1
|
Liu J, Wu H, Liu Y, Wang ZG. Colorimetric Sensor Based on the Oxidase-Mimic Supramolecular Catalyst for Selective and Sensitive Biomolecular Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48945-48951. [PMID: 37823579 DOI: 10.1021/acsami.3c09940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We have engineered a colorimetric sensor capable of selective and sensitive detection of amino acids. This sensor employs a supramolecular copper-dependent oxidase mimic as the probe, stemming from our prior research. The oxidase mimic is constructed through the self-assembly of commercially available guanosine monophosphate (GMP), Fmoc-lysine, and Cu2+. It catalyzes the formation of a red product with a maximum absorbance at 510 nm. The changes in color and absorbance are responsive to both the concentrations and types of amino acids present. This effect is most pronounced in the presence of histidine, with a detection limit (LOD) of 6.4 nM. Furthermore, the catalytic probe can distinguish histidine from histamine and imidazole propionate, as well as 1-methyl-histidine from 3-methyl-histidine, based on their distinct coordination capacities with copper. This underscores the high selectivity of the sensing platform. Both theoretical simulations and experimental results (including UV-vis spectra, fluorescence, and EPR) indicate that the amino acids may engage in copper center coordination, thereby impeding O2 access to copper─a pivotal aspect of the oxidase catalysis. This sensing platform, characteristic of its swift response, simple fabrication, and exceptional sensitivity and selectivity, can also be applied to detect other biological analytes such as nucleotides. It holds potential for use in environmental and biochemical analyses.
Collapse
Affiliation(s)
- Junhong Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Taheri H, Khayatian G. PMMA/paper hybrid microfluidic chip for simultaneous determination of arginine and valine in human plasma. Mikrochim Acta 2022; 189:370. [PMID: 36063237 DOI: 10.1007/s00604-022-05464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
The simultaneous determination is reported of arginine (Arg) and valine (Val) amino acids in plasma using flower-shaped μPADs and PMMA/paper hybrid microfluidic chip based on AuNPs capped with R-thiazolidine-4-carboxylic acid (THP). In this article, the evaluation procedure is based on the smartphone colorimetric detection mechanism that results from the aggregation of the THP-AuNPs with the addition of amino acids and visual color change from red to blue. Arg and Val were selectively determined with good reproducibility and an acceptable linearity range. The flower-shaped (μPADs) provides many advantages, including low cost, reasonable sensitivity, simple and fast performance, simultaneous detection, disposable use, and high sample throughput compared with conventional colorimetric method using cuvette cells. The ratios between the absorbance wavelength at (A650/A525) and (A685/A525) are linearly proportional to the concentration of Arg and Val. Under the optimum conditions, the calibration range in aqueous solutions is 0.0068-100.0 and 0.0056-75.0 µM with a limit of detection of 2.25 and 1.86 nM for Arg and Val at pH 7.0, respectively. In the case of μPADs, the calibration curves for Arg and Val showed good linearity in the concentration range 0.01-75.0 µM. The detection limits for the analytes were 3.51 nM and 3.44 nM for Arg and Val, respectively. In addition, a PMMA/paper hybrid microfluidic chip was successfully employed to determine Arg and Val in plasma samples with a relative error below 5%.
Collapse
Affiliation(s)
- Hoda Taheri
- Department of Chemistry, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, 66177-15175, Iran
| | - Gholamreza Khayatian
- Department of Chemistry, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, 66177-15175, Iran.
| |
Collapse
|
3
|
Water-Soluble Single-Benzene Chromophores: Excited State Dynamics and Fluorescence Detection. Molecules 2022; 27:molecules27175522. [PMID: 36080287 PMCID: PMC9457774 DOI: 10.3390/molecules27175522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Two water-soluble single-benzene-based chromophores, 2,5-di(azetidine-1-yl)-tereph- thalic acid (DAPA) and its disodium carboxylate (DAP-Na), were conveniently obtained. Both chromophores preserved moderate quantum yields in a wide range of polar and protonic solvents. Spectroscopic studies demonstrated that DAPA exhibited red luminescence as well as large Stokes shift (>200 nm) in aqueous solutions. Femtosecond transient absorption spectra illustrated quadrupolar DAPA usually involved the formation of an intramolecular charge transfer state. Its Frank−Condon state could be rapidly relaxed to a slight symmetry-breaking state upon light excitation following the solvent relaxation, then the slight charge separation may occur and the charge localization became partially asymmetrical in polar environments. Density functional theory (DFT) calculation results were supported well with the experimental measurements. Unique pH-dependent fluorescent properties endows the two chromophores with rapid, highly selective, and sensitive responses to the amino acids in aqueous media. In detail, DAPA served as a fluorescence turn-on probe with a detection limit (DL) of 0.50 μM for Arg and with that of 0.41 μM for Lys. In contrast, DAP-Na featured bright green luminescence and showed fluorescence turn-off responses to Asp and Glu with the DLs of 0.12 μM and 0.16 μM, respectively. Meanwhile, these two simple-structure probes exhibited strong anti-interference ability towards other natural amino acids and realized visual identification of specific analytes. The present work helps to understand the photophysic−structure relationship of these kinds of compounds and render their fluorescent detection applications.
Collapse
|
4
|
Chatterjee S, Lou XY, Liang F, Yang YW. Surface-functionalized gold and silver nanoparticles for colorimetric and fluorescent sensing of metal ions and biomolecules. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Yang B, Zhou J, Huang X, Chen Z, Tian S, Shi Y. A New Pyrroloquinoline-Derivative-Based Fluorescent Probe for the Selective Detection and Cell Imaging of Lysine. Pharmaceuticals (Basel) 2022; 15:474. [PMID: 35455471 PMCID: PMC9029482 DOI: 10.3390/ph15040474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, a new pyrroloquinoline-derivative-based fluorescent probe, PQP-1, was prepared for the selective detection of Lys in living cells and natural mineral water for drinking. PQP-1 exhibited high selectivity, low limit of detection, and a wide pH range. PQP-1 could be successfully applied for imaging Lys in living cells and in natural mineral water for drinking. We expect that PQP-1 will expand the detection reaction mechanism and the practical biological applications of Lys.
Collapse
Affiliation(s)
- Bing Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (J.Z.); (Y.S.)
| | - Jiahua Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (J.Z.); (Y.S.)
| | - Xu Huang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China;
| | - Zhongping Chen
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China;
| | - Shu Tian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (J.Z.); (Y.S.)
| | - Yujun Shi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (J.Z.); (Y.S.)
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| |
Collapse
|
6
|
Mehta VN, Ghinaiya N, Rohit JV, Singhal RK, Basu H, Kailasa SK. Ligand chemistry of gold, silver and copper nanoparticles for visual read-out assay of pesticides: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Phukan K, Devi R, Chowdhury D. Insights into Anti-Inflammatory Activity and Internalization Pathway of Onion Peel-Derived Gold Nano Bioconjugates in RAW 264.7 Macrophages. ACS OMEGA 2022; 7:7606-7615. [PMID: 35284751 PMCID: PMC8908513 DOI: 10.1021/acsomega.1c06131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/31/2021] [Indexed: 05/28/2023]
Abstract
Green synthesis of nanoparticles plays an important role in their efficient therapeutic effects in various biomedical applications. Here, we prepared gold nano bioconjugates (GNBCs) from the ethyl acetate fraction of onion peels and investigated their anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 macrophages. The GNBCs were characterized by UV-visible spectroscopy, dynamic light scattering, and transmission electron microscopy. Comparative studies have been conducted among GNBCs, fractionate alone [onion peel drug (OPD)], and the standard drug dexamethasone in various anti-inflammatory assays. It was observed that GNBCs showed comparatively good therapeutic efficacy than the fractionate alone. At the lowest 10 μg/mL concentration, the GNBC and OPD exhibited 70.86 and 91.98% of reactive oxygen species production, 10.88 and 20.97 ng/μL of nitrite production, 337 and 378 pg/mL of TNF-α production, 27.1 and 30.64 pg/mL of IL-6 production, respectively, by maintaining a satisfactory cell viability. Moreover, to understand the mechanistic pathway of GNBCs in their entry into the macrophages, their localization, and duration, uptake studies have been performed where a caveolar-mediated endocytosis pathway is found to be prominent. Hence, this study will lead to the development of cheap, green synthesis of nano bioconjugates and their role in inflammation.
Collapse
Affiliation(s)
- Kabyashree Phukan
- Material
Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
| | - Rajlakshmi Devi
- Life
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim
Boragaon, Garchuk, Guwahati 781035 Assam, India
| | - Devasish Chowdhury
- Material
Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
| |
Collapse
|
8
|
A novel modified chitosan/collagen coated-gold nanoparticles for 5-fluorouracil delivery: Synthesis, characterization, in vitro drug release studies, anti-inflammatory activity and in vitro cytotoxicity assay. Carbohydr Polym 2022; 277:118858. [PMID: 34893265 DOI: 10.1016/j.carbpol.2021.118858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
We report herein the development of the novel nanohybrids of gold nanoparticles reduced/stabilized/coated with collagen (AuNPs@collagen) in the first layer and subsequently modified with biotin-quat188-chitosan (Bi-QCS) in the outer layer for 5-fluorouracil (5-FU) delivery to improve cellular uptake and promote specific cell targeting of the nanocarrier. The fabrication of the layer-by-layer technique on the surface of gold nanoparticles (AuNPs) can overcome the limitation of poor drug loading capacity of the classic AuNPs from 64.67% to 87.46%. The AuNPs@collagen coated by the Bi-QCS exhibits strong electrostatic interactions between drug anion (5-FU) and amine groups of the modified chitosan as well as hydrogen bonding. Furthermore, the Bi-QCS-AuNPs@collagen demonstrated a significantly higher anti-inflammatory activity in RAW264.7 macrophage cell line. The Bi-QCS-AuNPs@collagen enhanced the activity of 5-FU approximately 3.3-fold (HeLa) and 6.2-fold (A549), compared to the free 5-Fluorouracil. According to these results, it is very promising that Bi-QCS-AuNPs@collagen can be used as an effective drug delivery carrier in the future.
Collapse
|
9
|
Bawa R, Deswal N, Negi S, Dalela M, Kumar A, Kumar R. Pyranopyrazole based Schiff base for rapid colorimetric detection of arginine in aqueous and real samples. RSC Adv 2022; 12:11942-11952. [PMID: 35481068 PMCID: PMC9017462 DOI: 10.1039/d2ra00091a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
A novel pyranopyrazole-based Schiff base PPS has been synthesized via a condensation reaction between aldehyde and hydrazide derivatives of pyranopyrazole.
Collapse
Affiliation(s)
- Rashim Bawa
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Nidhi Deswal
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Swati Negi
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Manu Dalela
- Stem Cell Facility (Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Kumar
- Department of Chemistry, Dyal Singh College, University of Delhi, Delhi, 110003, India
| | - Rakesh Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
10
|
Wang T, Pang Q, Tong Z, Xiang H, Xiao N. A hydrazone-based spectroscopic off-on probe for sensing of basic arginine and lysine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119824. [PMID: 33901944 DOI: 10.1016/j.saa.2021.119824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
A simple probe BHN based on naphthol and benzothiazole is reported for detecting of arginine (Arg) and lysine (Lys) with high selectivity and sensitivity. The BHN in aqueous solution upon reacting with Arg or Lys induced a visible color change from colorless to yellow. The probe BHN can also be employed for fluorescence turn-on sensing of Arg and Lys with the limits of detection (LOD) of 5.20 × 10-2 μM and 3.69 × 10-2 μM, respectively. The naked eye colorimetric and fluorimetric detecting is lack of sensitive to other common amino acids including Gly, Ala, Ser, Pro, Val, Thr, Cys, Leu, Ile, Asn, Asp, Glu, Gln, Met, His, and Phe. The sensing mechanism has been proposed by pH investigation and 1H NMR spectra.
Collapse
Affiliation(s)
- Tianran Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Qidan Pang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhipu Tong
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hanyue Xiang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Nao Xiao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
Phukan K, Devi R, Chowdhury D. Green Synthesis of Gold Nano-bioconjugates from Onion Peel Extract and Evaluation of Their Antioxidant, Anti-inflammatory, and Cytotoxic Studies. ACS OMEGA 2021; 6:17811-17823. [PMID: 34308016 PMCID: PMC8296016 DOI: 10.1021/acsomega.1c00861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/10/2021] [Indexed: 05/04/2023]
Abstract
Plant secondary metabolites such as flavonoids demonstrate high degrees of antioxidant, anti-inflammatory, and anticancer activities. Among flavonoids, quercetin plays an important role in inflammation by downregulating the level of various cytokines. Thereby, in this work, onion (Allium cepa) peel was successfully utilized for the synthesis of gold nano-bioconjugates acting as a natural therapeutic drug. In this process, crude onion peel extract was first divided into different fractionates, namely, ethyl acetate, butanol, methanol, and water, and they were subjected to various preliminary studies of antioxidant activities. The ethyl acetate fractionate shows high antioxidant activities in all the assays. The bioactive components were identified and found to contain a high amount of quercetin as confirmed by liquid chromatography with tandem mass spectrometry and high-performance liquid chromatogrpahy. Three gold nano-bioconjugates were prepared with different concentrations of the ethyl acetate fractionate. Various biochemical anti-inflammatory assays were carried out and compared with the active ethyl acetate fraction of the onion peel drug (OPD). The cytotoxicity of the nano-bioconjugate system and the OPD was checked in the myoblast L6 cell line from skeletal muscle tissues to evaluate the toxicity. All the three nano-bioconjugates A, B, and E demonstrated high percentages of cell viability, viz., 73.07, 72.3, and 69.15%, respectively, at their highest concentration of 200 μg/mL. The OPD also showed 88.56% cell viability with no toxic effects in the myoblast L6 cell line from skeletal muscle tissues. The reactive oxygen species reduction of nano-bioconjugate B showed a marked reduction of 76.77% at a maximum concentration of 200 μg/mL, whereas the OPD showed 68.17%. Hence, through this work, a cheap source of nano-bioconjugates is developed, which can act as a potent antioxidant and anti-inflammatory agent and are more active in comparison to the OPD alone.
Collapse
Affiliation(s)
- Kabyashree Phukan
- Material
Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Rajlakshmi Devi
- Life
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Devasish Chowdhury
- Material
Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
- . Tel.: +91 361 2912073. Fax: +91 361 2279909
| |
Collapse
|
12
|
Fan J, Qiu L, Qiao Y, Xue M, Dong X, Meng Z. Recent Advances in Sensing Applications of Molecularly Imprinted Photonic Crystals. Front Chem 2021; 9:665119. [PMID: 34195173 PMCID: PMC8236589 DOI: 10.3389/fchem.2021.665119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
Photonic crystals (PhCs) with a brightly colored structure are novel materials and are widely used in chemical and biological sensing. Combining PhCs with molecular imprinting technology (MIT), the molecularly imprinted PhC (MIPC) sensors are fabricated, which can specifically recognize the target molecules. Aside from high sensitivity and selectivity, the MIPC sensors could recognize the naked eye detection because of its optical properties. In this review, an overview of recent advances in sensing applications of MIPC sensors including the responsive mechanisms, application in environmental monitoring, and the application to human health were illustrated. The MIPC sensors all responded to the analytes specifically and also showed high sensitivity in real samples, which provided a method to realize the rapid, convenient, naked eye, and real-time detection. Furthermore, the current limitations and potential future directions of MIPC sensors were also discussed.
Collapse
Affiliation(s)
- Jing Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Lili Qiu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Qiao
- School of Design and Arts, Beijing Institute of Technology, Beijing, China
| | - Min Xue
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Xiao Dong
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
13
|
Sahu B, Kurrey R, Deb MK, Shrivas K, Karbhal I, Khalkho BR. A simple and cost-effective paper-based and colorimetric dual-mode detection of arsenic(iii) and lead(ii) based on glucose-functionalized gold nanoparticles. RSC Adv 2021; 11:20769-20780. [PMID: 35479386 PMCID: PMC9033963 DOI: 10.1039/d1ra02929k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
We report a simple and cost-effective paper-based and colorimetric dual-mode detection of As(iii) and Pb(ii) based on glucose-functionalized gold nanoparticles under optimized conditions. The paper-based detection of As(iii) and Pb(ii) is based on the change in the signal intensity of AuNPs/Glu fabricated on a paper substrate after the deposition of the analyte using a smartphone, followed by processing with the ImageJ software. The colorimetric method is based on the change in the color and the red shift of the localized surface plasmon resonance (LSPR) absorption band of AuNPs/Glu in the region of 200-800 nm. The red shift (Δλ) of the LSPR band observed was from 525 nm to 660 nm for As(iii) and from 525 nm to 670 nm for Pb(ii). The mechanism of dual-mode detection is due to the non-covalent interactions of As(iii) and Pb(ii) ions with glucose molecule present on the surface AuNPs, resulting in the aggregation of novel metal nanoparticles. The calibration curve gave a good linearity range of 20-500 μg L-1 and 20-1000 μg L-1 for the determination of As(iii) and Pb(ii) with the limit of detection of 5.6 μg L-1 and 7.7 μg L-1 for both metal ions, respectively. The possible effects of different metal ions and anions were also investigated but did not cause any significant interference. The employment of AuNPs/Glu is successfully demonstrated for the determination of As(iii) and Pb(ii) using paper-based and colorimetric sensors in environmental water samples.
Collapse
Affiliation(s)
- Bhuneshwari Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur CG-492010 India +91 94255 03750
| | - Ramsingh Kurrey
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur CG-492010 India +91 94255 03750
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur CG-492010 India +91 94255 03750
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur CG-492010 India +91 94255 03750
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur CG-492010 India +91 94255 03750
| | - Beeta Rani Khalkho
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur CG-492010 India +91 94255 03750
| |
Collapse
|
14
|
Sadalage PS, Patil RV, Havaldar DV, Gavade SS, Santos AC, Pawar KD. Optimally biosynthesized, PEGylated gold nanoparticles functionalized with quercetin and camptothecin enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities. J Nanobiotechnology 2021; 19:84. [PMID: 33766058 PMCID: PMC7992809 DOI: 10.1186/s12951-021-00836-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The development of nano delivery systems is rapidly emerging area of nanotechnology applications where nanomaterials (NMs) are employed to deliver therapeutic agents to specific site in a controlled manner. To accomplish this, green synthesis of NMs is widely explored as an eco-friendly method for the development of smart drug delivery system. In the recent times, use of green synthesized NMs, especially metallic NMs have fascinated the scientific community as they are excellent carriers for drugs. This work demonstrates optimized green, biogenic synthesis of gold nanoparticles (AuNPs) for functionalization with quercetin (QT) and camptothecin (CPT) to enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities of these drugs. RESULTS Gold nanoparticles were optimally synthesized in 8 min of reaction at 90 °C, pH 6, using 4 mM of HAuCl4 and 4:1 ratio of extract: HAuCl4. Among different capping agents tested, capping of AuNPs with polyethylene glycol 9000 (PG9) was found best suited prior to functionalization. PG9 capped AuNPs were optimally functionalized with QT in 1 h reaction at 70 °C, pH 7, using 1200 ppm of QT and 1:4 ratio of AuNPs-PG9:QT whereas, CPT was best functionalized at RT in 1 h, pH 12, AuNPs-PG9:CPT ratio of 1:1, and 0.5 mM of CPT. QT functionalized AuNPs showed good anti-cancer activity (IC50 687.44 µg/mL) against MCF-7 cell line whereas test of anti-inflammatory activity also showed excellent activity (IC50 287.177 mg/L). The CAM based assessment of anti-angiogenic activity of CPT functionalized AuNPs demonstrated the inhibition of blood vessel branching confirming the anti-angiogenic effect. CONCLUSIONS Thus, present study demonstrates that optimally synthesized biogenic AuNPs are best suited for the functionalization with drugs such as QT and CPT. The functionalization of these drugs with biogenic AuNPs enhances the potential anti-inflammatory, anti-cancer and anti-angiogenic activities of these drugs, therefore can be used in biomedical application.
Collapse
Affiliation(s)
| | - Reshma V Patil
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Darshana V Havaldar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Shruti S Gavade
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India.
| |
Collapse
|
15
|
Shi YF, Jiang YP, Sun PP, Wang K, Zhang ZQ, Zhu NJ, Guo R, Zhang YY, Wang XZ, Liu YY, Huo JZ, Wang XR, Ding B. Solvothermal preparation of luminescent zinc(II) and cadmium(II) coordination complexes based on the new bi-functional building block and photo-luminescent sensing for Cu 2+, Al 3+ and L-lysine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119214. [PMID: 33257240 DOI: 10.1016/j.saa.2020.119214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
In industry, over usage of Cu2+ and Al3+ will lead to toxic wastewater, which further to give serious pollution for the environment. On the other hand, L-lysine can enhance serotonin release in the amygdala, with subsequent changes in psychobehavioral responses to stress. Therefore it is the urgent problem to design a method for detecting the amount of Cu2+, Al3+, and L-lysine. In this work, through the solvothermal synthesis method, two new coordination complexes based on the new bifunctional building block 4'-(1H-1,2,4-triazole-1-yl)- [1,1'-biphenyl]-4-carboxylic acid (HL) have been synthesized, namely, [Zn(L)2·4H2O] (complex 1) and [Cd(L)2·4H2O] (complex 2). X-ray single-crystal diffractometer was used to analyze its structure, powder X-ray diffraction (PXRD) patterns confirmed that 1 and 2 powder's purity and 1 can keep stable during the detection process of Cu2+, Al3+, and L-lysine, respectively. Elemental analysis, thermogravimetric analysis, infrared analysis, ultraviolet analysis and fluorescent spectrum have been used to characterize these complexes. The photo-luminescent test showed that 1 can accurately recognize Al3+ and Cu2+ among various cations. On the other hand, 1 can distinguish L-lysine among amino acid molecules. Therefore, 1 can be utilized as a multifunctional fluorescent probe for Al3+(Ksv = 1.5570 × 104 [M]-1), Cu2+(Ksv = 1.4948 × 104 [M]-1) and L-lysine (Ksv = 4.9118 × 104 [M]-1) with low detection limits (17.5 μM, 18.2 μM, 5.6 μM) respectively.
Collapse
Affiliation(s)
- Yang Fan Shi
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yu Peng Jiang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Ping Ping Sun
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Kuo Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Zi Qing Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Na Jia Zhu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Rui Guo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yi Yun Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yuan Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jian Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xin Rui Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
16
|
Sangsin S, Srivilai P, Tongraung P. Colorimetric detection of Cr 3+ in dietary supplements using a smartphone based on EDTA and tannic acid-modified silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119050. [PMID: 33075706 DOI: 10.1016/j.saa.2020.119050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
A simplistic, portable and low-cost method for the rapid detection of Cr3+ was developed based on a smartphone readout and a co-functionalized silver nanoparticles (AgNPs) system for use as an on-site device in resource-poor areas. The presence of Cr3+ induced aggregation of AgNPs through coordinated complex formation between Cr3+ and stabilizing agents on the NPs surface, resulted in a bright yellow of an AgNPs solution turned to wine red along with a SPR band was red-shifted from 429 nm to 625 nm. A smartphone with an available free application, called "PhotoMetrix" was used to measure the RGB (red, green, blue) values of the color intensities in the AgNPs system and convert into Cr3+ concentration by using univariate calibration curves in less than 60s. This smartphone-based detection system showed a high selectivity of AgNPs with Cr3+ and gave a positive coefficient correlation (R2 = 0.9878) between the intensity of channel R and the Cr3+ concentration, with a linear range of 2.0-5.0 mg L-1, and a detection limit of 1.52 mg L-1. Furthermore, the proposed method has been successfully applied for quantification of Cr3+ in dietary supplement samples. The results obtained were in close agreement with those obtained in FAAS (Flame Atomic Absorption Spectrometry). The developed colorimetric system based on a smartphone readout device exhibits feasibility and reliability for on-site Cr3+ detection in the real samples.
Collapse
Affiliation(s)
- Supanee Sangsin
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23 Rd., Wattana, Bangkok 10110, Thailand
| | - Piyarat Srivilai
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23 Rd., Wattana, Bangkok 10110, Thailand
| | - Pan Tongraung
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23 Rd., Wattana, Bangkok 10110, Thailand.
| |
Collapse
|
17
|
Experimental and theoretical investigations for selective colorimetric recognition and determination of arginine and histidine in vegetable and fruit samples using bare-AgNPs. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Highly sensitive and selective colorimetric sensing of histidine by NAC functionalized AuNPs in aqueous medium with real sample application. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105661] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Ractopamine as a novel reagent for the fabrication of gold nanoparticles: Colorimetric sensing of cysteine and Hg2+ ion with different spectral characteristics. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Bordbar MM, Nguyen TA, Arduini F, Bagheri H. A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice. Mikrochim Acta 2020; 187:621. [PMID: 33084996 DOI: 10.1007/s00604-020-04596-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
A colorimetric paper-based sensor is proposed for the rapid monitoring of six major organophosphate and carbamate pesticides. The assay was constructed by dropping gold and silver nanoparticles on the hydrophilic zones of a paper substrate. The nanoparticles were modified by L-arginine, quercetin, and polyglutamic acid. The mechanism of sensing is based on the interaction between the pesticide and the nanoparticles. The color of nanoparticles changed during the interactions. A digital camera recorded these changes. The assay provided a unique response for each studied pesticide. This method can determine six individual pesticides including carbaryl, paraoxon, parathion, malathion, diazinon, and chlorpyrifos. The limit of detection for these pesticides were 29.0, 22.0, 32.0, 17.0, 45.0, and 36.0 ng mL-1, respectively. The assay was applied to simultaneously determine the six studied pesticides in a mixture using the partial least square method (PLS). The root mean square errors of prediction were 11, 8.7, 9.2, 10, 12, and 11 for carbaryl, paraoxon, parathion, malathion, diazinon, and chlorpyrifos, respectively. The paper-based device can differentiate two types of studied pesticide (organophosphate and carbamate) as well as two types of organophosphate structures (oxon and thion). Furthermore, this sensor showed high selectivity to the pesticides in the presence of other potential species (e.g., metal ions, anions, amino acids, sugar, and vitamins). This assay is capable of determining the pesticide compounds in tap water, apple juice, and rice samples.Graphical abstract.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Tien Anh Nguyen
- Department of Physics, Le Quy Don Technical University, Hanoi, Vietnam
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Tavallali H, Espergham O, Deilamy-Rad G, Karimi MA, Rostami S, Rouhani-Savestani AR. Dye/metal ion-based chemosensing ensemble towards l-histidine and l-lysine determination in water via different optical responses. Anal Biochem 2020; 604:113811. [DOI: 10.1016/j.ab.2020.113811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
|
22
|
Meena R, Mehta VN, Bhamore JR, Rao PT, Park TJ, Kailasa SK. Diaminodiphenyl sulfone as a novel ligand for synthesis of gold nanoparticles for simultaneous colorimetric assay of three trivalent metal cations (Al3+, Fe3+ and Cr3+). J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113409] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Qin X, Yuan C, Chen Y, Wang Y. A fluorescein-gold nanoparticles probe based on inner filter effect and aggregation for sensing of biothiols. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111986. [PMID: 32771912 DOI: 10.1016/j.jphotobiol.2020.111986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023]
Abstract
Cysteine (Cys), homocysteine (HCys) and glutathione (GSH) are sulfhydryl-containing amino acids known as biothiols being able to bind to gold nanoparticles (AuNPs) via sulfhydryl group, resulting in the aggregation of AuNPs. Owning to their inner filter effect, AuNPs can weaken or even quench the fluorescence of fluorescein. However, the introduction of biothiols to fluorescein-AuNPs leads to the recovery of fluorescein fluorescence. Thus, a simple and reliable turn on fluorescence method was developed for monitoring biothiols with fluorescein-AuNPs as a probe. Several factors, including AuNPs concentration, pH value and incubation time, which might influence the fluorescence reclamation of fluorescein-AuNPs probe, were optimized by taking Cys as an example at room temperature. Under the optimal conditions, sensitive sensing of Cys, HCys and GSH was achieved. The detection limits for Cys, GSH, and HCys were 0.027, 0.023, and 0.030μΜ, respectively. This method was used to the determination of Cys in human serum samples with high precision and accuracy, indicating the potential of the method in practical applications with simple operation, good accuracy and high sensitivity.
Collapse
Affiliation(s)
- Xiu Qin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Biorefinery, Guangxi University, Nanning 530004, China
| | - Chunling Yuan
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Biorefinery, Guangxi University, Nanning 530004, China
| | - Yuye Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Biorefinery, Guangxi University, Nanning 530004, China
| | - Yilin Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Biorefinery, Guangxi University, Nanning 530004, China.
| |
Collapse
|
24
|
Huang L, Wang L, Nie Z, Wang Y. Simultaneous quantitative measurements of Tl+ and Pb2+ in drinking water based on nanoplasmonic probe. Food Chem 2020; 319:126543. [DOI: 10.1016/j.foodchem.2020.126543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/04/2019] [Accepted: 03/01/2020] [Indexed: 12/11/2022]
|
25
|
Scroccarello A, Della Pelle F, Fratini E, Ferraro G, Scarano S, Palladino P, Compagnone D. Colorimetric determination of polyphenols via a gold nanoseeds–decorated polydopamine film. Mikrochim Acta 2020; 187:267. [DOI: 10.1007/s00604-020-04228-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/16/2020] [Indexed: 12/31/2022]
|
26
|
Balasurya S, Syed A, Thomas AM, Bahkali AH, Elgorban AM, Raju LL, Khan SS. Highly sensitive and selective colorimetric detection of arginine by polyvinylpyrrolidone functionalized silver nanoparticles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Joseph R, Asok A, Joseph K. Quinoline appended pillar[5]arene (QPA) as Fe 3+ sensor and complex of Fe 3+ (FeQPA) as a selective sensor for F -, arginine and lysine in the aqueous medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117390. [PMID: 31336324 DOI: 10.1016/j.saa.2019.117390] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/07/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
A quinoline functionalized pillar[5]arene, QPA has been prepared and its interaction with biologically relevant ions and molecules in aqueous solution has been demonstrated. The sensor molecule, QPA has shown selectivity towards Fe3+ among eleven metal ions studied. The Fe3+ complex of QPA (FeQPA) selectively interacts with F- among halides by ∼4 fold fluorescence enhancement. Further, FeQPA has shown selectivity towards arginine and lysine among twenty naturally occurring amino acids. The binding of QPA with Fe3+ has been confirmed by MALDI-TOF and 1H NMR titrations.
Collapse
Affiliation(s)
- Roymon Joseph
- Department of Chemistry, Indian Institute of Space Science and Technology (IIST), Thiruvananthapuram, Kerala 695547, India.
| | - Adersh Asok
- Material Science and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, India
| | - Kuruvilla Joseph
- Department of Chemistry, Indian Institute of Space Science and Technology (IIST), Thiruvananthapuram, Kerala 695547, India
| |
Collapse
|
28
|
Rajkumar C, Nehru R, Chen SM, Kim H, Arumugam S, Sankar R. Electrosynthesis of carbon aerogel-modified AuNPs@quercetin via an environmentally benign method for hydrazine (HZ) and hydroxylamine (HA) detection. NEW J CHEM 2020. [DOI: 10.1039/c9nj05360c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultrasensitive electrochemical sensor fabricated using a hydrothermal and environmentally benign methods for the detection of environmental pollutions, namely, hydrazine (HZ) and hydroxylamine (HA) has been described.
Collapse
Affiliation(s)
- Chellakannu Rajkumar
- School of Materials Science and Engineering
- Yeungnam University
- Gyeongsan 712 749
- Republic of Korea
- Institute of Physics
| | - Raja Nehru
- Institute of Physics
- Academia Sinica
- Taipei 10617
- Taiwan
- Centre for Condensed Matter Sciences
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Haekyoung Kim
- School of Materials Science and Engineering
- Yeungnam University
- Gyeongsan 712 749
- Republic of Korea
| | - S. Arumugam
- Center for High Pressure Research
- Bharathidasan University
- Tiruchirappalli-620 024
- India
| | - Raman Sankar
- Institute of Physics
- Academia Sinica
- Taipei 10617
- Taiwan
- Centre for Condensed Matter Sciences
| |
Collapse
|
29
|
Exploration of Catalytic Activity of Quercetin Mediated Hydrothermally Synthesized NiO Nanoparticles Towards C–N Coupling of Nitrogen Heterocycles. Catal Letters 2019. [DOI: 10.1007/s10562-019-03037-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Wang XZ, Wang XR, Liu YY, Huo JZ, Li Y, Wang Q, Liu K, Ding B. Ultrasonic preparation of near-infrared emission cluster-based Yb III and Nd III coordination materials: Ratiometric temperature sensing, selective antibiotics detection and "turn-on" discrimination of l-arginine. ULTRASONICS SONOCHEMISTRY 2019; 59:104734. [PMID: 31479886 DOI: 10.1016/j.ultsonch.2019.104734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Currently near-infrared (NIR) luminescence of lanthanide ions has received great attention because of their unique emissions in the near-infrared region (800-1700 nm). These NIR luminescent materials behave excellent applications in many fields such as sensors and probes in optical amplification, laser systems, biological systems and organic light-emitting diodes. In this work, two new near-infrared (NIR) emission three-dimensional (3D) YbIII and NdIII cluster-based coordination materials, namely {[Yb2(L)2(DMF)(H2O)4]·(DMF)2 (H2O)}n (NIR-MOF 1) and [Nd(L)(DMF)2]n (NIR-MOF 2) (H3L = terphenyl-3,4″,5-tricarboxylic acid) have been synthesized through the facile sono-chemical preparation methods. Both the near-infrared materials 1 and 2 have been characterized by single crystal X-ray diffraction, powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). Further the mixed-lanthanide near-infrared emission material Nd0.35Yb0.65L (NIR-MOF 3) can also be prepared under the sono-chemical conditions. NIR-MOF 3 can be successfully applied as the ratiometric NIR-MOF-based thermometer, which should origin from the emission intensity ratio between Yb3+ (976 nm) and Nd3+ (1056 nm) in the temperature range of 308-348 K. Besides these, the micro-morphologies of NIR-MOF 1 can be deliberately tuned through different sono-chemical reaction factors (reaction time, reaction temperature and sono-chemical powers). These tuned nano-sized materials NIR-MOF 1 (100 W, 80 min) can be utilized as the fluorescent sensing material to distinguish furazolidone and sulfasalazine from other antibiotics. At the same time, NIR-MOF 2 can be applied as the first example of MOFs-based sensors for discriminating l-arginine from other amino acids through the "turn-on" mode in the near-infrared emission region.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xin Rui Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yuan Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jian Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yong Li
- Tianjin Normal University, Tianjin 300387, PR China
| | - Qian Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Kun Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
31
|
Shrivas K, Sahu B, Deb MK, Thakur SS, Sahu S, Kurrey R, Kant T, Patle TK, Jangde R. Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104156] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Mohammadi A, Khoshsoroor S, Khalili B. Rapid, sensitive and selective detection of arginine using a simple azo-based colorimetric and fluorescent chemosensor. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Lakshmi BA, Kim S. Quercetin mediated gold nanoclusters explored as a dual functional nanomaterial in anticancer and bio-imaging disciplines. Colloids Surf B Biointerfaces 2019; 178:230-237. [DOI: 10.1016/j.colsurfb.2019.02.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
|
34
|
Türkcan C, Somtürk B, Özdemir N, Özel M, Çatalkaya R, Aktaş Uygun D, Uygun M, Akgöl S. Quercetin adsorption with imprinted polymeric materials. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:947-960. [DOI: 10.1080/09205063.2019.1612727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ceren Türkcan
- Vocational School, Medical Services and Techniques, Beykent University, Istanbul, Turkey
| | - Burcu Somtürk
- Faculty of Science, Chemistry Department, Erciyes University, Kayseri, Turkey
| | - Nalan Özdemir
- Faculty of Science, Chemistry Department, Erciyes University, Kayseri, Turkey
| | - Merve Özel
- Faculty of Science, Chemistry Department, Erciyes University, Kayseri, Turkey
| | - Rıfat Çatalkaya
- Faculty of Science, Chemistry Department, Erciyes University, Kayseri, Turkey
| | - Deniz Aktaş Uygun
- Faculty of Science and Arts, Chemistry Department, Adnan Menderes University, Aydın, Turkey
| | - Murat Uygun
- Faculty of Science and Arts, Chemistry Department, Adnan Menderes University, Aydın, Turkey
| | - Sinan Akgöl
- Faculty of Science, Biochemistry Department, Ege University, Izmir, Turkey
| |
Collapse
|
35
|
Studies on the visual screening method for fluoroquinolones based on the chain reaction of gold nanoparticles and its application in milk samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Lone SA, Sadhu KK. Gold Nanoflower for Selective Detection of Single Arginine Effect in α-Helix Conformational Change over Lysine in 310-Helix Peptide. Bioconjug Chem 2019; 30:1781-1787. [DOI: 10.1021/acs.bioconjchem.9b00301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shahbaz Ahmad Lone
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kalyan K. Sadhu
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
37
|
Shrivas K, Nirmalkar N, Deb MK, Dewangan K, Nirmalkar J, Kumar S. Application of functionalized silver nanoparticles as a biochemical sensor for selective detection of lysozyme protein in milk sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:127-133. [PMID: 30684881 DOI: 10.1016/j.saa.2019.01.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/25/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Silver nanoparticles (AgNPs) functionalized with glutamic acid (GA) was used as a biochemical sensing probe in colorimetry for detection of lysozyme protein in milk samples. The method is based on the color change of AgNPs/GA from yellow to reddish-yellow differentiated with naked eyes for qualitative determination and red shift of localized surface plasmon resonance (LSPR) absorption signal intensity of AgNPs/GA in visible region used for quantitative determination of lysozyme. The control experiments were performed to demonstrate the electrostatic force of interactions between AgNPs/GA and protein molecule. A wide linear range of 3-150 nM with limit of detection of 1.5 nM was acquired for quantitative determination of lysozyme using AgNPs/GA as a biochemical sensing probe. The advantages of using AgNPs/GA as a biochemical sensing probe are simple, label-free and economic for determination of lysozyme from milk samples.
Collapse
Affiliation(s)
- Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur CG-492010, India; Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur CG-495009, India.
| | - Nidhi Nirmalkar
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur CG-495009, India
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur CG-492010, India
| | - Khemchand Dewangan
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak MP-484886, India
| | - Jayant Nirmalkar
- Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal MP-462066, India
| | - Suneel Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal MP-462066, India
| |
Collapse
|
38
|
Wang S, Ding H, Wang Y, Fan C, Liu G, Pu S. A colorimetric and ratiometric fluorescent sensor for sequentially detecting Cu2+ and arginine based on a coumarin–rhodamine B derivative and its application for bioimaging. RSC Adv 2019; 9:6643-6649. [PMID: 35518477 PMCID: PMC9060912 DOI: 10.1039/c8ra09943j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/16/2019] [Indexed: 12/28/2022] Open
Abstract
In this work, a colorimetric and ratiometric fluorescent sensor based on a coumarin–rhodamine B hybrid for the sequential recognition of Cu2+ and arginine (Arg) via the FRET mechanism was designed and synthesized. With the addition of Cu2+, the solution displayed a colorimetric change from pale yellow to pink which is discernible by the naked eye. Additionally, the fluorescence intensities of the sensor exhibited ratiometric changes for the detection of Cu2+ at 490 and 615 nm under a single excitation wavelength of 350 nm, which corresponded to the emissions of coumarin and rhodamine B moieties, respectively. The fluorescence color change could be visualized from blue to pink. The limits of detection were determined to be as low as 0.50 and 0.47 μM for UV-vis and fluorescence measurements, respectively. More importantly, the sensor not only can recognize Cu2+ and form a sensor-Cu2+ complex but can also sequentially detect Arg with the resulting complex. The detection limits for Arg were as low as 0.60 μM (UV-vis measurement) and 0.33 μM (fluorescence measurement), respectively. A fluorescence imaging experiment in living cells demonstrated that the fabricated sensor could be utilized in ratiometric fluorescence imaging towards intracellular Cu2+, which is promising for the detection of low-level Cu2+ and Arg with potentially practical significance. A FRET-based colorimetric and ratiometric coumarin–rhodamine B fluorescent sensor was designed, and its sensing behaviors for sequentially detecting Cu2+ and arginine were studied systematically.![]()
Collapse
Affiliation(s)
- Shuai Wang
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- PR China
| | - Haichang Ding
- Institute for Advanced Ceramics
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150001
- PR China
| | - Yuesong Wang
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- PR China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- PR China
| |
Collapse
|
39
|
Kailasa SK, Desai ML, Baek SH, Phan LMT, Nguyen TP, Rafique R, Park TJ. Independent spectral characteristics of functionalized silver nanoparticles for colorimetric assay of arginine and spermine in biofluids. NEW J CHEM 2019. [DOI: 10.1039/c9nj04132j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A colorimetric assay for selective and sensitive detection of arginine and spermine using 6-ATT-AgNPs as a probe.
Collapse
Affiliation(s)
- Suresh Kumar Kailasa
- Department of Applied Chemistry
- Sardar Vallabhbhai National Institute of Technology
- Surat-395 007
- India
| | - Mittal L. Desai
- Department of Applied Chemistry
- Sardar Vallabhbhai National Institute of Technology
- Surat-395 007
- India
| | - Seung Hoon Baek
- Department of Chemistry
- Institute of Interdisciplinary Convergence Research
- Research Institute of Chem-Bio Diagnostic Technology
- Chung-Ang University
- Seoul 06974
| | - Le Minh Tu Phan
- Department of Chemistry
- Institute of Interdisciplinary Convergence Research
- Research Institute of Chem-Bio Diagnostic Technology
- Chung-Ang University
- Seoul 06974
| | - Thang Phan Nguyen
- Department of Chemistry
- Institute of Interdisciplinary Convergence Research
- Research Institute of Chem-Bio Diagnostic Technology
- Chung-Ang University
- Seoul 06974
| | - Rafia Rafique
- Department of Chemistry
- Institute of Interdisciplinary Convergence Research
- Research Institute of Chem-Bio Diagnostic Technology
- Chung-Ang University
- Seoul 06974
| | - Tae Jung Park
- Department of Chemistry
- Institute of Interdisciplinary Convergence Research
- Research Institute of Chem-Bio Diagnostic Technology
- Chung-Ang University
- Seoul 06974
| |
Collapse
|
40
|
Chen Q, Shi W, Cheng M, Liao S, Zhou J, Wu Z. Molecularly imprinted photonic hydrogel sensor for optical detection of L-histidine. Mikrochim Acta 2018; 185:557. [DOI: 10.1007/s00604-018-3080-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
|
41
|
Mohseni N, Bahram M. Highly selective and sensitive determination of dopamine in biological samples via tuning the particle size of label-free gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:451-457. [PMID: 29289743 DOI: 10.1016/j.saa.2017.12.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Herein, a rapid, sensitive and selective approach for the colorimetric detection of dopamine (DA) was developed utilizing unmodified gold nanoparticles (AuNPs). This assay relied upon the size-dependent aggregation behavior of DA and three other structurally similar catecholamines (CAs), offering highly specific and accurate detection of DA. By means of this study, we attempted to overcome the tedious procedures of surface premodifications and achieve selectivity through tuning the particle size of AuNPs. DA could induce the aggregation of the AuNPs via hydrogen-bonding interactions, resulting in a color change from pink to blue which can be monitored by spectrophotometry or even the naked-eye. The proposed colorimetric probe works over the 0.1 to 4μM DA concentration range, with a lower detection limit (LOD) of 22nM, which is much lower than the therapeutic lowest abnormal concentrations of DA in urine (0.57μM) and blood (16μM) samples. Furthermore, the selectivity and potential applicability of the developed method in spiked actual biological (human plasma and urine) specimens were investigated, suggesting that the present assay could satisfy the requirements for clinical diagnostics and biosensors.
Collapse
Affiliation(s)
- Naimeh Mohseni
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Morteza Bahram
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
42
|
Gold nanoparticles functionalized with Pluronic are viable optical probes for the determination of uric acid. Mikrochim Acta 2018; 185:185. [DOI: 10.1007/s00604-018-2725-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022]
|
43
|
Liu M, Li N, He Y, Ge Y, Song G. Dually emitting gold-silver nanoclusters as viable ratiometric fluorescent probes for cysteine and arginine. Mikrochim Acta 2018; 185:147. [PMID: 29594587 DOI: 10.1007/s00604-018-2674-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Abstract
Glutathione coated gold and silver nanoclusters (GSH-Au/AgNCs) were synthesized by one-pot reduction methods and are found to be viable fluorescent nanoprobes for cysteine (Cys) and arginine (Arg), with good selectivity over other amino acids. The GSH-Au/AgNCs have two emissions at 616 nm and 412 nm when excited at 360 nm. With the increased concentration of Cys, the ratio of the emission intensities (I616/I412) linearly decreases with Cys in concentration ranging from 0.05 to 10 μM and from 10 to 50 μM, respectively. With increased concentrations of Arg, the ratio of I616/I412 linearly decreases with Arg concentration ranging from 0 to 50 μM and from 50 to 100 μM, respectively. The probe was applied to the determination of Cys and Arg in spiked samples of serum and urine where it gave good recoveries. Graphical abstract Glutathione-coated gold and silver nanoclusters (GSH-Au/AgNCs) were synthesized by one-pot reduction and are found to be viable fluorescent nanoprobes for cysteine (Cys) and arginine (Arg).
Collapse
Affiliation(s)
- Mingwang Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China
| | - Na Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China
| | - Yu He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China. .,Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China. .,Hubei Province Key Laboratory of Regional Development and Environment Response, Wuhan, 430062, China.
| | - Yili Ge
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China.,Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Gongwu Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China.,Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
44
|
Pettiwala AM, Singh PK. A molecular rotor based ratiometric sensor for basic amino acids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:120-126. [PMID: 28704806 DOI: 10.1016/j.saa.2017.06.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/08/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
The inevitable importance of basic amino acids, arginine and lysine, in human health and metabolism demands construction of efficient sensor systems for them. However, there are only limited reports on the 'ratiometric' detection of basic amino acids which is further restricted by the use of chemically complex sensor molecules, which impedes their prospect for practical applications. Herein, we report a ratiometric sensor system build on simple mechanism of disassociation of novel emissive Thioflavin-T H-aggregates from heparin surface, when subjected to interaction with basic amino acids. The strong and selective electrostatic and hydrogen bonding interaction of basic amino acids with heparin leads to large alteration in photophysical attributes of heparin bound Thioflavin-T, which forms a highly sensitive sensor platform for detection of basic amino acids in aqueous solution. These selective interactions between basic amino acids and heparin allow our sensor system to discriminate arginine and lysine from other amino acids. This unique mechanism of dissociation of Thioflavin-T aggregates from heparin surface provides ratiometric response on both fluorimetric and colorimetric outputs for detection of arginine and lysine, and thus it holds a significant advantage over other developed sensor systems which are restricted to single wavelength detection. Apart from the sensitivity and selectivity, our system also provides the advantage of simplicity, dual mode of sensing, and more importantly, it employs an inexpensive commercially available probe molecule, which is a significant advantage over other developed sensor systems that uses tedious synthesis protocol for the employed probe in the detection scheme, an impediment for practical applications. Additionally, our sensor system also shows response in complex biological media of serum samples.
Collapse
Affiliation(s)
- Aafrin M Pettiwala
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| |
Collapse
|
45
|
Mohan N, Sreejith SS, Begum PMS, Kurup MRP. Dual responsive salen-type Schiff bases for the effective detection of l-arginine via a static quenching mechanism. NEW J CHEM 2018. [DOI: 10.1039/c8nj02657b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of substituents of salen Schiff bases on the detection of l-arginine via a static quenching mechanism is discussed.
Collapse
Affiliation(s)
- Nithya Mohan
- Department of Applied Chemistry
- Cochin University of Science and Technology
- Kochi
- India
| | - S. S. Sreejith
- Department of Applied Chemistry
- Cochin University of Science and Technology
- Kochi
- India
| | - P. M. Sabura Begum
- Department of Applied Chemistry
- Cochin University of Science and Technology
- Kochi
- India
| | | |
Collapse
|
46
|
Sierra-Rosales P, Torres R, Sepúlveda C, Kogan MJ, Arturo Squella J. Electrochemical Characterization and Electrocatalytic Application of Gold Nanoparticles Synthesized with Different Stabilizing Agents. ELECTROANAL 2017. [DOI: 10.1002/elan.201700633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Paulina Sierra-Rosales
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación; Universidad Tecnológica Metropolitana; Ignacio Valdivieso 2409 P.O Box 8940577 San Joaquín, Santiago Chile
| | - Rodrigo Torres
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile.; 8380492 Santiago Chile
| | - Carlos Sepúlveda
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile.; 8380492 Santiago Chile
| | - Marcelo J. Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile.; 8380492 Santiago Chile
- Advanced Center for Chronic Diseases (ACCDis); Santiago Chile
| | - Juan Arturo Squella
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile.; 8380492 Santiago Chile
| |
Collapse
|
47
|
Lu W, Gao Y, Jiao Y, Shuang S, Li C, Dong C. Carbon nano-dots as a fluorescent and colorimetric dual-readout probe for the detection of arginine and Cu 2+ and its logic gate operation. NANOSCALE 2017; 9:11545-11552. [PMID: 28770932 DOI: 10.1039/c7nr02336g] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A new visual fluorescent probe based on carbon nano-dots (CNDs) has been facilely synthesized via one step microwave-assisted pyrolysis and utilized for sequential detection of arginine (Arg) and Cu2+ by fluorescent and colorimetric dual-readout assay. The fluorescence of CNDs can be effectively quenched by Arg, and recovered upon addition of Cu2+ due to the competitive binding of Arg and Cu2+ that leads Arg to escape from the surface of CNDs. The probe displayed high sensitivity and selectivity toward Arg and Cu2+ over other analytes with a low detection limit of 0.26 μM and 0.17 μM, respectively. Meanwhile, the CNDs can also give dual responsive signals of a visible color change (yellow-pink-light yellow). According to this phenomenon, an "AND" logic gate based on the novel CNDs has been constructed. More importantly, the probe was also extended to cellular imaging. The proposed method was simple with ease of operation, which demonstrated great potential in bio-sensing, disease diagnosis or environmental monitoring.
Collapse
Affiliation(s)
- Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | | | | | | | | | | |
Collapse
|
48
|
Chen Z, He Q, Zhao M, Lin C, Luo F, Lin Z, Chen G. A fluorometric histidine biosensor based on the use of a quencher-labeled Cu(II)-dependent DNAzyme. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2425-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
A turn-on fluorescent lysine nanoprobe based on the use of the Alizarin Red aluminum(III) complex conjugated to graphene oxide, and its application to cellular imaging of lysine. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2375-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
|