1
|
Zeballos N, Ginés‐Alcober I, Macías‐León J, Andrés‐Sanz D, González‐Ramírez AM, Sánchez‐Costa M, Merino P, Hurtado‐Guerrero R, López‐Gallego F. Loop engineering of enzymes to control their immobilization and ultimately fabricate more efficient heterogeneous biocatalysts. Protein Sci 2025; 34:e70040. [PMID: 39840824 PMCID: PMC11751856 DOI: 10.1002/pro.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Enzyme immobilization is indispensable for enhancing enzyme performance in various industrial applications. Typically, enzymes require specific spatial arrangements for optimal functionality, underscoring the importance of correct orientation. Despite well-known N- or C-terminus tailoring techniques, alternatives for achieving orientation control are limited. Here, we propose a novel approach that tailors the enzyme surface with engineered His-rich loops. To that aim, we first solve the X-ray crystal structure of a hexameric alcohol dehydrogenase from Thermus thermophilus HB27 (TtHBDH) (PDB: 9FBD). Guided by this 3D structure, we engineer the enzyme surface with a new loop enriched with six His residues to control enzyme orientation. Molecular dynamics simulations reveal that the engineered loop's imidazole rings have greater solvent accessibility than those in native His residues, allowing for more efficient enzyme immobilization on certain metal chelate-functionalized carriers. Using carriers functionalized with iron (III)-catechol, the apparent Vmax of the immobilized loop variant doubles the immobilized His-tagged one, and vice versa when both variants are immobilized on carriers functionalized with copper (II)-imidodiacetic acid. His-tagged and loop-engineered TtHBDH show high operational stability reaching 100% bioconversion after 10 reaction cycles, yet the loop variant is faster than the His-tagged one.
Collapse
Affiliation(s)
- Nicoll Zeballos
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)San SebastiánSpain
| | - Irene Ginés‐Alcober
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology UnitUniversity of ZaragozaZaragozaSpain
- Department of Organic Chemistry, Faculty of SciencesUniversity of Zaragoza – Campus San FranciscoZaragozaSpain
| | - Javier Macías‐León
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology UnitUniversity of ZaragozaZaragozaSpain
| | - Daniel Andrés‐Sanz
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)San SebastiánSpain
| | | | - Mercedes Sánchez‐Costa
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)San SebastiánSpain
| | - Pedro Merino
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology UnitUniversity of ZaragozaZaragozaSpain
- Department of Organic Chemistry, Faculty of SciencesUniversity of Zaragoza – Campus San FranciscoZaragozaSpain
| | - Ramón Hurtado‐Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology UnitUniversity of ZaragozaZaragozaSpain
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for GlycomicsUniversity of CopenhagenCopenhagenDenmark
- Fundación ARAIDZaragozaSpain
| | - Fernando López‐Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)San SebastiánSpain
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for GlycomicsUniversity of CopenhagenCopenhagenDenmark
- IKERBASQUEBilbaoSpain
| |
Collapse
|
2
|
Zhang J, Xiao L, Li X, Chen X, Wang Y, Hong X, Sun Z, Shao Y, Chen Y. Optical fiber SPR probe platform combined with oriented antibody optimized modification for ultrasensitive and portable detection of human thyroglobulin. Microchem J 2024; 206:111591. [DOI: 10.1016/j.microc.2024.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Riedl V, Heiser L, Portius M, Schmidt JO, Pompe T. Detection of Sulfonamide Antibiotics Using an Elastic Hydrogel Microparticles-Based Optical Biosensor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50202-50211. [PMID: 39271662 PMCID: PMC11440465 DOI: 10.1021/acsami.4c08010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Sulfonamide antibiotics were the first synthetic antibiotics on the market and still have a broad field of application. Their extensive usage, wrong disposal, and limited degradation technologies in wastewater treatment plants lead to high concentrations in the environment, resulting in a negative impact on ecosystems and an acceleration of antibiotic resistance. Although lab-based analytical methods allow for sulfonamide detection, comprehensive monitoring is hampered by the nonavailability of on-site, inexpensive sensing technologies. In this work, we exploit functionalized elastic hydrogel microparticles and their ability to easily deform upon specific binding with enzyme-coated surfaces to establish the groundwork of a biosensing assay for the fast and straightforward detection of sulfonamide antibiotics. The detection assay is based on sulfamethoxazole-functionalized hydrogel microparticles as sensor probes and the biomimetic interaction of sulfonamide analytes with their natural target enzyme, dihydropteroate synthase (DHPS). DHPS from S. pneumoniae was recombinantly produced by E. coli and covalently coupled on a glass biochip using a reactive maleic anhydride copolymer coating. Monodisperse poly(ethylene glycol) hydrogel microparticles of 50 μm in diameter were synthesized within a microfluidic setup, followed by the oriented coupling of a sulfamethoxazole derivative to the microparticle surface. In proof-of-concept experiments, sulfamethoxazole, as the most used sulfonamide antibiotic in medical applications, was demonstrated to be specifically detectable above a concentration of 10 μM. With its straightforward detection principle, this assay has the potential to be used for point-of-use monitoring of sulfonamide antibiotic contaminants in the environment.
Collapse
Affiliation(s)
- Veronika Riedl
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Lara Heiser
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Matthias Portius
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Jann Ole Schmidt
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| |
Collapse
|
4
|
Darr CM, Hasan J, Mathai CJ, Gangopadhyay K, Gangopadhyay S, Bok S. Hybrid Polystyrene-Plasmonic Systems as High Binding Density Biosensing Platforms. Int J Mol Sci 2024; 25:8603. [PMID: 39201289 PMCID: PMC11354982 DOI: 10.3390/ijms25168603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Sensitive, accurate, and early detection of biomarkers is essential for prompt response to medical decisions for saving lives. Some infectious diseases are deadly even in small quantities and require early detection for patients and public health. The scarcity of these biomarkers necessitates signal amplification before diagnosis. Recently, we demonstrated single-molecule-level detection of tuberculosis biomarker, lipoarabinomannan, from patient urine using silver plasmonic gratings with thin plasma-activated alumina. While powerful, biomarker binding density was limited by the surface density of plasma-activated carbonyl groups, that degraded quickly, resulting in immediate use requirement after plasma activation. Therefore, development of stable high density binding surfaces such as high binding polystyrene is essential to improving shelf-life, reducing binding protocol complexity, and expanding to a wider range of applications. However, any layers topping the plasmonic grating must be ultra-thin (<10 nm) for the plasmonic enhancement of adjacent signals. Furthermore, fabricating thin polystyrene layers over alumina is nontrivial because of poor adhesion between polystyrene and alumina. Herein, we present the development of a stable, ultra-thin polystyrene layer on the gratings, which demonstrated 63.8 times brighter fluorescence compared to commercial polystyrene wellplates. Spike protein was examined for COVID-19 demonstrating the single-molecule counting capability of the hybrid polystyrene-plasmonic gratings.
Collapse
Affiliation(s)
- Charles M. Darr
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Juiena Hasan
- Department of Electrical and Computer Engineering, University of Denver, Denver, CO 80210, USA
| | - Cherian Joseph Mathai
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Keshab Gangopadhyay
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Shubhra Gangopadhyay
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Sangho Bok
- Department of Electrical and Computer Engineering, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
5
|
Guo K, Grünberg R, Ren Y, Chang T, Wustoni S, Strnad O, Koklu A, Díaz‐Galicia E, Agudelo JP, Druet V, Castillo TCH, Moser M, Ohayon D, Hama A, Dada A, McCulloch I, Viola I, Arold ST, Inal S. SpyDirect: A Novel Biofunctionalization Method for High Stability and Longevity of Electronic Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306716. [PMID: 38161228 PMCID: PMC11251562 DOI: 10.1002/advs.202306716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Electronic immunosensors are indispensable tools for diagnostics, particularly in scenarios demanding immediate results. Conventionally, these sensors rely on the chemical immobilization of antibodies onto electrodes. However, globular proteins tend to adsorb and unfold on these surfaces. Therefore, self-assembled monolayers (SAMs) of thiolated alkyl molecules are commonly used for indirect gold-antibody coupling. Here, a limitation associated with SAMs is revealed, wherein they curtail the longevity of protein sensors, particularly when integrated into the state-of-the-art transducer of organic bioelectronics-the organic electrochemical transistor. The SpyDirect method is introduced, generating an ultrahigh-density array of oriented nanobody receptors stably linked to the gold electrode without any SAMs. It is accomplished by directly coupling cysteine-terminated and orientation-optimized spyTag peptides, onto which nanobody-spyCatcher fusion proteins are autocatalytically attached, yielding a dense and uniform biorecognition layer. The structure-guided design optimizes the conformation and packing of flexibly tethered nanobodies. This biolayer enhances shelf-life and reduces background noise in various complex media. SpyDirect functionalization is faster and easier than SAM-based methods and does not necessitate organic solvents, rendering the sensors eco-friendly, accessible, and amenable to scalability. SpyDirect represents a broadly applicable biofunctionalization method for enhancing the cost-effectiveness, sustainability, and longevity of electronic biosensors, all without compromising sensitivity.
Collapse
Affiliation(s)
- Keying Guo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Raik Grünberg
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Yuxiang Ren
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Tianrui Chang
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Shofarul Wustoni
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Ondrej Strnad
- Computer, Electrical and Mathematical Science and EngineeringKAUSTThuwal23955‐6900Saudi Arabia
| | - Anil Koklu
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Escarlet Díaz‐Galicia
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Jessica Parrado Agudelo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Victor Druet
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | | | - David Ohayon
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Adel Hama
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Ashraf Dada
- King Faisal Specialist Hospital & Research Centre (KFSH‐RC)Jeddah21499Saudi Arabia
| | - Iain McCulloch
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| | - Ivan Viola
- Computer, Electrical and Mathematical Science and EngineeringKAUSTThuwal23955‐6900Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de MontpellierMontpellierF‐34090France
| | - Sahika Inal
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| |
Collapse
|
6
|
Purcarea C, Ruginescu R, Banciu RM, Vasilescu A. Extremozyme-Based Biosensors for Environmental Pollution Monitoring: Recent Developments. BIOSENSORS 2024; 14:143. [PMID: 38534250 PMCID: PMC10968539 DOI: 10.3390/bios14030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Extremozymes combine high specificity and sensitivity with the ability to withstand extreme operational conditions. This work presents an overview of extremozymes that show potential for environmental monitoring devices and outlines the latest advances in biosensors utilizing these unique molecules. The characteristics of various extremozymes described so far are presented, underlining their stability and operational conditions that make them attractive for biosensing. The biosensor design is discussed based on the detection of photosynthesis-inhibiting herbicides as a case study. Several biosensors for the detection of pesticides, heavy metals, and phenols are presented in more detail to highlight interesting substrate specificity, applications or immobilization methods. Compared to mesophilic enzymes, the integration of extremozymes in biosensors faces additional challenges related to lower availability and high production costs. The use of extremozymes in biosensing does not parallel their success in industrial applications. In recent years, the "collection" of recognition elements was enriched by extremozymes with interesting selectivity and by thermostable chimeras. The perspectives for biosensor development are exciting, considering also the progress in genetic editing for the oriented immobilization of enzymes, efficient folding, and better electron transport. Stability, production costs and immobilization at sensing interfaces must be improved to encourage wider applications of extremozymes in biosensors.
Collapse
Affiliation(s)
- Cristina Purcarea
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Roberta Maria Banciu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| |
Collapse
|
7
|
Rao Y, Zhuang W, Liu J, Tang T, Wang Z, Ying H. DNA flexible chain modified MOFs as a versatile platform for chemoenzymatic cascade reactions in glucose catalysis. Enzyme Microb Technol 2024; 173:110352. [PMID: 37977052 DOI: 10.1016/j.enzmictec.2023.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Glucose oxidase (GOD) is widely used in the pharmaceutical industry, fermentation products and glucose biosensors for its essential role in catalyzing the conversion of glucose to gluconic acid and hydrogen peroxide (H2O2). As H2O2 is the by-product and will have a toxic effect on glucose oxidase, so introducing another enzyme that could consume H2O2 to form an enzymatic cascade reaction is a practical solution. However, this decision will lead to extra expenses and complex condition optimization such as the specific mass ratio, temperature and pH to improve the activity, stability and recyclability. Herein, we describe a mild and versatile strategy by anchoring GOD on carboxyl-activated MOF (Cu-TCPP(Fe)) through DNA-directed immobilization (DDI) technology. Robust MOF nanosheets were utilized as not only the carrier for the immobilization of GOD, but also a peroxidase-like catalyst for the decomposition of H2O2 to reduce its harmful impacts. In this work, the immobilized GOD retained 55.78% of its initial activity after being used for 7 times. More than 60% of the immobilized enzyme's catalytic activity was still maintained after 96 h of being stored at 50 ℃. This study provides a new idea for preparing immobilized enzymes with enhanced stability, fast diffusion and high activity, which can be used in fields such as biocatalysis and biotechnology.
Collapse
Affiliation(s)
- Yuan Rao
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Jinle Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Tang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| |
Collapse
|
8
|
Zhang J, Yuan S, Beng S, Luo W, Wang X, Wang L, Peng C. Recent Advances in Molecular Imprinting for Proteins on Magnetic Microspheres. Curr Protein Pept Sci 2024; 25:286-306. [PMID: 38178676 DOI: 10.2174/0113892037277894231208065403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
The separation of proteins in biological samples plays an essential role in the development of disease detection, drug discovery, and biological analysis. Protein imprinted polymers (PIPs) serve as a tool to capture target proteins specifically and selectively from complex media for separation purposes. Whereas conventional molecularly imprinted polymer is time-consuming in terms of incubation studies and solvent removal, magnetic particles are introduced using their magnetic properties for sedimentation and separation, resulting in saving extraction and centrifugation steps. Magnetic protein imprinted polymers (MPIPs), which combine molecularly imprinting materials with magnetic properties, have emerged as a new area of research hotspot. This review provides an overview of MPIPs for proteins, including synthesis, preparation strategies, and applications. Moreover, it also looks forward to the future directions for research in this emerging field.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujie Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujuan Beng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wenhui Luo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China
- Institute of TCM Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
9
|
Santander EA, Bravo G, Chang-Halabi Y, Olguín-Orellana GJ, Naulin PA, Barrera MJ, Montenegro FA, Barrera NP. The Adsorption of P2X2 Receptors Interacting with IgG Antibodies Revealed by Combined AFM Imaging and Mechanical Simulation. Int J Mol Sci 2023; 25:336. [PMID: 38203505 PMCID: PMC10778698 DOI: 10.3390/ijms25010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The adsorption of proteins onto surfaces significantly impacts biomaterials, medical devices, and biological processes. This study aims to provide insights into the irreversible adsorption process of multiprotein complexes, particularly focusing on the interaction between anti-His6 IgG antibodies and the His6-tagged P2X2 receptor. Traditional approaches to understanding protein adsorption have centered around kinetic and thermodynamic models, often examining individual proteins and surface coverage, typically through Molecular Dynamics (MD) simulations. In this research, we introduce a computational approach employing Autodesk Maya 3D software for the investigation of multiprotein complexes' adsorption behavior. Utilizing Atomic Force Microscopy (AFM) imaging and Maya 3D-based mechanical simulations, our study yields real-time structural and kinetic observations. Our combined experimental and computational findings reveal that the P2X2 receptor-IgG antibody complex likely undergoes absorption in an 'extended' configuration. Whereas the P2X2 receptor is less adsorbed once is complexed to the IgG antibody compared to its individual state, the opposite is observed for the antibody. This insight enhances our understanding of the role of protein-protein interactions in the process of protein adsorption.
Collapse
Affiliation(s)
- Eduardo A. Santander
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Graciela Bravo
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Yuan Chang-Halabi
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Gabriel J. Olguín-Orellana
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Pamela A. Naulin
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Mario J. Barrera
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Felipe A. Montenegro
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| | - Nelson P. Barrera
- Laboratory of Nanophysiology and Structural Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile; (E.A.S.); (G.B.); (G.J.O.-O.)
| |
Collapse
|
10
|
Xu C, Tong S, Sun L, Gu X. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review. Carbohydr Polym 2023; 321:121319. [PMID: 37739542 DOI: 10.1016/j.carbpol.2023.121319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/24/2023]
Abstract
Cellulase-mediated lignocellulosic biorefinery plays a crucial role in the production of high-value biofuels and chemicals, with enzymatic hydrolysis being an essential component. The advent of cellulase immobilization has revolutionized this process, significantly enhancing the efficiency, stability, and reusability of cellulase enzymes. This review offers a thorough analysis of the fundamental principles underlying immobilization, encompassing various immobilization approaches such as physical adsorption, covalent binding, entrapment, and cross-linking. Furthermore, it explores a diverse range of carrier materials, including inorganic, organic, and hybrid/composite materials. The review also focuses on emerging approaches like multi-enzyme co-immobilization, oriented immobilization, immobilized enzyme microreactors, and enzyme engineering for immobilization. Additionally, it delves into novel carrier technologies like 3D printing carriers, stimuli-responsive carriers, artificial cellulosomes, and biomimetic carriers. Moreover, the review addresses recent obstacles in cellulase immobilization, including molecular-level immobilization mechanism, diffusion limitations, loss of cellulase activity, cellulase leaching, and considerations of cost-effectiveness and scalability. The knowledge derived from this review is anticipated to catalyze the evolution of more efficient and sustainable biocatalytic systems for lignocellulosic biomass conversion, representing the current state-of-the-art in cellulase immobilization techniques.
Collapse
Affiliation(s)
- Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shanshan Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Liqun Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
11
|
Sotnikov DV, Byzova NA, Zherdev AV, Dzantiev BB. Ability of Antibodies Immobilized on Gold Nanoparticles to Bind Small Antigen Fluorescein. Int J Mol Sci 2023; 24:16967. [PMID: 38069289 PMCID: PMC10707089 DOI: 10.3390/ijms242316967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The analytical applications of antibodies are often associated with their immobilization on different carriers, which is accompanied by a loss of antigen-binding activity for a sufficient proportion of the bound antibodies. In contrast to data on plain carriers, minimal data are available on the properties of antibodies on the surfaces of nanoparticles. Protein antigens have been predominantly investigated, for which space restrictions do not allow them to occupy all active sites of immobilized antibodies. This study considered a low-molecular-weight compound, fluorescein, as an antigen. Spherical gold nanoparticles with five different sizes, two differently charged forms of fluorescein, and three different levels of surface coverage by immobilized antibodies were tested. For gold nanoparticles with diameters from 14 to 35.5 nm with monolayers of immobilized antibodies, the percentage of molecules capable of binding carboxyfluorescein varied from 6% to 17%. The binding of aminofluorescein was more efficient; for gold nanoparticles with an average diameter of 21 nm, the percentage of active binding sites for the immobilized antibodies reached 27% compared with 13% for the carboxyfluorescein case. A fourfold reduction in the coverage of the nanoparticles' surface compared with that of the monolayer did not lead to reliable changes in the percentage of active binding sites. The obtained data demonstrate that an antigen's binding to immobilized antibodies is limited even for small antigens and depends on the size of the nanoparticles and the electrostatic repulsion near their surface.
Collapse
Affiliation(s)
- Dmitriy V. Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (N.A.B.); (A.V.Z.); (B.B.D.)
| | | | | | | |
Collapse
|
12
|
Hadley P, Chen Y, Cline L, Han Z, Tang Q, Huang X, Desai T. Precise surface functionalization of PLGA particles for human T cell modulation. Nat Protoc 2023; 18:3289-3321. [PMID: 37853157 PMCID: PMC10775953 DOI: 10.1038/s41596-023-00887-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/05/2023] [Indexed: 10/20/2023]
Abstract
The biofunctionalization of synthetic materials has extensive utility for biomedical applications, but approaches to bioconjugation typically show insufficient efficiency and controllability. We recently developed an approach by building synthetic DNA scaffolds on biomaterial surfaces that enables the precise control of cargo density and ratio, thus improving the assembly and organization of functional cargos. We used this approach to show that the modulation and phenotypic adaptation of immune cells can be regulated using our precisely functionalized biomaterials. Here, we describe the three key procedures, including the fabrication of polymeric particles engrafted with short DNA scaffolds, the attachment of functional cargos with complementary DNA strands, and the surface assembly control and quantification. We also explain the critical checkpoints needed to ensure the overall quality and expected characteristics of the biological product. We provide additional experimental design considerations for modifying the approach by varying the material composition, size or cargo types. As an example, we cover the use of the protocol for human primary T cell activation and for the identification of parameters that affect ex vivo T cell manufacturing. The protocol requires users with diverse expertise ranging from synthetic materials to bioconjugation chemistry to immunology. The fabrication procedures and validation assays to design high-fidelity DNA-scaffolded biomaterials typically require 8 d.
Collapse
Affiliation(s)
- Pierce Hadley
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Yuanzhou Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, CA, USA
| | - Lariana Cline
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Zhiyuan Han
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Qizhi Tang
- Diabetes Center, University of California, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Xiao Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, CA, USA.
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Tejal Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, CA, USA.
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, CA, USA.
- School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
13
|
Song X, Fredj Z, Zheng Y, Zhang H, Rong G, Bian S, Sawan M. Biosensors for waterborne virus detection: Challenges and strategies. J Pharm Anal 2023; 13:1252-1268. [PMID: 38174120 PMCID: PMC10759259 DOI: 10.1016/j.jpha.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 01/05/2024] Open
Abstract
Waterborne viruses that can be harmful to human health pose significant challenges globally, affecting health care systems and the economy. Identifying these waterborne pathogens is essential for preventing diseases and protecting public health. However, handling complex samples such as human and wastewater can be challenging due to their dynamic and complex composition and the ultralow concentration of target analytes. This review presents a comprehensive overview of the latest breakthroughs in waterborne virus biosensors. It begins by highlighting several promising strategies that enhance the sensing performance of optical and electrochemical biosensors in human samples. These strategies include optimizing bioreceptor selection, transduction elements, signal amplification, and integrated sensing systems. Furthermore, the insights gained from biosensing waterborne viruses in human samples are applied to improve biosensing in wastewater, with a particular focus on sampling and sample pretreatment due to the dispersion characteristics of waterborne viruses in wastewater. This review suggests that implementing a comprehensive system that integrates the entire waterborne virus detection process with high-accuracy analysis could enhance virus monitoring. These findings provide valuable insights for improving the effectiveness of waterborne virus detection, which could have significant implications for public health and environmental management.
Collapse
Affiliation(s)
- Xixi Song
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Zina Fredj
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yuqiao Zheng
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Hongyong Zhang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Guoguang Rong
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Sumin Bian
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| |
Collapse
|
14
|
Kominami H, Hirata Y, Yamada H, Kobayashi K. Protein nanoarrays using the annexin A5 two-dimensional crystal on supported lipid bilayers. NANOSCALE ADVANCES 2023; 5:3862-3870. [PMID: 37496624 PMCID: PMC10368004 DOI: 10.1039/d3na00335c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/28/2023]
Abstract
Protein nanoarrays are regularly ordered patterns of proteins fixed on a solid surface with a periodicity on the order of nanometers. They have significant potential applications as highly sensitive bioassays and biosensors. While several researchers have demonstrated the fabrication of protein nanoarrays with lithographic techniques and programmed DNA nanostructures, it has been difficult to fabricate a protein nanoarray containing a massive number of proteins on the surface. We now report the fabrication of nanoarrays of streptavidin molecules using a two-dimensional (2D) crystal of annexin A5 as a template on supported lipid bilayers that are widely used as cell membranes. The 2D crystal of annexin A5 has a six-fold symmetry with a period of about 18 nm. There is a hollow of a diameter of about 10 nm in the unit cell, surrounded by six trimers of annexin A5. We found that a hollow accommodates up to three streptavidin molecules with their orientation controlled, and confirmed that the molecules in the hollow maintain their specific binding capability to biotinylated molecules, which demonstrates that the fabricated nanoarray serves as an effective biosensing platform. This methodology can be directly applied to the fabrication of nanoarrays containing a massive number of any other protein molecules.
Collapse
Affiliation(s)
- Hiroaki Kominami
- Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura Nishikyo Kyoto 615-8510 Japan
| | - Yoshiki Hirata
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology 1-1-1 Higashi Tsukuba 305-8566 Japan
| | - Hirofumi Yamada
- Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura Nishikyo Kyoto 615-8510 Japan
| | - Kei Kobayashi
- Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura Nishikyo Kyoto 615-8510 Japan
| |
Collapse
|
15
|
Yuan Y, Shen J, Salmon S. Developing Enzyme Immobilization with Fibrous Membranes: Longevity and Characterization Considerations. MEMBRANES 2023; 13:membranes13050532. [PMID: 37233593 DOI: 10.3390/membranes13050532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Fibrous membranes offer broad opportunities to deploy immobilized enzymes in new reactor and application designs, including multiphase continuous flow-through reactions. Enzyme immobilization is a technology strategy that simplifies the separation of otherwise soluble catalytic proteins from liquid reaction media and imparts stabilization and performance enhancement. Flexible immobilization matrices made from fibers have versatile physical attributes, such as high surface area, light weight, and controllable porosity, which give them membrane-like characteristics, while simultaneously providing good mechanical properties for creating functional filters, sensors, scaffolds, and other interface-active biocatalytic materials. This review examines immobilization strategies for enzymes on fibrous membrane-like polymeric supports involving all three fundamental mechanisms of post-immobilization, incorporation, and coating. Post-immobilization offers an infinite selection of matrix materials, but may encounter loading and durability issues, while incorporation offers longevity but has more limited material options and may present mass transfer obstacles. Coating techniques on fibrous materials at different geometric scales are a growing trend in making membranes that integrate biocatalytic functionality with versatile physical supports. Biocatalytic performance parameters and characterization techniques for immobilized enzymes are described, including several emerging techniques of special relevance for fibrous immobilized enzymes. Diverse application examples from the literature, focusing on fibrous matrices, are summarized, and biocatalyst longevity is emphasized as a critical performance parameter that needs increased attention to advance concepts from lab scale to broader utilization. This consolidation of fabrication, performance measurement, and characterization techniques, with guiding examples highlighted, is intended to inspire future innovations in enzyme immobilization with fibrous membranes and expand their uses in novel reactors and processes.
Collapse
Affiliation(s)
- Yue Yuan
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jialong Shen
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sonja Salmon
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
16
|
Yi K, Xie J, Qu Z, Lin Y, Huang Z, Peng T, Zhao Y, Zhai R, Gong X, Jiang Y, Dai X, Fang X. Quantification of 25OHD in serum by ID-LC-MS/MS based on oriented immobilization of antibody on magnetic materials. Mikrochim Acta 2023; 190:216. [PMID: 37173548 DOI: 10.1007/s00604-023-05749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/14/2023] [Indexed: 05/15/2023]
Abstract
Magnetic nanomaterials are widely used, but co-adsorption of impurities will lead to saturation. In this study, the aim was to prepare a magnetic nano-immunosorbent material based on orienting immobilization that can purify and separate 25-hydroxyvitamin D (25OHD) from serum and provides a new concept of sample pretreatment technology. Streptococcus protein G (SPG) was modified on the surface of the chitosan magnetic material, and the antibody was oriented immobilized using the ability of SPG to specifically bind to the Fc region of the monoclonal antibody. The antigen-binding domain was fully exposed and made up for the deficiency of the antibody random immobilization. Compared with the antibody in the random binding format, this oriented immobilization strategy can increase the effective activity of the antibody, and the amount of antibody consumed is saved to a quarter of the former. The new method is simple, rapid, and sensitive, without consuming a lot of organic reagents, and can enrich 25OHD after simple protein precipitation. Combining with liquid chromatography-tandem mass spectrometry (LC-MS/MS), the analysis can be completed in less than 30 min. For 25OHD2 and 25OHD3, the LOD was 0.021 and 0.017 ng mL-1, respectively, and the LOQ was 0.070 and 0.058 ng mL-1, respectively. The results indicated that the magnetic nanomaterials based on oriented immobilization can be applied as an effective, sensitive, and attractive adsorbent to the enrichment of serum 25OHD.
Collapse
Affiliation(s)
- Keke Yi
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, |Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, 518107, China
| | - Jie Xie
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, |Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Ziyu Qu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, |Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Yanling Lin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zejian Huang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, |Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Tao Peng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, |Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, |Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, |Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, |Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, |Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China.
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, |Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China.
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, |Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
17
|
Zeng K, Yang J, Su H, Yang S, Gu X, Zhang Z, Zhao H. Enhanced Competitive Immunomagnetic Beads Assay Assisted with PAMAM-Gold Nanoparticles Multi-Enzyme Probes for Detection of Deoxynivalenol. BIOSENSORS 2023; 13:bios13050536. [PMID: 37232897 DOI: 10.3390/bios13050536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Contamination of deoxynivalenol (DON) in grains has attracted widespread concern. It is urgently needed to develop a highly sensitive and robust assay for DON high-throughput screening. Antibody against DON was assembled on the surface of immunomagnetic beads orientationally by the aid of Protein G. AuNPs were obtained under the scaffolding of poly(amidoamine) dendrimer (PAMAM). DON-horseradish peroxidase (HRP) was combined on the periphery of AuNPs/PAMAM by a covalent link to develop DON-HRP/AuNPs/PAMAM. Magnetic immunoassay based on DON-HRP/AuNPs/PAMAM was optimized and that based on DON-HRP/AuNPs and DON-HRP was adopted as comparison. The limits of detection (LODs) were 0.447 ng/mL, 0.127 ng/mL and 0.035 ng/mL for magnetic immunoassays based on DON-HRP, DON-HRP/Au and DON-HRP/Au/PAMAM, respectively. Magnetic immunoassay based on DON-HRP/AuNPs/PAMAM displayed higher specificity towards DON and was utilized to analyze grain samples. The recovery for the spiked DON in grain samples was 90.8-116.2% and the method presented a good correlation with UPLC/MS. It was found that the concentration of DON was in the range of ND-3.76 ng/mL. This method allows the integration of dendrimer-inorganic NPs with signal amplification properties for applications in food safety analysis.
Collapse
Affiliation(s)
- Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hao Su
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sheng Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinkai Gu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Zhao
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Ave, Quzhou 324000, China
| |
Collapse
|
18
|
Xu R, Ouyang L, Chen H, Zhang G, Zhe J. Recent Advances in Biomolecular Detection Based on Aptamers and Nanoparticles. BIOSENSORS 2023; 13:bios13040474. [PMID: 37185549 PMCID: PMC10136534 DOI: 10.3390/bios13040474] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
The fast, accurate detection of biomolecules, ranging from nucleic acids and small molecules to proteins and cellular secretions, plays an essential role in various biomedical applications. These include disease diagnostics and prognostics, environmental monitoring, public health, and food safety. Aptamer recognition (DNA or RNA) has gained extensive attention for biomolecular detection due to its high selectivity, affinity, reproducibility, and robustness. Concurrently, biosensing with nanoparticles has been widely used for its high carrier capacity, stability and feasibility of incorporating optical and catalytic activity, and enhanced diffusivity. Biosensors based on aptamers and nanoparticles utilize the combination of their advantages and have become a promising technology for detecting of a wide variety of biomolecules with high sensitivity, reliability, specificity, and detection speed. Via various sensing mechanisms, target biomolecules have been quantified in terms of optical (e.g., colorimetric and fluorometric), magnetic, and electrical signals. In this review, we summarize the recent advances in and compare different aptamer-nanoparticle-based biosensors by nanoparticle types and detection mechanisms. We also share our views on the highlights and challenges of the different nanoparticle-aptamer-based biosensors.
Collapse
Affiliation(s)
- Ruiting Xu
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Leixin Ouyang
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Heyi Chen
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
19
|
Zhou L, Kato F, Iijima M, Nonaka T, Kuroda S, Ogi H. Mass-Fabrication Scheme of Highly Sensitive Wireless Electrodeless MEMS QCM Biosensor with Antennas on Inner Walls of Microchannel. Anal Chem 2023; 95:5507-5513. [PMID: 36961992 DOI: 10.1021/acs.analchem.3c00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Quartz-crystal-microbalance (QCM) biosensor is a typical label-free biosensor, and its sensitivity can be greatly improved by removing electrodes and wires that would be otherwise attached to the surfaces of the quartz resonator. The wireless-electrodeless QCM biosensor was then developed using a microelectro-mechanical systems (MEMS) process, although challenges remain in the sensitivity, the coupling efficiency, and the miniaturization (or mass production). In this study, we establish a MEMS process to obtain a large number of identical ultrasensitive and highly efficient sensor chips with dimensions of 6 mm square. The fundamental shear resonance frequency of the thinned AT-cut quartz resonator packaged in the microchannel exceeds 160 MHz, which is excited by antennas deposited on inner walls of the microchannel, significantly improving the electro-mechanical coupling efficiency in the wireless operation. The high sensitivity of the developed MEMS QCM biosensors is confirmed by the immunoglobulin G (IgG) detection using protein A and ZZ-tag displaying a bionanocapsule (ZZ-BNC), where we find that the ZZ-BNC can provide more effective binding sites and higher affinity to the target molecules, indicating a further enhancement in the sensitivity of the MEMS QCM biosensor. We then perform the label-free C-reactive protein (CRP) detection using the ZZ-BNC-functionalized MEMS QCM biosensor, which achieves a detection limit of 1 ng mL-1 or less even with direct detection.
Collapse
Affiliation(s)
- Lianjie Zhou
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Fumihito Kato
- Department of Mechanical Engineering, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-machi, Minamisaitama, Saitama 345-8501, Japan
| | - Masumi Iijima
- Department of Nutritional Science and Food Safety, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tomoyuki Nonaka
- Samco Inc., Waraya-cho 36, Takeda, Fushimi-ku, Kyoto 612-8443, Japan
| | - Shun'ichi Kuroda
- SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Yi Y, Cui M, Song S, Zhang C, Mei J, Ying G. Genetic fusion of mussel foot protein to ZZ protein improves target detection in solid-phase immunoassays. J Immunol Methods 2023; 516:113461. [PMID: 36963561 DOI: 10.1016/j.jim.2023.113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
In the process of a solid-phase immunoassay, the stability and binding orientation between the antibody and the solid matrix can substantially influence the results. ZZ protein is a modified peptide of the B domain of Staphylococcus aureus protein A, which can bind to the Fc fragment of an antibody. It is often used for oriented immobilization of antibodies during solid-phase immunoassay. However, the conjugate is often not retained during the process, for example during washing steps. The resulting low stability detracts from reproducibility and sensitivity. Mfp-5 protein comes from mussel, is one of the components of mussel foot silk protein, and has good adhesion and biocompatibility. In this paper, the fusion protein of ZZ and Mfp-5 was constructed and expressed in Escherichia coli. In this method, the ZZ domain was firmly attached to the solid-phase support by Mfp-5, the directional fixation of IgG was realized by binding the ZZ protein to an Fc fragment, and then a Fab fragment was bound to the antigen to realize the solid-phase immunoassay. In addition, a protein adsorption assay confirmed that the adhesion of ZZ-Mfp-5 was significantly higher than that of ZZ protein, and the presence of Mfp-5 improved the ability of ZZ protein to capture antibodies. In conclusion, compared with the passively immobilized ZZ protein, the ZZ-Mfp-5 protein had stronger immobilization and antibody capture, a 10-fold increase in sensitivity and wider linear range, and better stability of detection. This may be an attractive strategy for solid-phase immunoassays or biosensing assays.
Collapse
Affiliation(s)
- Yu Yi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Mengyuan Cui
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shupeng Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cheng Zhang
- Gmax Biopharm International Limited, Hangzhou 310014, China
| | - Jianfeng Mei
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoqing Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
21
|
Ambrožič R, Mravljak R, Podgornik A. Rapid, Direct, Noninvasive Method to Determine the Amount of Immobilized Protein. Anal Chem 2023; 95:5643-5651. [PMID: 36939216 PMCID: PMC10077329 DOI: 10.1021/acs.analchem.2c05402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Protein immobilization is of utmost importance in many areas, where various proteins are used for selective detection of target compounds. Despite the importance given to determine the amount of immobilized protein, there is no simple method that allows direct, noninvasive detection. In this work, a method based on pH transition, occurring during change of solution ionic strength, was developed. The method utilized the ionic character of the immobilized protein while implementing biologically compatible buffers. Five different proteins, namely, glucose oxidase, horseradish peroxidase, bovine serum albumin, lysozyme, and protein A, were immobilized in different amounts on a porous polymeric matrix, and their pH transition was measured using lactate buffer of various concentrations and pH values. A linear correlation was found between the amount of immobilized protein and the amplitude of the pH transition, allowing the detection down to 2 nmol of immobilized protein. By changing the buffer concentration and pH, the sensitivity of the method could be tailored. Criteria based on the symmetry of the pH transition peak have been developed to determine if a particular measurement is within a linear range. In addition, a mathematical model was developed enabling prediction of pH transition profiles based solely on the protein amino acid sequence, the buffer pKa value(s), and the amount of immobilized protein.Hence, it can be used to design pH transition method experiments to achieve the required sensitivity for a target sample. Since the proposed method is noninvasive, it can be routinely applied during optimization of the immobilization protocol, for quality control, and also as an in-process monitoring tool.
Collapse
Affiliation(s)
- Rok Ambrožič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000 Ljubljana, Slovenia
| | - Rok Mravljak
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000 Ljubljana, Slovenia
| | - Aleš Podgornik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000 Ljubljana, Slovenia.,COBIK, Mirce 21, 5270 Ajdovščina, Slovenia
| |
Collapse
|
22
|
Optimization of photo: active carbon dots for reactive dyes degradation by response surface methodology—an industrial approach. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
23
|
Handali PR, Webb LJ. Gold Nanoparticles Are an Immobilization Platform for Active and Stable Acetylcholinesterase: Demonstration of a General Surface Protein Functionalization Strategy. ACS APPLIED BIO MATERIALS 2023; 6:209-217. [PMID: 36508683 DOI: 10.1021/acsabm.2c00834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immobilizing enzymes onto abiological surfaces is a key step for developing protein-based technologies that can be useful for applications such as biosensors and biofuel cells. A central impediment for the advancement of this effort is a lack of generalizable strategies for functionalizing surfaces with proteins in ways that prevent unfolding, aggregation, and uncontrolled binding, requiring surface chemistries to be developed for each surface-enzyme pair of interest. In this work, we demonstrate a significant advancement toward addressing this problem using a gold nanoparticle (AuNP) as an initial scaffold for the chemical bonding of the enzyme acetylcholinesterase (AChE), forming the conjugate AuNP-AChE. This can then be placed onto chemically and structurally distinct surfaces (e.g., metals, semiconductors, plastics, etc.), thereby bypassing the need to develop surface functionalization strategies for every substrate or condition of interest. Carbodiimide crosslinker chemistry was used to bind surface lysine residues in AChE to AuNPs functionalized with ligands containing carboxylic acid tails. Using amino acid analysis, we found that on average, 3.3 ± 0.1 AChE proteins were bound per 5.22 ± 1.25 nm AuNP. We used circular dichroism spectroscopy to measure the structure of the bound protein and determined that it remained essentially unchanged after binding. Finally, we performed Michaelis-Menten kinetics to determine that the enzyme retained 18.2 ± 2.0% of its activity and maintained that activity over a period of at least three weeks after conjugation to AuNPs. We hypothesize that structural changes to the peripheral active site of AChE are responsible for the differences in activity of bound AChE and unbound AChE. This work is a proof-of-concept demonstration of a generalizable method for placing proteins onto chemically and structurally diverse substrates and materials without the need for surface functionalization strategies.
Collapse
Affiliation(s)
- Paul R Handali
- The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Lauren J Webb
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
24
|
Gong Z, Huang Y, Hu X, Zhang J, Chen Q, Chen H. Recent Progress in Electrochemical Nano-Biosensors for Detection of Pesticides and Mycotoxins in Foods. BIOSENSORS 2023; 13:140. [PMID: 36671974 PMCID: PMC9856537 DOI: 10.3390/bios13010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Pesticide and mycotoxin residues in food are concerning as they are harmful to human health. Traditional methods, such as high-performance liquid chromatography (HPLC) for such detection lack sensitivity and operation convenience. Efficient, accurate detection approaches are needed. With the recent development of nanotechnology, electrochemical biosensors based on nanomaterials have shown solid ability to detect trace pesticides and mycotoxins quickly and accurately. In this review, English articles about electrochemical biosensors in the past 11 years (2011-2022) were collected from PubMed database, and various nanomaterials are discussed, including noble metal nanomaterials, magnetic metal nanoparticles, metal-organic frameworks, carbon nanotubes, as well as graphene and its derivatives. Three main roles of such nanomaterials in the detection process are summarized, including biomolecule immobilization, signal generation, and signal amplification. The detection targets involve two types of pesticides (organophosphorus and carbamate) and six types of mycotoxins (aflatoxin, deoxynivalenol, zearalenone, fumonisin, ochratoxin A, and patulin). Although significant achievements have been made in the evolution of electrochemical nano-biosensors, many challenges remain to be overcome.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yueming Huang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
25
|
Geiger F, Wendlandt T, Berking T, Spatz JP, Wege C. Convenient site-selective protein coupling from bacterial raw lysates to coenzyme A-modified tobacco mosaic virus (TMV) by Bacillus subtilis Sfp phosphopantetheinyl transferase. Virology 2023; 578:61-70. [PMID: 36473278 DOI: 10.1016/j.virol.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
A facile enzyme-mediated strategy enables site-specific covalent one-step coupling of genetically tagged luciferase molecules to coenzyme A-modified tobacco mosaic virus (TMV-CoA) both in solution and on solid supports. Bacillus subtilis surfactin phosphopantetheinyl transferase Sfp produced in E. coli mediated the conjugation of firefly luciferase N-terminally extended by eleven amino acids forming a 'ybbR tag' as Sfp-selective substrate, which even worked in bacterial raw lysates. The enzymes displayed on the protein coat of the TMV nanocarriers exhibited high activity. As TMV has proven a beneficial high surface-area adapter template stabilizing enzymes in different biosensing layouts in recent years, the use of TMV-CoA for fishing ybbR-tagged proteins from complex mixtures might become an advantageous concept for the versatile equipment of miniaturized devices with biologically active proteins. It comes along with new opportunities for immobilizing multiple functionalities on TMV adapter coatings, as desired, e.g., in handheld systems for point-of-care detection.
Collapse
Affiliation(s)
- Fania Geiger
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120, Heidelberg, Germany; Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Tim Wendlandt
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Tim Berking
- University of Stuttgart, Institute of Organic Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120, Heidelberg, Germany; Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Im Neuenheimer Feld 225, 69120, Heidelberg, Germany; Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christina Wege
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, Pfaffenwaldring 57, 70569, Stuttgart, Germany.
| |
Collapse
|
26
|
Forsythe NL, Tan MF, Vinciguerra D, Woodford J, Stieg AZ, Maynard HD. Noncovalent Enzyme Nanogels via a Photocleavable Linkage. Macromolecules 2022; 55:9925-9933. [PMID: 36438597 PMCID: PMC9686129 DOI: 10.1021/acs.macromol.2c01334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Enzyme nanogels (ENGs) offer a convenient method to protect therapeutic proteins from in vivo stressors. Current methodologies to prepare ENGs rely on either covalent modification of surface residues or the noncovalent assembly of monomers at the protein surface. In this study, we report a new method for the preparation of noncovalent ENGs that utilizes a heterobifunctional, photocleavable monomer as a hybrid approach. Initial covalent modification with this monomer established a polymerizable handle at the protein surface, followed by radical polymerization with poly(ethylene glycol) methacrylate monomer and ethylene glycol dimethacrylate crosslinker in solution. Final photoirradiation cleaved the linkage between the polymer and protein to afford the noncovalent ENGs. The enzyme phenylalanine ammonia lyase (PAL) was utilized as a model protein yielding well-defined nanogels 80 nm in size by dynamic light scattering (DLS) and 76 nm by atomic force microscopy. The stability of PAL after exposure to trypsin or low pH was assessed and was found to be more stable in the noncovalent nanogel compared to PAL alone. This approach may be useful for the stabilization of active enzymes.
Collapse
Affiliation(s)
- Neil L. Forsythe
- Department
of Chemistry and Biochemistry, University
of California, 607 Charles
E. Young Drive East, Los Angeles, California 90095, United States
| | - Mikayla F. Tan
- Department
of Chemistry and Biochemistry, University
of California, 607 Charles
E. Young Drive East, Los Angeles, California 90095, United States
| | - Daniele Vinciguerra
- California
NanoSystems Institute, 570 Westwood Plaza Building 114, Los Angeles, California 90095, United States
| | - Jacquelin Woodford
- Department
of Chemistry and Biochemistry, University
of California, 607 Charles
E. Young Drive East, Los Angeles, California 90095, United States
| | - Adam Z. Stieg
- California
NanoSystems Institute, 570 Westwood Plaza Building 114, Los Angeles, California 90095, United States
| | - Heather D. Maynard
- Department
of Chemistry and Biochemistry, University
of California, 607 Charles
E. Young Drive East, Los Angeles, California 90095, United States
- California
NanoSystems Institute, 570 Westwood Plaza Building 114, Los Angeles, California 90095, United States
| |
Collapse
|
27
|
Karawdeniya BI, Damry AM, Murugappan K, Manjunath S, Bandara YMNDY, Jackson CJ, Tricoli A, Neshev D. Surface Functionalization and Texturing of Optical Metasurfaces for Sensing Applications. Chem Rev 2022; 122:14990-15030. [PMID: 35536016 DOI: 10.1021/acs.chemrev.1c00990] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Optical metasurfaces are planar metamaterials that can mediate highly precise light-matter interactions. Because of their unique optical properties, both plasmonic and dielectric metasurfaces have found common use in sensing applications, enabling label-free, nondestructive, and miniaturized sensors with ultralow limits of detection. However, because bare metasurfaces inherently lack target specificity, their applications have driven the development of surface modification techniques that provide selectivity. Both chemical functionalization and physical texturing methodologies can modify and enhance metasurface properties by selectively capturing analytes at the surface and altering the transduction of light-matter interactions into optical signals. This review summarizes recent advances in material-specific surface functionalization and texturing as applied to representative optical metasurfaces. We also present an overview of the underlying chemistry driving functionalization and texturing processes, including detailed directions for their broad implementation. Overall, this review provides a concise and centralized guide for the modification of metasurfaces with a focus toward sensing applications.
Collapse
Affiliation(s)
- Buddini I Karawdeniya
- ARC Centre of Excellence for Transformative Meta Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Adam M Damry
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Krishnan Murugappan
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Shridhar Manjunath
- ARC Centre of Excellence for Transformative Meta Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Y M Nuwan D Y Bandara
- ARC Centre of Excellence for Transformative Meta Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Colin J Jackson
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Antonio Tricoli
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Dragomir Neshev
- ARC Centre of Excellence for Transformative Meta Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
28
|
Development of solid support using protein A for the measurement of free thyroxine in human serum. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
29
|
Chawich J, Hassen WM, Singh A, Marquez DT, DeRosa MC, Dubowski JJ. Polymer Brushes on GaAs and GaAs/AlGaAs Nanoheterostructures: A Promising Platform for Attractive Detection of Legionella pneumophila. ACS OMEGA 2022; 7:33349-33357. [PMID: 36157789 PMCID: PMC9494436 DOI: 10.1021/acsomega.2c03959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
This work reports on the potential of polymer brushes (PBs) grown on GaAs substrates (PB-GaAs) as a promising platform for the detection of Legionella pneumophila (Lp). Three functionalization approaches of the GaAs surface were used, and their compatibility with antibodies against Lp was evaluated using Fourier transform infrared spectroscopy and fluorescence microscopy. The incorporation of PBs on GaAs has allowed a significant improvement of the antibody immobilization by increased surface coverage. Bacterial capture experiments demonstrated the promising potential for enhanced immobilization of Lp in comparison with the conventional alkanethiol self-assembled monolayer-based biosensing architectures. Consistent with an eightfold improved capture of bacteria on the surface of a PB-functionalized GaAs/AlGaAs digital photocorrosion biosensor, we report the attractive detection of Lp at 500 CFU/mL.
Collapse
Affiliation(s)
- Juliana Chawich
- Interdisciplinary
Institute for Technological Innovation (3IT), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
| | - Walid M. Hassen
- Interdisciplinary
Institute for Technological Innovation (3IT), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
| | - Amanpreet Singh
- Interdisciplinary
Institute for Technological Innovation (3IT), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
| | - Daniela T. Marquez
- Interdisciplinary
Institute for Technological Innovation (3IT), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
- Department
of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Maria C. DeRosa
- Department
of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jan J. Dubowski
- Interdisciplinary
Institute for Technological Innovation (3IT), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
| |
Collapse
|
30
|
Correira JM, Handali PR, Webb LJ. Characterizing Protein-Surface and Protein-Nanoparticle Conjugates: Activity, Binding, and Structure. J Chem Phys 2022; 157:090902. [DOI: 10.1063/5.0101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many sensors and catalysts composed of proteins immobilized on inorganic materials have been reported over the past few decades. Despite some examples of functional protein-surface and protein-nanoparticle conjugates, thorough characterization of the biological-abiological interface at the heart of these materials and devices is often overlooked in lieu of demonstrating acceptable system performance. This has resulted in a focus on generating functioning protein-based devices without a concerted effort to develop reliable tools necessary to measure the fundamental properties of the bio-abio interface such as surface concentration, biomolecular structure, and activity. In this Perspective we discuss current methods used to characterize these critical properties of devices that operate by integrating a protein into both flat surfaces and nanoparticle materials. We highlight the advantages and drawbacks of each method as they relate to understanding the function of the protein-surface interface, and explore the manner in which an informed understanding of this complex interaction leads directly to the advancement of protein-based materials and technology.
Collapse
Affiliation(s)
| | - Paul R Handali
- The University of Texas at Austin, United States of America
| | - Lauren J. Webb
- Chemistry, The University of Texas at Austin Department of Chemistry, United States of America
| |
Collapse
|
31
|
Lo Savio R, Piselli S, Bertelli C, Pizzato M, Carloni A. Viral particles imaging through evanescent wave scattering in a total internal reflection laser microscope. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Tang J, Zhang G, Li F, Zeng R, Song J, Abbas G, Cui M, Zhang W, Zhang XE, Wang DB. Two-Dimensional Protein Nanoarray as a Carrier of Sensing Elements for Gold-Based Immunosensing Systems. Anal Chem 2022; 94:9355-9362. [PMID: 35729689 DOI: 10.1021/acs.analchem.2c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Homogeneous and high-density immobilization of proteins on gold-based sensing surface without the loss of protein activity is of great significance for high-performance immunosensing but remains challenging. To realize more sensitive immunosensing, an improved method for protein immobilization on the gold surface is urgently required. Here, we propose a biological and mild approach by combining a genetically encoded SpyTag-SpyCatcher interaction system with a redesigned S-layer of bacteria. This method allows proteins of interest to be covalently linked with the S-layer in a biological manner and arranged orderly in a two-dimensional nanoarray on the gold surface. The activity of African swine fever virus proteins was significantly preserved after immobilization. In addition, our S-layer-based immobilization method exhibited an eightfold increase in detection sensitivity compared with the conventional chemical cross-linking for protein immobilization during serological tests. Together, our S-layer-based immobilization method provides an innovative approach for building a quality gold-based biosensing interface and should greatly contribute to the high-sensitivity sensing for a deeper understanding of pathogen infection and host immunity.
Collapse
Affiliation(s)
- Jingya Tang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Rongyu Zeng
- TECON Pharmaceutical (Suzhou) Co., Ltd, Suzhou 215000, China
| | - Jin Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ghulam Abbas
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Zhang
- Institutional Center for Shared Technologies and Facilities of Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dian-Bing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Yan J, Zhao C, Ma Y, Yang W. Covalently Attaching Hollow Silica Nanoparticles on a COC Surface for the Fabrication of a Three-Dimensional Protein Microarray. Biomacromolecules 2022; 23:2614-2623. [PMID: 35603741 DOI: 10.1021/acs.biomac.2c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compared to traditional two-dimensional (2D) biochips, three-dimensional (3D) biochips exhibit the advantages of higher probe density and detection sensitivity due to their designable surface microstructure as well as enlarged surface area. In the study, we proposed an approach to prepare a 3D protein chip by deposition of a monolayer of functionalized hollow silica nanoparticles (HSNs) on an activated cyclic olefin copolymer (COC) substrate. First, the COC substrate was chemically modified through the photografting technique to tether poly[3-(trimethoxysilyl) propyl methacrylate] (PTMSPMA) brushes on it. Then, a monolayer of HSNs was deposited on the modified COC and covalently attached via a condensation reaction between the hydrolyzed pendant siloxane groups of PTMSPMA and the Si-OH groups of HSNs. The roughness of the COC substrate significantly increased to 50.3 nm after depositing a monolayer of HSNs (ranging from 100 to 700 nm), while it only caused a negligible reduction in the light transmittance of COC. The HSN-modified COC was further functionalized with epoxide groups by a silane coupling agent for binding proteins. Immunoglobulin G could be effectively immobilized on this substrate with the highest immobilization efficiency of 75.2% and a maximum immobilization density of 1.236 μg/cm2, while the highest immobilization efficiency on a 2D epoxide group-modified glass slide was only 57.4%. Moreover, immunoassay results confirmed a competitive limit of detection (LOD) (1.06 ng/mL) and a linear detection range (1-100 ng/mL) of the 3D protein chip. This facile and effective approach for fabricating nanoparticle-based 3D protein microarrays has great potential in the field of biorelated detection.
Collapse
|
34
|
Wang Z, Fan C, Zheng X, Jin Z, Bei K, Zhao M, Kong H. Roles of Surfactants in Oriented Immobilization of Cellulase on Nanocarriers and Multiphase Hydrolysis System. Front Chem 2022; 10:884398. [PMID: 35402378 PMCID: PMC8983819 DOI: 10.3389/fchem.2022.884398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Surfactants, especially non-ionic surfactants, play an important role in the preparation of nanocarriers and can also promote the enzymatic hydrolysis of lignocellulose. A broad overview of the current status of surfactants on the immobilization of cellulase is provided in this review. In addition, the restricting factors in cellulase immobilization in the complex multiphase hydrolysis system are discussed, including the carrier structure characteristics, solid-solid contact obstacles, external diffusion resistance, limited recycling frequency, and nonproductive combination of enzyme active centers. Furthermore, promising prospects of cellulase-oriented immobilization are proposed, including the hydrophilic-hydrophobic interaction of surfactants and cellulase in the oil-water reaction system, the reversed micelle system of surfactants, and the possible oriented immobilization mechanism.
Collapse
Affiliation(s)
- Zhiquan Wang
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Chunzhen Fan
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Xiangyong Zheng
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Zhan Jin
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Ke Bei
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Min Zhao
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Hainan Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Iyer M, Shreshtha I, Baradia H, Chattopadhyay S. Challenges and opportunities of using immobilized lipase as biosensor. Biotechnol Genet Eng Rev 2022; 38:87-110. [PMID: 35285414 DOI: 10.1080/02648725.2022.2050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Over the years, the science of biosensors has evolved significantly. The first or earliest generation of biosensors only detected either the decrease or increase of product or reactant-based natural mediators as the pathway for electron transfer. The subsequent second-generation biosensors were biomolecule based and used artificial redox mediators, such as organic dyes to detect and to increase the reproducibility and sensitivity of the result. However, the recent generation of biosensors work mostly on the principle of electron mobility, with different criteria, such as selectivity, precision, sensitivity, etc., can be used to quantify, efficiently. This review deals with exploring the scope and applications of Immobilized lipase biosensors. Generally, Triglycerides or TG molecules are either detected using Gas Chromatography or, using a chemical or an enzymatic assay. Immobilization of lipase on solid supports has led to increased stability and reusability of the enzyme in non-aqueous solvents. With better enzyme performance, efficient product recovery, and separation from the reaction, immobilized lipase biosensors are garnering increasing interest worldwide. Along with so many advantages including but not limiting to ones mentioned earlier, immobilized lipase-based biosensors come with their own set of challenges, such as the partitioning of the analyte with aqueous medium, slower reaction rate, etc., they have been discussed in the following review. Alongside, we also review the development of a new generation of biosensors and bioelectronic devices based on nanotechnology.
Collapse
Affiliation(s)
- Mahadevan Iyer
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Ishita Shreshtha
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Hrithik Baradia
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Soham Chattopadhyay
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| |
Collapse
|
36
|
Arshavsky‐Graham S, Heuer C, Jiang X, Segal E. Aptasensors versus immunosensors-Which will prevail? Eng Life Sci 2022; 22:319-333. [PMID: 35382545 PMCID: PMC8961048 DOI: 10.1002/elsc.202100148] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Since the invention of the first biosensors 70 years ago, they have turned into valuable and versatile tools for various applications, ranging from disease diagnosis to environmental monitoring. Traditionally, antibodies have been employed as the capture probes in most biosensors, owing to their innate ability to bind their target with high affinity and specificity, and are still considered as the gold standard. Yet, the resulting immunosensors often suffer from considerable limitations, which are mainly ascribed to the antibody size, conjugation chemistry, stability, and costs. Over the past decade, aptamers have emerged as promising alternative capture probes presenting some advantages over existing constraints of immunosensors, as well as new biosensing concepts. Herein, we review the employment of antibodies and aptamers as capture probes in biosensing platforms, addressing the main aspects of biosensor design and mechanism. We also aim to compare both capture probe classes from theoretical and experimental perspectives. Yet, we highlight that such comparisons are not straightforward, and these two families of capture probes should not be necessarily perceived as competing but rather as complementary. We, thus, elaborate on their combined use in hybrid biosensing schemes benefiting from the advantages of each biorecognition element.
Collapse
Affiliation(s)
- Sofia Arshavsky‐Graham
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Christopher Heuer
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Xin Jiang
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Ester Segal
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
- Russell Berrie Nanotechnology InstituteTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
37
|
A multiparametric fluorescence assay for screening aptamer-protein interactions based on microbeads. Sci Rep 2022; 12:2961. [PMID: 35194086 PMCID: PMC8863788 DOI: 10.1038/s41598-022-06817-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
For improving aptamer-ligand binding we have developed a screening system that defines optimal binding buffer composition. Using multiplex assays, one buffer system is needed which guarantees the specific binding of all aptamers. We investigated nine peer-reviewed DNA aptamers. Non-specific binding of aptamers is an obstacle. To address this, we investigated 16 proteins as specificity controls bound covalently to encoded microbeads in a multiplex assay. Increasing the NaCl concentration decreased the binding for all aptamers. Changing pH values by one unit higher or lower did not influence the aptamer binding significantly. However, pH < 5 led to non-specific binding for all aptamers. The PfLDH-aptamer selected in the absence of divalent cations exhibited doubling of its binding signal by the addition of Ca2+ and Mg2+. We confirmed Ca2+ and Mg2+ dependency of the aptamers for streptavidin and thrombin by observing a 90% and 50% binding decrease, respectively. We also achieved a doubling of binding for the streptavidin aptamer when replacing Ca2+ and Mg2+ by Mn2+. A buffer suitable for all aptamers can have considerable variations in pH or ionic strength, but divalent cations (Ca2+, Mg2+, Mn2+) are essential.
Collapse
|
38
|
Yang S, Zhao D, Xu Z, Yu H, Zhou J. Molecular understanding of acetylcholinesterase adsorption on functionalized carbon nanotubes for enzymatic biosensors. Phys Chem Chem Phys 2022; 24:2866-2878. [PMID: 35060980 DOI: 10.1039/d1cp04997f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immobilization of acetylcholinesterase on different nanomaterials has been widely used in the field of amperometric organophosphorus pesticide (OP) biosensors. However, the molecular adsorption mechanism of acetylcholinesterase on a nanomaterial's surface is still unclear. In this work, multiscale simulations were utilized to study the adsorption behavior of acetylcholinesterase from Torpedo californica (TcAChE) on amino-functionalized carbon nanotube (CNT) (NH2-CNT), carboxyl-functionalized CNT (COOH-CNT) and pristine CNT surfaces. The simulation results show that the active center and enzyme substrate tunnel of TcAChE are both close to and oriented toward the surface when adsorbed on the positively charged NH2-CNT, which is beneficial to the direct electron transfer (DET) and accessibility of the substrate molecule. Meanwhile, the NH2-CNT can also reduce the tunnel cost of the enzyme substrate of TcAChE, thereby further accelerating the transfer rate of the substrate from the surface or solution to the active center. However, for the cases of TcAChE adsorbed on COOH-CNT and pristine CNT, the active center and substrate tunnel are far away from the surface and face toward the solution, which is disadvantageous for the DET and transportation of enzyme substrate. These results indicate that NH2-CNT is more suitable for the immobilization of TcAChE. This work provides a better molecular understanding of the adsorption mechanism of TcAChE on functionalized CNT, and also provides theoretical guidance for the ordered immobilization of TcAChE and the design, development and improvement of TcAChE-OPs biosensors based on functionalized carbon nanomaterials.
Collapse
Affiliation(s)
- Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Daohui Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
39
|
Freitas AI, Domingues L, Aguiar TQ. Tag-mediated single-step purification and immobilization of recombinant proteins toward protein-engineered advanced materials. J Adv Res 2022; 36:249-264. [PMID: 35127175 PMCID: PMC8799874 DOI: 10.1016/j.jare.2021.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background The potential applications of protein-engineered functional materials are so wide and exciting that the interest in these eco-friendly advanced materials will further expand in the future. Tag-mediated protein purification/immobilization technologies have emerged as green and cost-effective approaches for the fabrication of such materials. Strategies that combine the purification and immobilization of recombinant proteins/peptides onto/into natural, synthetic or hybrid materials in a single-step are arising and attracting increasing interest. Aim of Review This review highlights the most significant advances of the last 5 years within the scope of tag-mediated protein purification/immobilization and elucidates their contributions for the development of efficient single-step purification and immobilization strategies. Recent progresses in the field of protein-engineered materials created using innovative protein-tag combinations and future opportunities created by these new technologies are also summarized and identified herein. Key Scientific Concepts of Review Protein purification/immobilization tags present a remarkable ability to establish specific non-covalent/covalent interactions between solid materials and biological elements, which prompted the creation of tailor-made and advanced functional materials, and of next-generation hybrid materials. Affinity tags can bind to a wide range of materials (of synthetic, natural or hybrid nature), being most suitable for protein purification. Covalently binding tags are most suitable for long-term protein immobilization, but can only bind naturally to protein-based materials. Hybrid affinity-covalently binding tags have allowed efficient one-step purification and immobilization of proteins onto different materials, as well as the development of innovative protein-engineered materials. Self-aggregating tags have been particularly useful in combination with other tags for generating protein-engineered materials with self-assembling, flexible and/or responsive properties. While these tags have been mainly explored for independent protein purification, immobilization or functionalization purposes, efficient strategies that combine tag-mediated purification and immobilization/functionalization in a single-step will be essential to guarantee the sustainable manufacturing of advanced protein-engineered materials.
Collapse
Affiliation(s)
- Ana I. Freitas
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Tatiana Q. Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
40
|
Gisdon FJ, Kynast JP, Ayyildiz M, Hine AV, Plückthun A, Höcker B. Modular peptide binders - development of a predictive technology as alternative for reagent antibodies. Biol Chem 2022; 403:535-543. [PMID: 35089661 DOI: 10.1515/hsz-2021-0384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/11/2022] [Indexed: 11/15/2022]
Abstract
Current biomedical research and diagnostics critically depend on detection agents for specific recognition and quantification of protein molecules. Monoclonal antibodies have been used for this purpose over decades and facilitated numerous biological and biomedical investigations. Recently, however, it has become apparent that many commercial reagent antibodies lack specificity or do not recognize their target at all. Thus, synthetic alternatives are needed whose complex designs are facilitated by multidisciplinary approaches incorporating experimental protein engineering with computational modeling. Here, we review the status of such an engineering endeavor based on the modular armadillo repeat protein scaffold and discuss challenges in its implementation.
Collapse
Affiliation(s)
- Florian J Gisdon
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Josef P Kynast
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Merve Ayyildiz
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Anna V Hine
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
41
|
Development of an enhanced immunoassay based on protein nanoparticles displaying an IgG-binding domain and luciferase. Anal Bioanal Chem 2022; 414:2079-2088. [PMID: 35037082 DOI: 10.1007/s00216-021-03842-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/01/2022]
Abstract
Detection of small amounts of target molecules with high sensitivity is important for the diagnosis of many diseases, including cancers, and is particularly important to detect early stages of disease. Here, we report the development of a temperature-responsive fusion protein (ELP-DCN) comprised of an elastin-like polypeptide (ELP), poly-aspartic acid (D), antibody-binding domain C (C), and NanoLuc luciferase (N). ELP-DCN proteins form nanoparticles above a certain threshold temperature that display an antibody-binding domain and NanoLuc luciferase on their surface. ELP-DCN nanoparticles can be applied for enhancement of immunoassay systems because they provide more antibody-binding sites and an increased number of luciferase molecules, resulting in an increase in assay signal. Here, we report the detection of human serum albumin (HSA) as a model protein using anti-HSA and ELP-DCN proteins. Upon formation of ELP-DCN nanoparticles, the detection limit improved tenfold compared to the monomeric form of ELP-DCN.
Collapse
|
42
|
Nickel-Functionalized Chitosan for the Oriented Immobilization of Histidine-Tagged Enzymes: A Promising Support for Food Bioprocess Applications. Catal Letters 2022. [DOI: 10.1007/s10562-021-03912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Bhardwaj H, Rajesh, Sumana G. Recent advances in nanomaterials integrated immunosensors for food toxin detection. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:12-33. [PMID: 35068548 PMCID: PMC8758883 DOI: 10.1007/s13197-021-04999-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/03/2023]
Abstract
For the management and prevention of many chronic and acute diseases, the rapid quantification of toxicity in food and feed products have become a significant concern. Technology advancements in the area of biosensors, bioelectronics, miniaturization techniques, and microfluidics have shown a significant impact than conventional methods which have given a boost to improve the sensing performance towards food analyte detection. In this article, recent literature of Aflatoxin B1 (AFB1), worldwide permissible limits, major outbreaks and severe impact on healthy life have been discussed. An improvement achieved in detection range, limit of detection, shelf-life of the biosensor by integrated dimensional nanomaterials such as zero-dimension, one-dimension and two-dimension for AFB1 detection using electrical and optical transduction mechanism has been summarized. A critical overview of the latest trends using paper-based and micro-spotted array integrated with the anisotropic shape of nanomaterials, portable microfluidic devices have also been described together with future perspectives for further advancements.
Collapse
Affiliation(s)
- Hema Bhardwaj
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rajesh
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
| | - Gajjala Sumana
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
44
|
Pavlova E, Maslakova A, Prusakov K, Bagrov D. Optical sensors based on electrospun membranes – principles, applications, and prospects for chemistry and biology. NEW J CHEM 2022. [DOI: 10.1039/d2nj01821g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrospun membranes are promising substrates for receptor layer immobilization in optical sensors. Either colorimetric, luminescence, or Raman scattering signal can be used to detect the analyte.
Collapse
Affiliation(s)
- Elizaveta Pavlova
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
- Federal Research Clinical Center of Physical–Chemical Medicine of the Federal Medical and Biological Agency of Russia, 1a Malaya Pirogovskaya Street, 119435, Moscow, Russian Federation
| | - Aitsana Maslakova
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
| | - Kirill Prusakov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
- Federal Research Clinical Center of Physical–Chemical Medicine of the Federal Medical and Biological Agency of Russia, 1a Malaya Pirogovskaya Street, 119435, Moscow, Russian Federation
| | - Dmitry Bagrov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, 119234, Moscow, Russian Federation
| |
Collapse
|
45
|
Quaglio D, Polli F, Del Plato C, Cianfoni G, Tortora C, Mazzei F, Botta B, Calcaterra A, Ghirga F. Calixarene: a versatile scaffold for the development of highly sensitive biosensors. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.2011283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Francesca Polli
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Cristina Del Plato
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science@Sapienza, Italian Institute of Technology, Rome, Italy
| | - Gabriele Cianfoni
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science@Sapienza, Italian Institute of Technology, Rome, Italy
| | - Carola Tortora
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Franco Mazzei
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| |
Collapse
|
46
|
Yang H, Liu Z, Liu C, Zhang Y. FeMoO 4 nanospheres-based nanozymatic colorimetry for rapid and sensitive pyrophosphate detection. J Mater Chem B 2021; 10:321-327. [PMID: 34935851 DOI: 10.1039/d1tb01892b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assays of pyrophosphate ion (PPi) are of remarkable biochemical significance due to their vital roles in the bioenergetic and metabolic processes or as disease indicators. Colorimetry is popular in the field of biosensing and detection because of its simplicity, speed and cost-effectiveness, but there is a lack of a suitable colorimetric probe. Herein, a novel colorimetric sensing platform has been established for the detection of pyrophosphate based on the FeMoO4-H2O2-3,3',5,5'-tetra-methylbenzidine (TMB) system. Compared with most previously reported iron-based nanozymes, the as-obtained FeMoO4 nanospheres with a rough surface possessed a much superior peroxidase-like catalytic activity (Vmax = 28.47 × 10-8 M s-1) and substrate affinity (Km = 0.174 mM) toward H2O2 catalysis. Due to the Fe(II) and PPi reaction, the presence of PPi could specifically restore blue oxidized TMB to colorless TMB, which led to a decrease in UV absorption at 652 nm. The absorbance change is proportional to the PPi concentration, with a linear detection range (from 0.5 to 25 μM) and a low detection limit of 0.3 μM (S/N = 3). Accordingly, its excellent selectivity and high sensitivity made it a potential colorimetric sensor for PPi analysis in actual water samples.
Collapse
Affiliation(s)
- Haoyu Yang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, P. R. China.
| | - Zengxu Liu
- Qilu Pharmaceutical Co., Ltd, Jinan 250100, P. R. China
| | - Chengzhen Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, P. R. China.
| | - Yanan Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, P. R. China.
| |
Collapse
|
47
|
Dashtestani F, Ma'mani L, Jokar F, Maleki M, Eskandari Fard M, Hosseini Salekdeh G. Zeolite-based nanocomposite as a smart pH-sensitive nanovehicle for release of xylanase as poultry feed supplement. Sci Rep 2021; 11:21386. [PMID: 34725388 PMCID: PMC8560943 DOI: 10.1038/s41598-021-00688-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Xylanase improves poultry nutrition by degrading xylan in the cell walls of feed grains and release the entrapped nutrients. However, the application of xylanase as a feed supplement is restricted to its low stability in the environment and gastrointestinal (GI) tract of poultry. To overcome these obstacles, Zeozyme NPs as a smart pH-responsive nanosystem was designed based on xylanase immobilization on zeolitic nanoporous as the major cornerstone that was modified with L-lysine. The immobilized xylanase was followed by encapsulating with a cross-linked CMC-based polymer. Zeozyme NPs was structurally characterized using TEM, SEM, AFM, DLS, TGA and nitrogen adsorption/desorption isotherms at liquid nitrogen temperature. The stability of Zeozyme NPs was evaluated at different temperatures, pH, and in the presence of proteases. Additionally, the release pattern of xylanase was investigated at a digestion model mimicking the GI tract. Xylanase was released selectively at the duodenum and ileum (pH 6-7.1) and remarkably preserved at pH ≤ 6 including proventriculus, gizzard, and crop (pH 1.6-5). The results confirmed that the zeolite equipped with the CMC matrix could enhance the xylanase thermal and pH stability and preserve its activity in the presence of proteases. Moreover, Zeozyme NPs exhibited a smart pH-dependent release of xylanase in an in vitro simulated GI tract.
Collapse
Affiliation(s)
- Fariba Dashtestani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.,Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Leila Ma'mani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Farzaneh Jokar
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Morteza Maleki
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Eskandari Fard
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | | |
Collapse
|
48
|
Yang S, Ji J, Luo M, Li H, Gao Z. Poly(tannic acid) nanocoating based surface modification for construction of multifunctional composite CeO 2NZs to enhance cell proliferation and antioxidative viability of preosteoblasts. NANOSCALE 2021; 13:16349-16361. [PMID: 34581718 DOI: 10.1039/d1nr02799a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ceria (CeO2) based materials possess many antioxidant enzyme-like activities and unique properties for bone repair, but their free radical scavenging function is still insufficient. In order to deal with the complex oxidative stress environment in bone repair, multifunctional composite CeO2 nanozymes (CeO2NZs), featuring multiple antioxidative properties, were constructed via surface modification on CeO2NZs with nanoscale poly(tannic acid) (PTA) coatings. Moreover, we adjusted pH conditions (ranging from 4 to 9) to effectively control the formation and antioxidative properties of PTA coatings on CeO2NZ surfaces. Here, the physical properties of this novel inorganic and organic composite antioxidant, such as surface morphology, particle size, crystal structure, surface charge and element composition, were thoroughly characterized. The PTA/CeO2NZs showed obvious coating morphology under weak acid conditions (pH = 5-6), and the PTA layer at pH = 5 is about 1 nm in thickness. Compared with untreated CeO2NZs, the PTA/CeO2NZs showed stronger SOD-like activity and obviously higher free radical scavenging rate (for both ABTS+˙ and DPPH˙).Notably, this composite antioxidative nanozyme not only exhibited favorable cell proliferation of preosteoblasts (MC3T3-E1) but also provided strong antioxidative property to maintain cell vitality against H2O2 induced oxidative damage. In particular, this study provides new insights into the designing of surface polyphenolic coatings at the nanoscale, and these multiple antioxidative properties shown by PTA coated CeO2NZs make them suitable for protecting cells under the oxidative stress environment.
Collapse
Affiliation(s)
- Shuoshuo Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| | - Jiale Ji
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| | - Mengwei Luo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China.
| |
Collapse
|
49
|
Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, Inal S. Organic Bioelectronic Devices for Metabolite Sensing. Chem Rev 2021; 122:4581-4635. [PMID: 34610244 DOI: 10.1021/acs.chemrev.1c00395] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemical detection of metabolites is essential for early diagnosis and continuous monitoring of a variety of health conditions. This review focuses on organic electronic material-based metabolite sensors and highlights their potential to tackle critical challenges associated with metabolite detection. We provide an overview of the distinct classes of organic electronic materials and biorecognition units used in metabolite sensors, explain the different detection strategies developed to date, and identify the advantages and drawbacks of each technology. We then benchmark state-of-the-art organic electronic metabolite sensors by categorizing them based on their application area (in vitro, body-interfaced, in vivo, and cell-interfaced). Finally, we share our perspective on using organic bioelectronic materials for metabolite sensing and address the current challenges for the devices and progress to come.
Collapse
Affiliation(s)
- Anil Koklu
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
50
|
Yang F, Backov R, Blin JL, Fáklya B, Tron T, Mekmouche Y. Site directed confinement of laccases in a porous scaffold towards robustness and selectivity. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00645. [PMID: 34189063 PMCID: PMC8219655 DOI: 10.1016/j.btre.2021.e00645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 10/31/2022]
Abstract
We immobilized a fungal laccase with only two spatially close lysines available for functionalization into macrocellular Si(HIPE) monoliths for the purpose of continuous flow catalysis. Immobilization (30-45 % protein immobilization yields) was obtained using a covalent bond forming reaction between the enzyme and low glutaraldehyde (0.625 % (w/w)) functionalized foams. Testing primarily HBT-mediated RB5 dye decolorization in continuous flow reactors, we show that the activity of the heterogeneous catalyst is comparable to its homogeneous counterpart. More, its operational activity remains as high as 60 % after twelve consecutive decolorization cycles as well as after one-year storage, performances remarkable for such a material. We further immobilized two variants of the laccase containing a unique lysine: one located in the vicinity of the substrate oxidation site (K157) and one at the opposite side of this oxidation site (K71) to study the effect of the proximity of the Si(HIPE) surface on enzyme activity. Comparing activities on different substrates for monoliths with differentially oriented catalysts, we show a twofold discrimination for ABTS relative to ascorbate. This study provides ground for the development of neo-functionalized materials that beyond allowing stability and reusability will become synergic partners in the catalytic process.
Collapse
Key Words
- ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid
- APTES, (3-Aminopropyl)triethoxysilane
- Asc, ascorbic acid
- BET, Brunauer, Emmett et Teller
- DPBS, Dulbecco's Phosphate-Buffered Saline, pH 7.0
- Enz., enzyme
- HBT, N-Hydroxy benzotriazole
- HIPE, High Internal Phase Emulsion
- Heterogeneous catalysis
- Laccase
- Orientation
- RB5, Reactive black 5
- RBBR, Remazol Brilliant Blue B
- S.A., specific activity
- Site-directed immobilization
- TEOS, Tetraethyl-orthosilane
- TNC, TriNuclear Cluster
- TTAB, tetradecyltrimethylammonium bromide
Collapse
Affiliation(s)
- Fangfang Yang
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France
| | - Rénal Backov
- Université de Bordeaux, CNRS, CRPP, UMR5031, 115 Avenue Albert Schweitzer, F-33600, Pessac, France
| | - Jean-Luc Blin
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Bernadett Fáklya
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France
| | - Thierry Tron
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France
| | - Yasmina Mekmouche
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France
| |
Collapse
|