1
|
Huang F, Jiang Y, Wu Q, Zheng C, Huang S, Yang H, Xiang G, Zheng L. A one-pot loop-mediated isothermal amplification platform using fluorescent gold nanoclusters for rapid and naked-eye pathogen detection. Food Chem 2024; 460:140573. [PMID: 39053273 DOI: 10.1016/j.foodchem.2024.140573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Loop-mediated isothermal amplification (LAMP) is a rapid and sensitive nucleic acid testing method for pathogen detection, yet the absence of a straightforward readout strategy remains challenging. We've successfully designed polyethyleneimine-stabilized gold nanoclusters (PEI-AuNCs) as a cationic AuNCs indicator tailored for distinguishing LAMP results, enabling direct visual inspection under UV light. Positive LAMP reactions with PEI-AuNCs, in combination with magnesium pyrophosphate crystals, yield red-fluorescent bulk precipitates visible to the naked eye. To address contamination concerns, we introduced a one-pot reaction by incorporating AuNCs into the lid recess. This one-pot LAMP assay demonstrates exceptional detection capability, identifying Salmonella enterica at concentrations as low as 101 CFU/mL within approximately 50 min, excluding nucleic acid extraction. The platform's versatility, achieved through customizable primers, positions it as a promising molecular diagnostic tool for rapid and visual pathogen detection across scientific disciplines.
Collapse
Affiliation(s)
- Fuyuan Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yayun Jiang
- Department of Clinical Laboratory, People's Hospital of Deyang City, Deyang, China
| | - Qiaoli Wu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chaochuan Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shen Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huan Yang
- Wenzhou Lucheng District Center for Disease Control and Prevention, China.
| | - Guangxin Xiang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Laibao Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
2
|
Robi DT, Mossie T, Temteme S. A Comprehensive Review of the Common Bacterial Infections in Dairy Calves and Advanced Strategies for Health Management. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2024; 15:1-14. [PMID: 38288284 PMCID: PMC10822132 DOI: 10.2147/vmrr.s452925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
Dairy farming faces a significant challenge of bacterial infections in dairy calves, which can have detrimental effects on their health and productivity. This review offers a comprehensive overview of the most prevalent bacterial infections in dairy calves, including Escherichia coli, Salmonella typhimurium, Salmonella dublin, Salmonella enterica, Clostridium perfringens, Pasteurella multocida, Listeria monocytogenes, Mycoplasma bovis, and Haemophilus somnus. These pathogens can cause various clinical signs and symptoms, leading to diarrhea, respiratory distress, septicemia, and even mortality. Factors such as management practices, environmental conditions, and herd health influence the incidence and severity of the infections. Efficient management and prevention strategies include good colostrum and nutrient feeding, early detection, appropriate treatment, hygiene practices, and supportive care. Regular health monitoring and diagnostic tests facilitate early detection and intervention. The use of antibiotics should be judicious to prevent antimicrobial resistance and supportive care such as fluid therapy and nutritional support promotes recovery. Diagnostic methods, including immunological tests, culture, polymerase chain reaction (PCR), and serology, aid in the identification of specific pathogens. This review also explores recent advancements in the diagnosis, treatment, and prevention of bacterial infections in dairy calves, providing valuable insights for dairy farmers, veterinarians, and researchers. By synthesizing pertinent scientific literature, this review contributes to the development of effective strategies aimed at mitigating the impact of bacterial infections on the health, welfare, and productivity of young calves. Moreover, more research is required to enhance the understanding of the epidemiology and characterization of bacterial infections in dairy calves.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, Tepi, Ethiopia
| | - Tesfa Mossie
- Ethiopian Institute of Agriculture Research, Jimma Agriculture Research Center, Jimma, Ethiopia
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, Tepi, Ethiopia
| |
Collapse
|
3
|
Fathi S, Jalilzadeh N, Amini M, Shanebandi D, Baradaran B, Oroojalian F, Mokhtarzadeh A, Kesharwani P, Sahebkar A. Surface plasmon resonance-based oligonucleotide biosensor for Salmonella Typhi detection. Anal Biochem 2023; 677:115250. [PMID: 37482208 DOI: 10.1016/j.ab.2023.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Due to high mortality rates, typhoid fever still is one of the major health problems in the world, particularly in developing countries. The lack of highly specific and sensitive diagnostic tests and the great resemblance of typhoid fever symptoms to other diseases made the false-negative diagnosis a major challenge in typhoid fever management. Hence, we decided to design a Surface Plasmon Resonance (SPR) based biosensor for specific detection of Salmonella typhi through DNA hybridization. The results showed that the 10 nM of the synthetic target sequence, as well as 1 nM of PCR product, were the lowest feasible detected concentrations by the designed biosensor. This genosensor was also found to significantly distinguish the complementary sequence with the accuracy of one base mismatch sequence. The surface of the chip can be regenerated with NaOH solution and used for consecutive diagnosis. Therefore, the function of the designed biosensor indicates its high potential for Salmonella typhi detection practice.
Collapse
Affiliation(s)
- Sepideh Fathi
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran; Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanebandi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
A novel ADA-coated UCNPs@NB sensing platform combined with nucleic acid amplification for rapid detection of Escherichia coli. Anal Chim Acta 2023; 1239:340751. [PMID: 36628739 DOI: 10.1016/j.aca.2022.340751] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
In this study, we reported a novel sensing platform based on fluorescence quenching composed of alendronic acid (ADA) coated upconversion nanoparticles (UCNPs) and Nile Blue (NB) combined with polymerase chain reaction (PCR) for rapid, sensitive, and specific detection of Escherichia coli (E. coli). As a fluorescence acceptor, NB has a broad absorption band and can quench upconversion fluorescence intensity at 544 nm and 658 nm based on IFE. PCR is a double-stranded DNA (dsDNA) amplification technique with high specificity. The NB-dsDNA complex can be formed by intercalation of NB between base pairs and groove of dsDNA, leading to upconversion fluorescence recovery. The ADA-coated UCNPs@NB sensing platform achieved to detect E. coli in 1.5 h, with a lower limit of detection (33 CFU mL-1). In addition, the sensitivity of the ADA@UCNPs-NB fluorescence sensor under different PCR cycle numbers was discussed. The results showed that the proposed sensor could effectively shorten the assay time (1.0 h) while maintaining excellent sensitivity. This study demonstrated a rapid and sensitive analytical method for detecting E. coli in chicken, providing a reference for constructing PCR fluorescence sensors.
Collapse
|
5
|
Improving the sensitivity of lateral flow immunoassay for Salmonella typhimurium detection via flow-rate regulation. Food Chem 2022; 397:133756. [PMID: 35901614 DOI: 10.1016/j.foodchem.2022.133756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/15/2022]
Abstract
Application of the traditional immunochromatographic assay (ICGA) has been limited by its poor sensitivity. The objective of this study was to increase the sensitivity of the traditional ICGA. A dual-mode ICGA (D-M ICGA) was developed by combining a nanozyme-assisted signal-amplification strategy with a magnetic-nanoparticle-based flow-speed-control strategy. Salmonella typhimurium can be detected simultaneously based on color and magnetic signals in the detection area of the D-M ICGA strip. The calculated limits of detection of 50 cfu·mL-1 and 75 cfu·mL-1 in the color and magnetic modes, respectively, were approximately 1000 times lower than those of the traditional ICGA. The selectivity and practical applicability of the D-M ICGA were also confirmed in this study. The results prove that the D-M ICGA is an assay that could be used for Salmonella typhimurium detection and can be easily adapted to detect other pathogenic bacteria.
Collapse
|
6
|
Bakhshandeh B, Sorboni SG, Haghighi DM, Ahmadi F, Dehghani Z, Badiei A. New analytical methods using carbon-based nanomaterials for detection of Salmonella species as a major food poisoning organism in water and soil resources. CHEMOSPHERE 2022; 287:132243. [PMID: 34537453 DOI: 10.1016/j.chemosphere.2021.132243] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Salmonella is one of the most prevalent causing agents of food- and water-borne illnesses, posing an ongoing public health threat. These food-poisoning bacteria contaminate the resources at different stages such as production, aggregation, processing, distribution, as well as marketing. According to the high incidence of salmonellosis, effective strategies for early-stage detection are required at the highest priority. Since traditional culture-dependent methods and polymerase chain reaction are labor-intensive and time-taking, identification of early and accurate detection of Salmonella in food and water samples can prevent significant health economic burden and lessen the costs. The immense potentiality of biosensors in diagnosis, such as simplicity in operation, the ability of multiplex analysis, high sensitivity, and specificity, have driven research in the evolution of nanotechnology, innovating newer biosensors. Carbon nanomaterials enhance the detection sensitivity of biosensors while obtaining low levels of detection limits due to their possibility to immobilize huge amounts of bioreceptor units at insignificant volume. Moreover, conjugation and functionalization of carbon nanomaterials with metallic nanoparticles or organic molecules enables surface functional groups. According to these remarkable properties, carbon nanomaterials are widely exploited in the development of novel biosensors. To be specific, carbon nanomaterials such as carbon nanotubes, graphene and fullerenes function as transducers in the analyte recognition process or surface immobilizers for biomolecules. Herein the potential application of carbon nanomaterials in the development of novel Salmonella biosensors platforms is reviewed comprehensively. In addition, the current problems and critical analyses of the future perspectives of Salmonella biosensors are discussed.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran; Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Dorrin Mohtadi Haghighi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Dehghani
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Asl ER, Amini M, Najafi S, Mansoori B, Mokhtarzadeh A, Mohammadi A, Lotfinejad P, Bagheri M, Shirjang S, Lotfi Z, Rasmi Y, Baradaran B. Interplay between MAPK/ERK signaling pathway and MicroRNAs: A crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci 2021; 278:119499. [PMID: 33865878 DOI: 10.1016/j.lfs.2021.119499] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signal transduction, as a highly conserved signaling pathway, is reported to be involved in various biological events, including metabolic reprogramming, cell proliferation, survival, and differentiation. Mutations in key molecules involved in MAPK/ERK signaling and dysregulation of this pathway are very common events in various human malignancies, which make the MAPK signaling a crucial signaling pathway participating in the regulation of glucose uptake by malignant cells and tumorigenesis. MicroRNAs (miRNAs), as small non-coding RNAs, are critical regulators of gene expression that play key roles in cancer initiation and progression. On the other hand, these small RNAs mutually regulate the MAPK signaling which is often overexpressed in the case of cancer progression; suggesting that crosstalk between miRNAs and this signaling pathway plays a pivotal role in the development of human cancers. Some miRNAs such as miR-20b, miR-34c-3p, miR-152, miR-181a, and miR-302b through inhibiting MAPK signaling, and miR-193a-3p, miR-330-3p, and miR-592 by activating this signaling pathway, play imperative roles in tumorigenesis. Therefore, in this review, we aimed to focus on the interplay between miRNAs and MAPK signaling in the various steps of tumorigenesis, including metabolic regulation, cell proliferation, apoptosis, metastasis, angiogenesis, and drug resistance.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences
| | - Mehdi Bagheri
- Department of Biology, Khorasan Razavi Science and Research Branch, Islamic Azad University, Neyshabur, Iran
| | - Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ziba Lotfi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran..
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran..
| |
Collapse
|
8
|
Zhou C, Pan Y, Ge S, Coulon F, Yang Z. Rapid methods for antimicrobial resistance diagnosis in contaminated soils for effective remediation strategy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosens Bioelectron 2021; 178:113011. [PMID: 33517232 DOI: 10.1016/j.bios.2021.113011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
We review the challenges and opportunities for biosensor research in North America aimed to accelerate translational research. We call for platform approaches based on: i) tools that can support interoperability between food, environment and agriculture, ii) open-source tools for analytics, iii) algorithms used for data and information arbitrage, and iv) use-inspired sensor design. We summarize select mobile devices and phone-based biosensors that couple analytical systems with biosensors for improving decision support. Over 100 biosensors developed by labs in North America were analyzed, including lab-based and portable devices. The results of this literature review show that nearly one quarter of the manuscripts focused on fundamental platform development or material characterization. Among the biosensors analyzed for food (post-harvest) or environmental applications, most devices were based on optical transduction (whether a lab assay or portable device). Most biosensors for agricultural applications were based on electrochemical transduction and few utilized a mobile platform. Presently, the FEAST of biosensors has produced a wealth of opportunity but faces a famine of actionable information without a platform for analytics.
Collapse
|
10
|
Vishwakarma A, Lal R, Ramya M. Aptamer-based approaches for the detection of waterborne pathogens. Int Microbiol 2021; 24:125-140. [PMID: 33404933 DOI: 10.1007/s10123-020-00154-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Waterborne ailments pose a serious threat to public health and are a huge economic burden. Lack of hygiene in drinking and recreational water is the chief source of microbial pathogens in developing countries. Poor water quality and sanitation account for more than 3.4 million deaths a year worldwide. This has urged authorities and researchers to explore different avenues of pathogen detection. There is a growing demand for rapid and reliable sensor technologies, in particular those that can detect in situ and perform in harsh conditions. Some of the major waterborne pathogens include Vibrio cholerae, Leptospira interrogans, Campylobacter jejuni, Shigella spp., enterotoxigenic Escherichia coli, Clostridium difficile, Cryptosporidium parvum, Entamoeba histolytica, and Hepatitis A virus. While conventional methods of pathogen detection like serodiagnosis and microbiological methods have been superseded by nucleic acid amplification methods, there is still potential for improvement. This review provides an insight into aptamers and their utility in the form of aptasensors. It discusses how aptamer-based approaches have emerged as a novel strategy and its advantages over more resource-intensive and complex biochemical approaches.
Collapse
Affiliation(s)
- Archana Vishwakarma
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Roshni Lal
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India.
| |
Collapse
|
11
|
Shen Y, Xu L, Li Y. Biosensors for rapid detection of Salmonella in food: A review. Compr Rev Food Sci Food Saf 2020; 20:149-197. [PMID: 33443806 DOI: 10.1111/1541-4337.12662] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing a serious threat to public health. It can enter the food supply chain at various stages of production, processing, distribution, and marketing. High prevalence of Salmonella necessitates efficient and effective approaches for its identification, detection, and monitoring at an early stage. Because conventional methods based on plate counting and real-time polymerase chain reaction are time-consuming and laborious, novel rapid detection methods are urgently needed for in-field and on-line applications. Biosensors provide many advantages over conventional laboratory assays in terms of sensitivity, specificity, and accuracy, and show superiority in rapid response and potential portability. They are now recognized as promising alternative tools and one of the most on-site applicable and end user-accessible methods for rapid detection. In recent years, we have witnessed a flourishing of studies in the development of robust and elaborate biosensors for detection of Salmonella in food. This review aims to provide a comprehensive overview on Salmonella biosensors by highlighting different signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.) and critically analyzing its recent trends, particularly in combination with nanomaterials, microfluidics, portable instruments, and smartphones. Furthermore, current challenges are emphasized and future perspectives are discussed.
Collapse
Affiliation(s)
- Yafang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Lizhou Xu
- Department of Materials, Imperial College London, London, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
12
|
Self-assembled biotin-phenylalanine nanoparticles for the signal amplification of surface plasmon resonance biosensors. Mikrochim Acta 2020; 187:473. [PMID: 32728802 DOI: 10.1007/s00604-020-04461-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
A strategy for amplifying the signal of surface plasmon resonance (SPR) biosensors is reported. Biotinylated phenylalanine (Biotin-Phe) monomers were rapidly self-assembled into nanoparticles in a mild environment. The self-assembled nanoparticles were then used as the carriers of streptavidin-antibody complexes by the streptavidin-biotin interaction. The signal was amplified because of the high molecular weight of the nanoparticle-streptavidin-antibody conjugate. With prostate-specific antigen as a model analyte, the target concentration as low as 1 pg mL-1 was readily measured. The results of the nanoparticle-enhanced SPR biosensor for analysis of serum samples are well consistent with those achieved by the enzyme-linked immunosorbent assays. This work is valuable for designing of various optical and electronic biosensors through the streptavidin-biotin interaction. Graphical abstract.
Collapse
|
13
|
Chinnappan R, AlAmer S, Eissa S, Rahamn AA, Abu Salah KM, Zourob M. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer. Mikrochim Acta 2017; 185:61. [PMID: 29594712 DOI: 10.1007/s00604-017-2601-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
Abstract
The work describes a fluorescence-based study for mapping the highest affinity truncated aptamer from the full length sequence and its integration in a graphene oxide platform for the detection of Salmonella enteriditis. To identify the best truncated sequence, molecular beacons and a displacement assay design are applied. In the fluorescence displacement assay, the truncated aptamer was hybridized with fluorescein and quencher-labeled complementary sequences to form a fluorescence/quencher pair. In the presence of S. enteritidis, the aptamer dissociates from the complementary labeled oligonucleotides and thus, the fluorescein/quencher pair becomes physically separated. This leads to an increase in fluorescence intensity. One of the truncated aptamers identified has a 2-fold lower dissociation constant (3.2 nM) compared to its full length aptamer (6.3 nM). The truncated aptamer selected in this process was used to develop a fluorometric graphene oxide (GO) based assay. If fluorescein-labeled aptamer is adsorbed on GO via π stacking interaction, fluorescence is quenched. However, in the presence of target (S. enteriditis), the labeled aptamers is released from surface to form a stable complex with the bacteria and fluorescence is restored, depending on the quantity of bacteria being present. The resulting assay has an unsurpassed detection limit of 25 cfu·mL-1 in the best case. The cross reactivity to Salmonella typhimurium, Staphylococcus aureus and Escherichia coli is negligible. The assay was applied to analyze doped milk samples for and gave good recovery. Thus, we believe that the truncated aptamer/graphene oxide platform is a potential tool for the detection of S. Enteritidis. Graphical abstract Fluorescently labelled aptamer against Salmonella enteritidis was adsorbed on the surface of graphene oxide by π-stacking interaction. This results in quenching of the fluorescence of the label. Addition of Salmonella enteritidis restores fluorescence, and this effect is used for quantification of this food-borne pathogen.
Collapse
Affiliation(s)
- Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Saleh AlAmer
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia.,Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Shimaa Eissa
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Anas Abdel Rahamn
- King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia
| | - Khalid M Abu Salah
- Department of Nanomedicine, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, PO Box 3660, Riyadh, 11481, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia. .,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia.
| |
Collapse
|
14
|
Homogeneous time-resolved FRET assay for the detection of Salmonella typhimurium using aptamer-modified NaYF4:Ce/Tb nanoparticles and a fluorescent DNA label. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2399-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Nanographite-based fluorescent biosensing of Salmonella enteritidis by applying deoxyribonuclease-assisted recycling. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2363-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
|
17
|
Zhu H, Zhao G, Wang SQ, Dou W. Photometric sandwich immunoassay for Salmonella pullorum and Salmonella gallinarum using horseradish peroxidase and magnetic silica nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2241-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Pathania P, Sharma A, Kumar B, Rishi P, Raman Suri C. Selective identification of specific aptamers for the detection of non-typhoidal salmonellosis in an apta-impedimetric sensing format. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2098-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Pei Q, Wang Y, Liu S, Qin Y, Leng X, Cui X, Huang J. Exonuclease III-aided autonomous cascade signal amplification: a facile and universal DNA biosensing platform for ultrasensitive electrochemical detection of S. typhimurium. NEW J CHEM 2017. [DOI: 10.1039/c7nj01626c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel electrochemical biosensor based on exonuclease III-aided autonomous cascade signal amplification for the ultrasensitive and highly specific detection of S. typhimurium.
Collapse
Affiliation(s)
- Qianqian Pei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yu Wang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Su Liu
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yifei Qin
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xueqi Leng
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xuejun Cui
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jiadong Huang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
20
|
Guo Y, Wang Y, Liu S, Yu J, Wang H, Liu X, Huang J. Simultaneous voltammetric determination of E. coli and S. typhimurium based on target recycling amplification using self-assembled hairpin probes on a gold electrode. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2017-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Yu T, Zhang H, Huang Z, Luo Z, Huang N, Ding S, Feng W. A Simple Electrochemical Aptamer Cytosensor for Direct Detection of Chronic Myelogenous Leukemia K562 Cells. ELECTROANAL 2016. [DOI: 10.1002/elan.201600505] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tianxiao Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Hui Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Zhenglan Huang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Zhenhong Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Ningshu Huang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Wenli Feng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| |
Collapse
|
22
|
Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1911-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Yuan R, Ding S, Yan Y, Zhang Y, Zhang Y, Cheng W. A facile and pragmatic electrochemical biosensing strategy for ultrasensitive detection of DNA in real sample based on defective T junction induced transcription amplification. Biosens Bioelectron 2016; 77:19-25. [DOI: 10.1016/j.bios.2015.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/25/2015] [Accepted: 09/04/2015] [Indexed: 11/30/2022]
|
24
|
Jia S, Li P, Koh K, Chen H. A cytosensor based on NiO nanoparticle-enhanced surface plasmon resonance for detection of the breast cancer cell line MCF-7. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1700-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Liu K, Yan X, Mao B, Wang S, Deng L. Aptamer-based detection of Salmonella enteritidis using double signal amplification by Klenow fragment and dual fluorescence. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1692-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Ocaña C, Lukic S, del Valle M. Aptamer-antibody sandwich assay for cytochrome c employing an MWCNT platform and electrochemical impedance. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1540-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|