatment with Fenofibrate plus Benznidazole is able both to reverse the cardiac dysfunction associated with the ongoing inflammatory response and fibrosis and to attain parasite clearance in an experimental model of Chagas disease.
Collapse
Affiliation(s)
- Ágata C Cevey
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Gerardo A Mirkin
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Martín Donato
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular (INFICA), Buenos Aires, Argentina
| | - María J Rada
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Federico N Penas
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Ricardo J Gelpi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular (INFICA), Buenos Aires, Argentina
| | - Nora B Goren
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.
| |
Collapse
|
21
|
Usui-Ouchi A, Ouchi Y, Ebihara N. The peroxisome proliferator-activated receptor pan-agonist bezafibrate suppresses microvascular inflammatory responses of retinal endothelial cells and vascular endothelial growth factor production in retinal pigmented epithelial cells. Int Immunopharmacol 2017; 52:70-76. [PMID: 28866026 DOI: 10.1016/j.intimp.2017.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/08/2017] [Accepted: 08/27/2017] [Indexed: 01/01/2023]
Abstract
A randomized clinical trial showed the beneficial effects of the selective peroxisome proliferator-activated receptor (PPAR)-α agonist, fenofibrate, in reducing the progression of diabetic retinopathy independent of serum lipid levels. All subtypes of PPAR (PPAR-α, PPAR-γ, and PPAR-β/δ) have been reported to play a key role in microvascular inflammation and angiogenesis. Therefore, the agonistic function of fenofibrate against the PPAR-α has been suggested to contribute to its medicinal effect. Furthermore, bezafibrate is a fibrate drug commonly used as a lipid-lowering agent to treat hyperlipidemia and acts as a pan-agonist of all PPARs subtypes. However, the effects of bezafibrate in diabetic retinopathy remain unclear. Therefore, the purpose of this study was to investigate the effects of bezafibrate on retinal microvascular inflammation. Bezafibrate was not cytotoxic against human retinal microvascular endothelial cells (HRMECs) and human retinal pigment epithelial cells (ARPE-19 cells) treated with <100 and 200μM bezafibrate, respectively. In HRMECs, the expression levels of tumor necrosis factor (TNF)-α-induced monocyte chemoattractant protein (MCP)-1, intercellular adhesion molecule (ICAM)-1, and vascular cell adhesion molecule (VCAM)-1 were significantly suppressed by bezafibrate in a dose-dependent manner. TNF-α-induced nuclear translocation of nuclear factor (NF)-κB p65 and cell migration were also significantly inhibited in bezafibrate-treated HRMECs. Furthermore, bezafibrate treatment significantly suppressed interleukin (IL)-1β-induced vascular endothelial growth factor (VEGF) production in ARPE-19 cells. These results suggest that bezafibrate has beneficial effects on retinal microvascular inflammation. Our study demonstrates the therapeutic potential of bezafibrate for managing diabetic retinopathy.
Collapse
Affiliation(s)
- Ayumi Usui-Ouchi
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan.
| | - Yasuo Ouchi
- Department of Mucosal Immunology, School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Nobuyuki Ebihara
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan.
| |
Collapse
|
22
|
Abstract
PURPOSE To investigate whether cysts in diabetic macular edema are better visualized in the red channel of color fundus camera images, as compared with the green channel, because color fundus camera screening methods that emphasize short-wavelength light may miss cysts in patients with dark fundi or changes to outer blood retinal barrier. METHODS Fundus images for diabetic retinopathy photoscreening were acquired for a study with Aeon Imaging, EyePACS, University of California Berkeley, and Indiana University. There were 2047 underserved, adult diabetic patients, of whom over 90% self-identified as a racial/ethnic identify other than non-Hispanic white. Color fundus images at nominally 45 degrees were acquired with a Canon Cr-DGi non-mydriatic camera (Tokyo, Japan) then graded by an EyePACS certified grader. From the 148 patients graded to have clinically significant macular edema by the presence of hard exudates in the central 1500 μm of the fovea, we evaluated macular cysts in 13 patients with cystoid macular edema. Age ranged from 33 to 68 years. Color fundus images were split into red, green, and blue channels with custom Matlab software (Mathworks, Natick, MA). The diameter of a cyst or confluent cysts was quantified in the red-channel and green-channel images separately. RESULTS Cyst identification gave complete agreement between red-channel images and the standard full-color images. This was not the case for green-channel images, which did not expose cysts visible with standard full-color images in five cases, who had dark fundi. Cysts appeared more numerous and covered a larger area in the red channel (733 ± 604 μm) than in the green channel (349 ± 433 μm, P < .006). CONCLUSIONS Cysts may be underdetected with the present fundus camera methods, particularly when short-wavelength light is emphasized or in patients with dark fundi. Longer wavelength techniques may improve the detection of cysts and provide more information concerning the early stages of diabetic macular edema or the outer blood retinal barrier.
Collapse
|
23
|
Yang C, Song Y, Wang H. Suppression of RAGE and TLR9 by Ketamine Contributes to Attenuation of Lipopolysaccharide-Induced Acute Lung Injury. J INVEST SURG 2016; 30:177-186. [PMID: 27715346 DOI: 10.1080/08941939.2016.1232448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study aimed to investigate the protective role of ketamine in lipopolysaccharide (LPS)-induced acute lung injury (ALI) by the inhibition of the receptor for advanced glycation end products (RAGE) and toll-like receptor 9 (TLR9). ALI was induced in rats by intratracheal instillation of LPS (5 mg/kg), and ketamine (5, 7.5, and 10 mg/kg) was injected intraperitoneally 1 h after LPS administration. Meanwhile, A549 alveolar epithelial cells were incubated with LPS in the presence or absence of ketamine. After 24 h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. Ketamine posttreatment at doses of 5, 7.5, and 10 mg/kg decreased LPS-induced evident lung histopathological changes, lung wet-to-dry weight ratio, and lung myeloperoxidase activity. In addition, posttreatment with ketamine-inhibited inflammatory cells and inflammatory mediators including tumor necrosis factor-α, interleukin-6, and high-mobility group box 1 in BALF. Furthermore, we demonstrated that ketamine-inhibited LPS-induced RAGE and TLR9 protein up-expressions and the phosphorylation of I-κB-α and nuclear factor-κB (NF-κB) p65 in vivo and in vitro. The results presented here suggest that the protective mechanism of ketamine may be attributed partly to decreased production of inflammatory mediators through the inhibition of RAGE/TLR9-NF-κB pathway.
Collapse
Affiliation(s)
- Chunyan Yang
- a Department of Anesthesiology , Shaanxi Provincial People's Hospital , Xi'an , Shaanxi , China
| | - Yulong Song
- a Department of Anesthesiology , Shaanxi Provincial People's Hospital , Xi'an , Shaanxi , China
| | - Hui Wang
- a Department of Anesthesiology , Shaanxi Provincial People's Hospital , Xi'an , Shaanxi , China
| |
Collapse
|
24
|
Abstract
Diabetic retinopathy, a common and sight-threatening microvascular complication of diabetes mellitus, is a leading cause of blindness among working-aged adults. Medical therapies including intensive control of hyperglycemia and hypertension have been shown to reduce the incidence and progression of diabetic retinopathy. The association of dyslipidemia and treatment with statins with diabetic retinopathy is inconsistent in epidemiologic studies. However, two recent randomized clinical trials have demonstrated beneficial effects of systemic fenofibrate therapy in reducing the progression of diabetic retinopathy independently of serum lipid levels. These findings suggest that fenofibrate may be an effective strategy for reducing the progression of diabetic retinopathy, thus reducing the large and growing public health burden of treating the sight-threatening complications of diabetic retinopathy.
Collapse
Affiliation(s)
- Jared E. Knickelbein
- National Eye Institute, National Institutes of Health, 10 Center Dr, 10/10D45, Bethesda, MD 20892, USA
| | - Akshar B. Abbott
- National Eye Institute, National Institutes of Health, 10 Center Dr, 10/10D45, Bethesda, MD 20892, USA
| | - Emily Y. Chew
- National Eye Institute, National Institutes of Health, 10 Center Dr, 10/10D45, Bethesda, MD 20892, USA
- Division of Epidemiology and Clinical Applications, Clinical Trials Branch, National Eye Institute/National Institutes of Health, Bldg 10—Clinical Research Center, Room 3-2531, 10 Center Dr, Mailstop Code 1204, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Coburn PS, Wiskur BJ, Miller FC, LaGrow AL, Astley RA, Elliott MH, Callegan MC. Bloodstream-To-Eye Infections Are Facilitated by Outer Blood-Retinal Barrier Dysfunction. PLoS One 2016; 11:e0154560. [PMID: 27195776 PMCID: PMC4873292 DOI: 10.1371/journal.pone.0154560] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/15/2016] [Indexed: 12/30/2022] Open
Abstract
The blood-retinal barrier (BRB) functions to maintain the immune privilege of the eye, which is necessary for normal vision. The outer BRB is formed by tightly-associated retinal pigment epithelial (RPE) cells which limit transport within the retinal environment, maintaining retinal function and viability. Retinal microvascular complications and RPE dysfunction resulting from diabetes and diabetic retinopathy cause permeability changes in the BRB that compromise barrier function. Diabetes is the major predisposing condition underlying endogenous bacterial endophthalmitis (EBE), a blinding intraocular infection resulting from bacterial invasion of the eye from the bloodstream. However, significant numbers of EBE cases occur in non-diabetics. In this work, we hypothesized that dysfunction of the outer BRB may be associated with EBE development. To disrupt the RPE component of the outer BRB in vivo, sodium iodate (NaIO3) was administered to C57BL/6J mice. NaIO3-treated and untreated mice were intravenously injected with 108 colony forming units (cfu) of Staphylococcus aureus or Klebsiella pneumoniae. At 4 and 6 days postinfection, EBE was observed in NaIO3-treated mice after infection with K. pneumoniae and S. aureus, although the incidence was higher following S. aureus infection. Invasion of the eye was observed in control mice following S. aureus infection, but not in control mice following K. pneumoniae infection. Immunohistochemistry and FITC-dextran conjugate transmigration assays of human RPE barriers after infection with an exoprotein-deficient agr/sar mutant of S. aureus suggested that S. aureus exoproteins may be required for the loss of the tight junction protein, ZO-1, and for permeability of this in vitro barrier. Our results support the clinical findings that for both pathogens, complications which result in BRB permeability increase the likelihood of bacterial transmigration from the bloodstream into the eye. For S. aureus, however, BRB permeability is not required for the development of EBE, but toxin production may facilitate EBE pathogenesis.
Collapse
Affiliation(s)
- Phillip S. Coburn
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Brandt J. Wiskur
- Oklahoma Center for Neuroscience, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Frederick C. Miller
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Family and Preventative Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Austin L. LaGrow
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Roger A. Astley
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Michael H. Elliott
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Oklahoma Center for Neuroscience, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Michelle C. Callegan
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Oklahoma Center for Neuroscience, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
26
|
Roy S, Kim D, Hernández C, Simó R, Roy S. Beneficial effects of fenofibric acid on overexpression of extracellular matrix components, COX-2, and impairment of endothelial permeability associated with diabetic retinopathy. Exp Eye Res 2015; 140:124-129. [PMID: 26297615 DOI: 10.1016/j.exer.2015.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 12/17/2022]
Abstract
In the Fenofibric Acid (FA) Intervention and Event Lowering in Diabetes (FIELD) study, FA, a lipid-lowering drug, has been shown to significantly reduce macular edema in diabetic patients. In the present study, we investigated whether FA reduces vascular permeability by inhibiting cyclooxygenase-2 (COX-2), a critical mediator of inflammation, and reducing overexpression of fibronectin (FN) and collagen IV (Coll IV), two basement membrane (BM) components upregulated in diabetic retinopathy. Rat retinal endothelial cells (RRECs) were grown in normal (N:5 mM glucose) or high glucose (HG:30 mM glucose) medium with or without FA for 7 days. Total protein isolated from these cells was assessed for FN, Coll IV, COX-2, and zonula occludens-1 (ZO-1), a tight junction protein, using Western blot analysis. In addition, the distribution and localization of ZO-1 was determined by immunofluorescence microscopy, and cell monolayer permeability was studied by in vitro permeability (IVP) assay. RRECs grown in HG medium showed significant increase in FN, Coll IV, and COX-2 expression (179%, 144%, 139% of N respectively), and a decrease in ZO-1 expression (48% of N) compared to those of N cells. Cells grown in HG medium supplemented with FA significantly reduced FN, Coll IV, and COX-2 expression by 47%, 32%, and 34% respectively, with concomitant increase in ZO-1 expression by 42%. In parallel studies, IVP assays showed a significant increase (139% of N) in cell monolayer permeability in RRECs grown in HG medium, which was significantly reduced with FA treatment. Additionally, immunostaining results indicated FA prevents HG-induced downregulation of ZO-1. The findings indicate that the beneficial effect of FA in reducing excess permeability is mediated, at least in part, by downregulating abnormal overexpression of BM components and inflammatory factors and preventing compromised tight junctions associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Sumon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), and CIBERDEM, Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), and CIBERDEM, Barcelona, Spain
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|