1
|
Isaei E, Sobhanipoor MH, Rahimlou M, Firouzeh N. The application of aptamer in tuberculosis diagnosis: a systematic review. Trop Dis Travel Med Vaccines 2024; 10:25. [PMID: 39674868 DOI: 10.1186/s40794-024-00235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/04/2024] [Indexed: 12/16/2024] Open
Abstract
Tuberculosis represents a significant menace to health, leading to millions of cases and fatalities each year. Traditional diagnostic methods, while effective, have limitations, necessitating improved tools. Aptamers possessing remarkable specificity single-stranded DNA or RNA molecules promising in TB diagnosis due to their adaptability and precise biomarker detection capabilities. In this study, we aimed to evaluate the research on aptamer applications in TB diagnosis, evaluating the efficacy, limitations, and future prospects. The present systematic review study followed PRISMA guidelines, including peer-reviewed studies on aptamer efficacy in TB diagnosis. Eligibility criteria covered experimental and human studies on TB diagnosis, prognosis, progression, and treatment response. Of 1165 identified studies, 35 met inclusion criteria. Aptamers were utilized for MTB and mycobacterial antigen detection, showcasing notable sensitivity and specificity. Targeted antigens included ESAT-6, HspX, MPT 64, and IFN-γ. Various aptamer-based assays, such as electrochemical, fluorescent, and immunosensors, demonstrated effectiveness. Multiplex assays, particularly for IFN-γ, showed enhanced diagnostic accuracy. Aptamer-based assays exhibited discrimination between active TB and other conditions, showcasing their diagnostic value. Aptamers, especially in conjunction with nanomaterials, show promise in developing advanced TB biosensors with superior detection capabilities. Cost-effective devices with heightened sensitivity for clinical and screening use are crucial for TB control, emphasizing the need for ongoing research in this field.
Collapse
Affiliation(s)
- Elham Isaei
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nima Firouzeh
- Vector-Borne Disease Research Center, North Khorasan University of Medical Sciences, Bojnourd, Iran.
| |
Collapse
|
2
|
Jeyaraman M, Eltzov E. Enhancing food safety: A low-cost biosensor for Bacillus licheniformis detection in food products. Talanta 2024; 276:126152. [PMID: 38718642 DOI: 10.1016/j.talanta.2024.126152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 06/14/2024]
Abstract
To enhance food safety, the need for swift and precise detection of B. licheniformis, a bacterium prevalent in various environments, including soil and food products, is paramount. This study presents an innovative and cost-effective bioassay designed to specifically identify the foodborne pathogen, B. licheniformis, utilizing a colorimetric signal approach. The biosensor, featuring a 3D-printed architecture, incorporates a casein-based liquid-proof gelatine film, selectively liquefying in response to the caseinolytic/proteolytic activity of external enzymes from the pathogen. As the sample liquefies, it progresses through a color layer, causing the migration of dye to an absorbent layer, resulting in a distinct positive signal. This bioassay exhibits exceptional sensitivity, detecting concentrations as low as 1 CFU/mL within a 9.3-h assay duration. Notably, this cost-efficient bioassay outperforms conventional methods in terms of efficacy and cost-effectiveness, offering a straightforward solution for promptly detecting B. licheniformis in food samples.
Collapse
Affiliation(s)
- Mareeswaran Jeyaraman
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Center, Agricultural Research Organization, Rishon LeZion, 7505101, Israel; Agro-Nanotechnology and Advanced Materials Research Center, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Center, Agricultural Research Organization, Rishon LeZion, 7505101, Israel; Agro-Nanotechnology and Advanced Materials Research Center, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
3
|
Uhuo O, Waryo T, Oranzie M, Sanga N, Leve Z, January J, Tshobeni Z, Pokpas K, Douman S, Iwuoha E. Interferon gamma (IFN-γ)-sensitive TB aptasensor based on novel chitosan-indium nano-kesterite (χtCITS)-labeled DNA aptamer hairpin technology. Bioelectrochemistry 2024; 158:108693. [PMID: 38554559 DOI: 10.1016/j.bioelechem.2024.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/01/2024]
Abstract
There has been increasing interest in the use of biosensors for diagnosis of infectious diseases such as tuberculosis (TB) due to their simplicity, affordability, and potential for point-of-care application. The incorporation of aptamer molecules and nanomaterials in biosensor fabrication explores the advantages of high-binding affinity and low immunogenicity of aptamers as well as the high surface-to-volume ratio of nanomaterials, for increased aptasensor performance. In this work, we employed a novel microwave-synthesized copper indium tin sulfide (CITS) substituted-kesterite nanomaterial, together with a natural biopolymer (chitosan), for signal amplification and increased loading of aptamer molecules. Study of the optical properties of CITS nanomaterials showed strong absorption in the UV region characteristic of kesterite semiconductor nanomaterials. X-ray diffraction analysis confirmed the presence of the kesterite phase with average crystallite size of 6.188 nm. Fabrication of interferon-gamma (IFN-γ) TB aptasensor with a chitosan-CITS nanocomposite (χtCITS) increased the aptasensor's electrochemical properties by 77.5 % and improved aptamer loading by 73.7 %. The aptasensor showed excellent sensitivity to IFN-γ concentrations with limit of detection of 6885 fg/mL (405 fM) and linear range of 850-17000 fg/mL (50 - 1000 fM). The aptasensor also exhibited excellent storage and electrochemical stability, with good selectivity towards IFN-γ and possible real sample application.
Collapse
Affiliation(s)
- Onyinyechi Uhuo
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa.
| | - Tesfaye Waryo
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Marlon Oranzie
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Nelia Sanga
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Zandile Leve
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Jaymi January
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Ziyanda Tshobeni
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Keagan Pokpas
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Samantha Douman
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa; Department of Chemistry, PD Hahn Building, 28 Chemistry Road, Upper Campus, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | - Emmanuel Iwuoha
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa.
| |
Collapse
|
4
|
Li C, Che B, Deng L. Electrochemical Biosensors Based on Carbon Nanomaterials for Diagnosis of Human Respiratory Diseases. BIOSENSORS 2022; 13:12. [PMID: 36671847 PMCID: PMC9855565 DOI: 10.3390/bios13010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In recent years, respiratory diseases have increasingly become a global concern, largely due to the outbreak of Coronavirus Disease 2019 (COVID-19). This inevitably causes great attention to be given to the development of highly efficient and minimal or non-invasive methods for the diagnosis of respiratory diseases. And electrochemical biosensors based on carbon nanomaterials show great potential in fulfilling the requirement, not only because of the superior performance of electrochemical analysis, but also given the excellent properties of the carbon nanomaterials. In this paper, we review the most recent advances in research, development and applications of electrochemical biosensors based on the use of carbon nanomaterials for diagnosis of human respiratory diseases in the last 10 years. We first briefly introduce the characteristics of several common human respiratory diseases, including influenza, COVID-19, pulmonary fibrosis, tuberculosis and lung cancer. Then, we describe the working principles and fabrication of various electrochemical biosensors based on carbon nanomaterials used for diagnosis of these respiratory diseases. Finally, we summarize the advantages, challenges, and future perspectives for the currently available electrochemical biosensors based on carbon nanomaterials for detecting human respiratory diseases.
Collapse
|
5
|
Yunus MH, Yusof NA, Abdullah J, Sulaiman Y, Ahmad Raston NH, Md Noor SS. Simultaneous Amperometric Aptasensor Based on Diazonium Grafted Screen-Printed Carbon Electrode for Detection of CFP10 and MPT64 Biomarkers for Early Tuberculosis Diagnosis. BIOSENSORS 2022; 12:bios12110996. [PMID: 36354505 PMCID: PMC9688523 DOI: 10.3390/bios12110996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/02/2023]
Abstract
Early diagnosis is highly crucial for life-saving and transmission management of tuberculosis (TB). Despite the low sensitivity and time-consuming issues, TB antigen detection still relies on conventional smear microscopy and culture techniques. To address this limitation, we report the development of the first amperometric dual aptasensor for the simultaneous detection of Mycobacterium tuberculosis secreted antigens CFP10 and MPT64 for better diagnosis and control of TB. The developed sensor was based on the aptamers-antibodies sandwich assay and detected by chronoamperometry through the electrocatalytic reaction between peroxidase-conjugated antibodies, H2O2, and hydroquinone. The CFP10 and MPT64 aptamers were immobilized via carbodiimide covalent chemistry over the disposable dual screen-printed carbon electrodes modified with a 4-carboxyphenyl diazonium salt. Under optimized conditions, the aptasensor achieved a detection limit of 1.68 ng mL-1 and 1.82 ng mL-1 for CFP10 and MPT64 antigens, respectively. The developed assay requires a small sample amount (5 µL) and can be easily performed within 2.5 h. Finally, the dual aptasensor was successfully applied to clinical sputum samples with the obtained diagnostic sensitivity (n = 24) and specificity (n = 13) of 100%, respectively, suggesting the readiness of the developed assay to be used for TB clinical application.
Collapse
Affiliation(s)
- Muhammad Hafiznur Yunus
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Azah Yusof
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Jaafar Abdullah
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yusran Sulaiman
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurul Hanun Ahmad Raston
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Siti Suraiya Md Noor
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
6
|
Bioanalytical methods encompassing label-free and labeled tuberculosis aptasensors: A review. Anal Chim Acta 2022; 1234:340326. [DOI: 10.1016/j.aca.2022.340326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
|
7
|
Surface-Enhanced Carboxyphenyl Diazonium Functionalized Screen-Printed Carbon Electrode for the Screening of Tuberculosis in Sputum Samples. NANOMATERIALS 2022; 12:nano12152551. [PMID: 35893519 PMCID: PMC9329948 DOI: 10.3390/nano12152551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023]
Abstract
Curbing tuberculosis (TB) requires a combination of good strategies, including a proper prevention measure, diagnosis, and treatment. This study proposes an improvised tuberculosis diagnosis based on an amperometry approach for the sensitive detection of MPT64 antigen in clinical samples. An MPT64 aptamer specific to the target antigen was covalently attached to the carboxyphenyl diazonium-functionalized carbon electrode via carbodiimide chemistry. The electrochemical detection assay was adapted from a sandwich assay format to trap the antigen between the immobilized aptamer and horseradish peroxidase (HRP) tagged polyclonal anti-MPT64 antibody. The amperometric current was measured from the catalytic reaction response between HRP, hydrogen peroxide, and hydroquinone, which is used as an electron mediator. From the analysis, the detection limit in the measurement buffer was 1.11 ng mL-1. Additionally, the developed aptasensor exhibited a linear relationship between the current signal and the MPT64 antigen-spiked serum concentration ranging from 10 to 150 ng mL-1 with a 1.38 ng mL-1 detection limit. Finally, an evaluation using the clinical sputum samples from both TB (+) and TB (-) individuals revealed a sensitivity and specificity of 88% and 100%, respectively. Based on the analysis, the developed aptasensor was found to be simple in its fabrication, sensitive, and allowed for the efficient detection and diagnosis of TB in sputum samples.
Collapse
|
8
|
PCR-free electrochemical genosensor for Mycobacterium tuberculosis complex detection based on two-dimensional Ti3C2 Mxene-polypyrrole signal amplification. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
A novel labeled and label-free dual electrochemical detection of endotoxin based on aptamer-conjugated magnetic reduced graphene oxide-gold nanocomposite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Balkourani G, Brouzgou A, Archonti M, Papandrianos N, Song S, Tsiakaras P. Emerging materials for the electrochemical detection of COVID-19. J Electroanal Chem (Lausanne) 2021; 893:115289. [PMID: 33907536 PMCID: PMC8062413 DOI: 10.1016/j.jelechem.2021.115289] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 virus is still causing a dramatic loss of human lives worldwide, constituting an unprecedented challenge for the society, public health and economy, to overcome. The up-to-date diagnostic tests, PCR, antibody ELISA and Rapid Antigen, require special equipment, hours of analysis and special staff. For this reason, many research groups have focused recently on the design and development of electrochemical biosensors for the SARS-CoV-2 detection, indicating that they can play a significant role in controlling COVID disease. In this review we thoroughly discuss the transducer electrode nanomaterials investigated in order to improve the sensitivity, specificity and response time of the as-developed SARS-CoV-2 electrochemical biosensors. Particularly, we mainly focus on the results appeard on Au-based and carbon or graphene-based electrodes, which are the main material groups recently investigated worldwidely. Additionally, the adopted electrochemical detection techniques are also discussed, highlighting their pros and cos. The nanomaterial-based electrochemical biosensors could enable a fast, accurate and without special cost, virus detection. However, further research is required in terms of new nanomaterials and synthesis strategies in order the SARS-CoV-2 electrochemical biosensors to be commercialized.
Collapse
Affiliation(s)
- G Balkourani
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38834 Volos, Greece
| | - A Brouzgou
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38834 Volos, Greece
- Department of Energy Systems, Faculty of Technology, University of Thessaly, Geopolis, 41500 Larissa, Greece
| | - M Archonti
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38834 Volos, Greece
| | - N Papandrianos
- Department of Energy Systems, Faculty of Technology, University of Thessaly, Geopolis, 41500 Larissa, Greece
| | - S Song
- The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - P Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38834 Volos, Greece
- Laboratory of Materials and Devices for Clean Energy, Department of Technology of Electrochemical Processes, Ural Federal University, 19 Mira Str., Yekaterinburg 620002, Russian Federation
- Laboratory of Electrochemical Devices based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry (RAS), Yekaterinburg 620990, Russian Federation
| |
Collapse
|
11
|
Salimiyan Rizi K, Aryan E, Meshkat Z, Ranjbar G, Sankian M, Ghazvini K, Farsiani H, Pourianfar HR, Rezayi M. The overview and perspectives of biosensors and Mycobacterium tuberculosis: A systematic review. J Cell Physiol 2020; 236:1730-1750. [PMID: 32930412 DOI: 10.1002/jcp.30007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) is referred to as a "consumption" or phthisis, which has been a fatal human disease for thousands of years. Mycobacterium tuberculosis (M. tb) might have been responsible for the death of more humans than any other bacterial pathogens. Therefore, the rapid diagnosis of this bacterial infection plays a pivotal role in the timely and appropriate treatment of the patients, as well as the prevention of disease spread. More than 98% of TB cases are reported in developing countries, and due to the lack of well-equipped and specialized diagnostic laboratories, development of effective diagnostic methods based on biosensors is essential for this bacterium. In this review, original articles published in English were retrieved from multiple databases, such as PubMed, Scopus, Google Scholar, Science Direct, and Cochrane Library during January 2010-October 2019. In addition, the reference lists of the articles were also searched. Among 109 electronically searched citations, 42 articles met the inclusion criteria. The highest potential and wide usage of biosensors for the diagnosis of M. tb and its drug resistance belonged to DNA electrochemical biosensors (isoniazid and rifampin strains). Use of biosensors is expanding for the detection of resistant strains of anti-TB antibiotics with high sensitivity and accuracy, while the speed of these sensory methods is considered essential as well. Furthermore, the lowest limit of detection (0.9 fg/ml) from an electrochemical DNA biosensor was based on graphene-modified iron-oxide chitosan hybrid deposited on fluorine tin oxide for the MPT64 antigen target. According to the results, the most common methods used for M. tb detection include acid-fast staining, cultivation, and polymerase chain reaction (PCR). Although molecular techniques (e.g., PCR and real-time PCR) are rapid and sensitive, they require sophisticated laboratory and apparatuses, as well as skilled personnel and expertise in the commentary of the results. Biosensors are fast, valid, and cost-efficient diagnostic method, and the improvement of their quality is of paramount importance in resource-constrained settings.
Collapse
Affiliation(s)
- Kobra Salimiyan Rizi
- Department of Medical Bacteriology and Virology, School of Medicine, Antimicrobial Resistance Research Center, Qaem University Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Aryan
- Department of Medical Bacteriology and Virology, School of Medicine, Antimicrobial Resistance Research Center, Qaem University Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Department of Medical Bacteriology and Virology, School of Medicine, Antimicrobial Resistance Research Center, Qaem University Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Golnaz Ranjbar
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Division of Immunobiochemistry, Immunology Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Department of Medical Bacteriology and Virology, School of Medicine, Antimicrobial Resistance Research Center, Qaem University Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Department of Medical Bacteriology and Virology, School of Medicine, Antimicrobial Resistance Research Center, Qaem University Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Pourianfar
- Research Department of Industrial Fungi Biotechnology, Research Institute for Industrial Biotechnology, Academic Centre for Education, Culture and Research [ACECR]-Khorasan Razavi Province Branch, Mashhad, Iran
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Menon S, Mathew MR, Sam S, Keerthi K, Kumar KG. Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. J Electroanal Chem (Lausanne) 2020; 878:114596. [PMID: 32863810 PMCID: PMC7446658 DOI: 10.1016/j.jelechem.2020.114596] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022]
Abstract
The rise of emerging infectious diseases (EIDs) as well as the increase in spread of existing infections is threatening global economies and human lives, with several countries still fighting repeated onslaught of a few of these epidemics. The catastrophic impact a pandemic has on humans and economy should serve as a reminder to be better prepared to the advent of known and unknown pathogens in the future. The goal of having a set of initiatives and procedures to tackle them is the need of the hour. Rapid detection and point-of-care (POC) analysis of pathogens causing these diseases is not only a problem entailing the scientific community but also raises challenges in tailoring appropriate treatment strategies to the healthcare sector. Among the various methods used to detect pathogens, Electrochemical Biosensor Technology is at the forefront in the development of POC devices. Electrochemical Biosensors stand in good stead due to their rapid response, high sensitivity and selectivity and ease of miniaturization to name a few advantages. This review explores the innovations in electrochemical biosensing based on the various electroanalytical techniques including voltammetry, impedance, amperometry and potentiometry and discusses their potential in diagnosis of emerging and re-emerging infectious diseases (Re-EIDs), which are potential pandemic threats. This review offers a detailed description of the latest developments in electrochemical biosensors for emerging and re-emerging infectious diseases. Advantages and limitations of various types of electrochemical biosensor techniques are demonstrated. Discusses the latest electrochemical biosensors for COVID-19. Challenges and future prospects of electrochemical biosensors have been discussed in this review.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| | - Manna Rachel Mathew
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| | - Sonia Sam
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| | - K Keerthi
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| | - K Girish Kumar
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| |
Collapse
|
13
|
Chu ZJ, Xiao SJ, Yuan MY, Wang LZ, Wang SP, Zhang GM, Zhang ZB. Rapid and sensitive detection of Mycobacterium tuberculosis based on strand displacement amplification and magnetic beads. LUMINESCENCE 2020; 36:66-72. [PMID: 32706457 DOI: 10.1002/bio.3918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022]
Abstract
Tuberculosis is one of the main infectious diseases threatening public health, and the development of simple, rapid, and cost-saving methods for tuberculosis diagnosis is of profound importance for tuberculosis prevention and treatment. The bacterium Mycobacterium tuberculosis (MTB) is the pathogen that causes tuberculosis, and assaying for MTB is the only criterion for tuberculosis diagnosis. A new enzyme-free method based on strand displacement amplification and magnetic beads was developed for simple, rapid, and cost-saving MTB detection. Under optimum conditions, a good linear relationship could be observed between fluorescence and MTB specific DNA concentration ranging from 0.05 to 150 nM with a correlation coefficient of 0.993 (n = 8) and a detection limit of 47 pM (3σ/K). The present method also distinguished a one base mismatch from MTB specific DNA, showing great promise for MTB genome single base polymorphism analysis. MTB specific DNA content in polymerase chain reaction samples was successfully detected using the new method, and recoveries were 97.8-100.8%, indicating that the present method had high accuracy and shows good potential for the early diagnosis of tuberculosis.
Collapse
Affiliation(s)
- Zhao Jun Chu
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, China
| | - Sai Jin Xiao
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, China.,School of Chemistry, Biology and Material Science, ECUT, Nanchang, China
| | - Ming Yue Yuan
- School of Chemistry, Biology and Material Science, ECUT, Nanchang, China
| | - Li Zhi Wang
- School of Chemistry, Biology and Material Science, ECUT, Nanchang, China
| | - Shan Ping Wang
- School of Chemistry, Biology and Material Science, ECUT, Nanchang, China
| | - Guang Mei Zhang
- School of Chemistry, Biology and Material Science, ECUT, Nanchang, China
| | - Zhi Bin Zhang
- School of Chemistry, Biology and Material Science, ECUT, Nanchang, China
| |
Collapse
|
14
|
Porfireva AV, Goida AI, Rogov AM, Evtugyn GA. Impedimetric DNA Sensor Based on Poly(proflavine) for Determination of Anthracycline Drugs. ELECTROANAL 2020. [DOI: 10.1002/elan.201900653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Anna V. Porfireva
- Analytical Chemistry Department of Kazan Federal University Kremlevskaya, 18 420008 Kazan Russian Federation
| | - Anastasia I. Goida
- Analytical Chemistry Department of Kazan Federal University Kremlevskaya, 18 420008 Kazan Russian Federation
| | - Alexey M. Rogov
- Interdisciplinary Center of Analytical Microscopy of Kazan Federal University 18 Kremlevskaya Street Kazan 420008 Russian Federation
| | - Gennady A. Evtugyn
- Analytical Chemistry Department of Kazan Federal University Kremlevskaya, 18 420008 Kazan Russian Federation
| |
Collapse
|
15
|
Chen Y, Liu X, Guo S, Cao J, Zhou J, Zuo J, Bai L. A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C 60NPs decorated N-CNTs/GO nanocomposite coupled with conductive PEI-functionalized metal-organic framework. Biomaterials 2019; 216:119253. [PMID: 31202103 DOI: 10.1016/j.biomaterials.2019.119253] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/26/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023]
Abstract
The present work described a novel sandwich-type electrochemical aptasensor for rapid and sensitive determination of Mycobacterium tuberculosis MPT64 antigen. Herein, a novel carbon nanocomposite composed of fullerene nanoparticles, nitrogen-doped carbon nanotubes and graphene oxide (C60NPs-N-CNTs/GO) was facilely synthesized for the first time, which not only possessed a large specific surface area and excellent conductivity, but also exhibited outstanding inherent electroactive property, and therefore served as nanocarrier and redox nanoprobe simultaneously. Gold nanoparticles (AuNPs) was then uniformly anchored onto the surface of such nanocomposite via Au-N bonds to bind with MPT64 antigen aptamer Ⅱ (MAA Ⅱ), forming the tracer label to realize generation and amplification of electrochemical signal. Additionally, conductive polyethyleneimine (PEI)-functionalized Fe-based metal-organic framework (P-MOF) was used as a sensing platform to absorb bimetallic core-shell Au-Pt nanoparticles (Au@Pt), which could accelerate electron transfer and increase the immobilization of MPT64 antigen aptamer Ⅰ (MAA Ⅰ). After the typical sandwich-type protein-aptamer recognition, the inherent electroactivity of the tracer label was provoked by tetraoctylammonium bromide (TOAB), leading to a well-defined current response. Under the optimum condition, the proposed aptasensor showed a wide linear range for MPT64 detection from 1 fg/mL to 1 ng/mL with a limit of detection (LOD) as low as 0.33 fg/mL. More importantly, it was successfully used for MPT64 antigen detection in human serum, exhibiting a promising prospect for TB diagnosis in clinical practice.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China; Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xinzhu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jun Cao
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, PR China
| | - Jing Zhou
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jianli Zuo
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lijuan Bai
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
16
|
Bharti A, Agnihotri N, Prabhakar N. A voltammetric hybridization assay for microRNA-21 using carboxylated graphene oxide decorated with gold-platinum bimetallic nanoparticles. Mikrochim Acta 2019; 186:185. [DOI: 10.1007/s00604-019-3302-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/03/2019] [Indexed: 12/21/2022]
|
17
|
Sypabekova M, Jolly P, Estrela P, Kanayeva D. Electrochemical aptasensor using optimized surface chemistry for the detection of Mycobacterium tuberculosis secreted protein MPT64 in human serum. Biosens Bioelectron 2019; 123:141-151. [DOI: 10.1016/j.bios.2018.07.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
|
18
|
Almandil NB, Ibrahim M, Ibrahim H, Kawde AN, Shehatta I, Akhtar S. A hybrid nanocomposite of CeO2–ZnO–chitosan as an enhanced sensing platform for highly sensitive voltammetric determination of paracetamol and its degradation product p-aminophenol. RSC Adv 2019; 9:15986-15996. [PMID: 35521371 PMCID: PMC9064269 DOI: 10.1039/c9ra01587f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/13/2019] [Indexed: 11/21/2022] Open
Abstract
A highly selective electrochemical sensor was fabricated based on CeO2–ZnO–chitosan hybrid nanocomposite modified electrode and was successfully applied for the determination of PAR in pharmaceutical formulations.
Collapse
Affiliation(s)
- Noor B. Almandil
- Department of Clinical Pharmacy Research
- Institute for Research and Medical Consultations
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Saudi Arabia
| | - Mohamed Ibrahim
- Department of Clinical Pharmacy Research
- Institute for Research and Medical Consultations
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Saudi Arabia
| | - Hossieny Ibrahim
- Chemistry Department
- Faculty of Science
- Assiut University
- Assiut
- Egypt
| | - Abdel-Nasser Kawde
- Chemistry Department
- College of Sciences
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Ibrahim Shehatta
- Basic and Applied Scientific Research Center (BASRC)
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Saudi Arabia
| | - Sultan Akhtar
- Electron Microscopy Unit
- Institute for Research and Medical Consultations
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Saudi Arabia
| |
Collapse
|
19
|
You H, Mu Z, Zhao M, Zhou J, Chen Y, Bai L. Voltammetric aptasensor for sulfadimethoxine using a nanohybrid composed of multifunctional fullerene, reduced graphene oxide and Pt@Au nanoparticles, and based on direct electron transfer to the active site of glucose oxidase. Mikrochim Acta 2018; 186:1. [PMID: 30515617 DOI: 10.1007/s00604-018-3127-5] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 01/12/2023]
Abstract
This work describes a voltammetric and ultrasensitive aptasensor for sulfadimethoxine (SDM). It is based on signal amplification by making use of a multifunctional fullerene-doped reduced graphene oxide nanohybrid. The nanohybrid was coated with poly(diallyldimethylammonium chloride) to obtain a material (P-C60-rGO) with large specific surface area and a unique adsorption ability for loading it with glucose oxidase (GOx). The coating also facilitates the direct electron transfer between the active site of GOx and the glassy carbon electrode (GCE). The P-C60-rGO were then modified with Pt@Au nanoparticles, and the thiolated SDM-binding aptamer was immobilized on the nanoparticles. On exposure of the modified GCE to a solution containing SDM, it binds to the aptamer. The results were recorded through the signal responses generated from the redox center of GOx (FAD/FADH2) by cyclic voltammetry at a scan rate of 100 mV·s-1 from -0.25 to -0.65 V. Accordingly, The sensor has good specificity and stability, and response is linear in the 10 fg·mL-1 to 50 ng·mL-1 SDM concentration range with a detection limit of 8.7 fg·mL-1. Graphical abstract Schematic presentation of an electrochemical aptasensor for sulfadimethoxine (SDM) using multifunctional fullerene-doped graphene (C60-rGO) nanohybrids for amplification. The limit of detection for SDM is as low as 8.7 fg·mL-1.
Collapse
Affiliation(s)
- Huan You
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhaode Mu
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jing Zhou
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yongjie Chen
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lijuan Bai
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
20
|
Dual-aptamer-based voltammetric biosensor for the Mycobacterium tuberculosis antigen MPT64 by using a gold electrode modified with a peroxidase loaded composite consisting of gold nanoparticles and a Zr(IV)/terephthalate metal-organic framework. Mikrochim Acta 2018; 185:543. [PMID: 30421038 DOI: 10.1007/s00604-018-3081-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
An ultrasensitive aptasensor is described for the voltammetric determination of the Mycobacterium tuberculosis antigen MPT64 in human serum. Firstly, an amino-modified Zr(IV) based metal-organic framework (MOF; type UiO-66-NH2; made up from Zr6O32 units and 2-amino-terephthalate linkers) with a high specific surface was synthesized and used as the carrier of the gold nanoparticles and the aptamers. Then the signalling nanoprobe was fabricated after the horseradish peroxidase was cast on the nanomaterials. The two aptamers with synergistic effect on binding MPT64 were anchored on the gold electrode. Differential pulse voltammetry indicated that the peak current is highest if the ratio of the two aptamers is 1:1. The assay has a wide linear response range (0.02 to 1000 pg·mL-1 of MPT64) and a 10 fg·mL-1 detection limit at a working potential of around -96 mV (vs Ag/AgCl). The results show this biosensor to be a viable tool for detection of tuberculosis at an early stage. Graphical abstract Schematic presentation of the construction of the nanoprobe and biosensor. Firstly, the surface of UiO-66-NH2 was anchored to gold nanoparticles (AuNPs). A dual-aptamer and HRP were added to form the signalling nanoprobe (Aptamer/HRP/AuNPs/UiO-66-NH2). Then, the aptamers I and II were attached on the surface of gold electrode and 6-mercapto-1-hexanol was used to block the uncovered active site of the gold electrode. Finally, after incubation with MPT64, the signalling nanoprobe was dropped on the modified electrode and the DPV measurements was used for the analysis of Mycobacterium tuberculosis antigen MPT64. (PVP: poly(vinyl pyrrolidone); HRP: horseradish peroxidase; MCH: 6-Mercapto-1-hexanol; HQ: hydroquinone; BQ: benzoquinone).
Collapse
|
21
|
Voltammetric immunoassay for Mycobacterium tuberculosis secretory protein MPT64 based on a synergistic amplification strategy using rolling circle amplification and a gold electrode modified with graphene oxide, Fe3O4 and Pt nanoparticles. Mikrochim Acta 2018; 185:436. [DOI: 10.1007/s00604-018-2972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
|
22
|
Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a nanohybrid material composed of reduced graphene oxide and a metal-organic framework. Mikrochim Acta 2018; 185:379. [PMID: 30019137 DOI: 10.1007/s00604-018-2884-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 01/23/2023]
Abstract
The 6-kDa early secretory antigenic target referred to as ESAT-6 is a virulence factor secreted by Mycobacterium tuberculosis (MTB). This work describes a voltammetric aptasensor for ultrasensitive detection of ESAT-6. Reduced graphene oxide doped with metal-organic framework (MOF-rGO) was deposited on a glassy carbon electrode (GCE). This increases the immobilization of electroactive Toluidine Blue (TB) and facilitates the electron transfer from TB to the modified GCE. Platinum/gold core/shell (Pt@Au) nanoparticles were used to assemble thiolated ESAT-6 binding aptamer (EBA) on a modified electrode and to further amplify the response to TB. The modified GCE, typically operated at -0.36 V (vs. SCE), has a linear response in 1.0 × 10-4 to 2.0 × 102 ng⋅mL-1 ESAT-6 concentration range, and the limit of detection (LOD) for ESAT-6 is as low as 3.3 × 10-5 ng⋅mL-1. It exhibits satisfactory specificity and reproducibility when analyzing spiked human serum. Graphical abstract Schematic presentation of a voltammetric aptasensor for Mycobacterium tuberculosis antigen ESAT-6 using a glassy carbon electrode modified with reduced graphene oxide (rGO) and a metal-organic framework (MOF). The limit of detection for ESAT-6 is as low as 3.3 × 10-5 ng/mL.
Collapse
|
23
|
Gupta S, Kakkar V. Recent technological advancements in tuberculosis diagnostics - A review. Biosens Bioelectron 2018; 115:14-29. [PMID: 29783081 DOI: 10.1016/j.bios.2018.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/26/2018] [Accepted: 05/09/2018] [Indexed: 01/14/2023]
Abstract
Early diagnosis and on-time effective treatment are indispensable for Tuberculosis (TB) control - a life threatening infectious communicable disease. The conventional techniques for diagnosing TB normally take two to three weeks. This delay in diagnosis and further increase in detection complexity due to the emerging risks of XDR-TB (Extensively drug Resistant-TB) and MDR-TB (Multidrug Resistant-TB) are evoking interest of researchers in the field of developing rapid TB detection techniques such as biosensing and other point-of-care (POC) techniques. Biosensing technologies along with the collaboration with nanotechnology have enormous potential to boost the MTB detection and for overall management in clinical diagnosis. A diverse range of portable, sensitive and rapid biosensors based on different signal transducer principles and with different biomarkers detection capabilities have been developed for TB detection in the early stages. Further, a lot of progress has been achieved over the years in developing various point-of-care diagnostic tools including non-molecular methods and molecular techniques. The objective of this study is to present a succinct review of the available TB detection techniques that are either in use or under development. The focus of this review is on the current developments occurred in nano-biosensing technologies. A synopsis of ameliorations in different non-molecular diagnostic tools and progress in the field of molecular techniques along with the role of emerging Lab-on-Chip technology for diagnosing and mitigating the TB consequences have also been presented.
Collapse
Affiliation(s)
- Shagun Gupta
- School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra 182320, India.
| | - Vipan Kakkar
- School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra 182320, India.
| |
Collapse
|
24
|
Ansari N, Ghazvini K, Ramezani M, Shahdordizadeh M, Yazdian-Robati R, Abnous K, Taghdisi SM. Selection of DNA aptamers against Mycobacterium tuberculosis Ag85A, and its application in a graphene oxide-based fluorometric assay. Mikrochim Acta 2017; 185:21. [PMID: 29594592 DOI: 10.1007/s00604-017-2550-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023]
Abstract
The Mycobacterium Ag85 complex is the major secretory protein of M. tuberculosis. It is a potential marker for early diagnosis of tuberculosis (TB). The authors have identified specific aptamers for Ag85A (FbpA) via protein SELEX using magnetic beads. After twelve rounds of selection, two aptamers (Apt8 and Apt22) were chosen from different groups, and their binding constants were determined by flow cytometry. Apt22 (labeled with Atto 647N) binds to FbpA with high affinity (Kd = 63 nM) and specificity. A rapid, sensitive, and low-cost fluorescent assay was designed based on the use of Apt22 and graphene oxide, with a limit of detection of 1.5 nM and an analytical range from 5 to 200 nM of FbpA. Graphical abstract Schematic illustration of graphene oxide-based aptasensor for fluorometric determination of FbpA.
Collapse
Affiliation(s)
- Najmeh Ansari
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Buali Research Institute, Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Mahin Shahdordizadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Rezvan Yazdian-Robati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran.
| |
Collapse
|