1
|
Tan K, Ma H, Mu X, Wang Z, Wang Q, Wang H, Zhang XD. Application of gold nanoclusters in fluorescence sensing and biological detection. Anal Bioanal Chem 2024; 416:5871-5891. [PMID: 38436693 DOI: 10.1007/s00216-024-05220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Gold nanoclusters (Au NCs) exhibit broad fluorescent spectra from visible to near-infrared regions and good enzyme-mimicking catalytic activities. Combined with excellent stability and exceptional biocompatibility, the Au NCs have been widely exploited in biomedicine such as biocatalysis and bioimaging. Especially, the long fluorescence lifetime and large Stokes shift attribute Au NCs to good probes for fluorescence sensing and biological detection. In this review, we systematically summarized the molecular structure and fluorescence properties of Au NCs and highlighted the advances in fluorescence sensing and biological detection. The Au NCs display high sensitivity and specificity in detecting iodine ions, metal ions, and reactive oxygen species, as well as certain diseases based on the fluorescence activities of Au NCs. We also proposed several points to improve the practicability and accelerate the clinical translation of the Au NCs.
Collapse
Affiliation(s)
- Kexin Tan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huizhen Ma
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Swain S, Lin TY, Chou IH, Liu SC, Mallick BC, Lin HY, Huang CH. Photoactive nanocatalysts as DTT-assisted BSA-AuNCs with enhanced oxidase-mimicking ability for sensitive fluorometric detection of antioxidants. J Nanobiotechnology 2024; 22:585. [PMID: 39342215 PMCID: PMC11438146 DOI: 10.1186/s12951-024-02850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Redox imbalance and oxidative stress are increasingly recognized as significant factors in health disorders such as neurodegenerative disorders, premature aging and cancer. However, detecting antioxidant levels that is crucial for managing oxidative stress, can be challenging due to existing assays' limitations, such as insensitivity to thiol-containing antioxidants. This study presents a simple fluorescence-based assay for antioxidant detection employing the enhanced photocatalytic oxidase-like activity of dithiothreitol (DTT)-assisted bovine serum albumin (BSA)-stabilized gold nanoclusters (DTT@BSA-AuNCs). The reported nanozyme exhibits remarkable stability, versatility, and catalytic activity. Under LED irradiation, DTT@BSA-AuNCs generate singlet oxygen, which converts non-fluorescent thiamine to fluorescent thiochrome, utilizing dissolved oxygen for catalysis. Antioxidants inhibit thiochrome formation, leading to fluorescence quenching. This method enables sensitive detection of antioxidants such as ascorbic acid and glutathione with limits of detection of 0.08 µM and 0.32 µM, respectively, under neutral pH, outperforming previous studies. The assay successfully detects antioxidants in human saliva and cancer cell models. The DTT@BSA-AuNCs-based assay offers a cost-effective, sensitive, and straightforward approach for detecting antioxidants in biological samples, facilitating improved monitoring of oxidative stress in various diseases.
Collapse
Affiliation(s)
- Sanskruti Swain
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Ting-Yi Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - I-Hsuan Chou
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Bikash C Mallick
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsing-Ying Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chen-Han Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Ali R, Almousa R, Aly SM, Saleh SM. Nanoscale potassium sensing based on valinomycin-anchored fluorescent gold nanoclusters. Mikrochim Acta 2024; 191:299. [PMID: 38709371 DOI: 10.1007/s00604-024-06392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Gold nanoclusters are a smart platform for sensing potassium ions (K+). They have been synthesized using bovine serum albumin (BSA) and valinomycin (Val) to protect and cap the nanoclusters. The nanoclusters (Val-AuNCs) produced have a red emission at 616 nm under excitation with 470 nm. In the presence of K+, the valinomycin polar groups switch to the molecule's interior by complexing with K+, forming a bracelet structure, and being surrounded by the hydrophobic exterior conformation. This structure allows a proposed fluorometric method for detecting K+ by switching between the Val-AuNCs' hydrophilicity and hydrophobicity, which induces the aggregation of gold nanoclusters. As a result, significant quenching is seen in fluorescence after adding K+. The quenching in fluorescence in the presence of K+ is attributed to the aggregation mechanism. This sensing technique provides a highly precise and selective sensing method for K+ in the range 0.78 to 8 µM with LOD equal to 233 nM. The selectivity of Val-AuNCs toward K+ ions was investigated compared to other ions. Furthermore, the Val-AuNCs have novel possibilities as favorable sensor candidates for various imaging applications. Our detection technique was validated by determining K+ ions in postmortem vitreous humor samples, which yielded promising results.
Collapse
Affiliation(s)
- Reham Ali
- Department of Chemistry, College of Science, Qassim University, 52571, Buraidah, Saudi Arabia.
- Chemistry Department, Faculty of Science, Suez University, Suez, 43518, Egypt.
| | - Reem Almousa
- Department of Chemistry, College of Science, Qassim University, 52571, Buraidah, Saudi Arabia
| | - Sanaa M Aly
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, 52571, Buraidah, Saudi Arabia
- Department of Petroleum Refining and Petrochemical Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| |
Collapse
|
4
|
Ali R, Saleh SM. Design a Friendly Nanoscale Chemical Sensor Based on Gold Nanoclusters for Detecting Thiocyanate Ions in Food Industry Applications. BIOSENSORS 2024; 14:223. [PMID: 38785697 PMCID: PMC11118002 DOI: 10.3390/bios14050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
The surfactant cetyltrimethylammonium bromide (CTAB) induces the aggregation of gold nanoclusters (GNCs), leading to the development of a proposed fluorometric technique for detecting thiocyanate (SCN-) ions based on an anti-aggregation mechanism. This approach is straightforward to execute, highly sensitive, and selective. A significant quenching effect occurs in fluorescence upon using the aggregation agent CTAB in GNCs synthesis, resulting in a transition from intense red fluorescence to dim red. The decrease in fluorescence intensity of GNCs in the presence of CTAB is caused by the mechanism of fluorescence quenching mediated by aggregation. As the levels of SCN- rise, the fluorescence of CTAB-GNCs increases; this may be detected using spectrofluorometry or by visually inspecting under UV irradiation. The recovery of red fluorescence of CTAB-GNCs in the presence of SCN- enables the precise and discerning identification of SCN- within the concentration range of 2.86-140 nM. The minimum detectable concentration of the SCN- ions was 1 nM. The selectivity of CTAB-GNCs towards SCN- ions was investigated compared to other ions, and it was demonstrated that CTAB-GNCs exhibit exceptional selectivity. Furthermore, we believe that CTAB-GNCs have novel possibilities as favorable sensor candidates for various industrial applications. Our detection technique was validated by analyzing SCN- ions in milk samples, which yielded promising results.
Collapse
Affiliation(s)
- Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Chemistry Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Department of Petroleum Refining and Petrochemical Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| |
Collapse
|
5
|
Saleh SM, Altaiyah S, Ali R. Dual-emission ciprofloxacin-gold nanoclusters enable ratiometric sensing of Cu 2+, Al 3+, and Hg 2. Mikrochim Acta 2024; 191:199. [PMID: 38483615 DOI: 10.1007/s00604-024-06265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
An innovative triple optical sensor is presented that utilizes gold nanoclusters (GNCs) stabilized with ciprofloxacin (CIP) and bovine serum albumin (BSA). The sensor is designed to identify three critical metal ions, namely Cu2+, Al3+, and Hg2+. Under 360 nm excitation, the synthesized CIP-BSA-GNCs demonstrate dual fluorescence emission with peaks at 448 nm (blue) and 612 nm (red). The red emission is associated with the interior of the CIP-BSA-GNCs, whereas the blue emission results from the surface-bound CIP molecules. The sensitive and selective fluorescent nanosensor CIP-BSA-GNCs were employed to detect Cu2+, Al3+, and Hg2+ ions. Cu2+ effectively quenched the fluorescence intensity of the CIP-BSA-GNCs at both peaks via the internal charge transfer mechanism (ICT). Cu2+ could be detected within the concentration range 1.13 × 10-3 to 0.05 µM, with a detection limit of 0.34 nM. Al3+ increased the intensity of CIP fluorescence at 448 nm via the chelation-induced fluorescence enhancement mechanism. The fluorescence intensity of the core CIP-BSA-GNCs at 612 nm was utilized as a reference signal. Thus, the ratiometric detection of Al3+ succeeded with a limit of detection of 0.21 nM within the dynamic range 0.69 × 10-3 to 0.07 µM. Hg2+ effectively quenched the fluorescence intensity of the CIP-BSA-GNCs at 612 nm via the metallophilic interaction mechanism. The fluorescence intensity of CIP molecules at 448 nm was utilized as a reference signal. This allowed for the ratiometric detection of Hg2+ with a detection limit of 0.7 nM within the concentration range 2.3 × 10-3 to 0.1 µM.
Collapse
Affiliation(s)
- Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia.
- Department of Petroleum Refining and Petrochemical Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt.
| | - Shahad Altaiyah
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia
- Chemistry Department, Faculty of Science, Suez University, Suez, 43518, Egypt
| |
Collapse
|
6
|
Shekhar S, Sarker R, Mahato P, Agrawal S, Mukherjee S. pH-Switchable phenylalanine-templated copper nanoclusters: CO 2 probing and efficient peroxidase mimicking activity. NANOSCALE 2023; 15:15368-15381. [PMID: 37698850 DOI: 10.1039/d3nr04195f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Inter-cluster conversion through the strategic tuning of external stimuli and thereby modulation of the optical properties of metal nanoclusters (MNCs) is an emerging domain for exploration. Herein, we report the preparation of blue-emitting CuNCs using phenylalanine (Phe) as a template under acidic conditions (pH ∼ 4). The as-prepared CuNCs exhibit a sequential tuning of the photophysical properties upon varying the pH of the solution from pH ∼4 to pH ∼12. Blue-emitting CuNCs (B-CuNCs, λem = 410 nm) are systematically converted to cyan-emitting CuNCs (C-CuNCs, λem = 490 nm) with a large red-shifted emission maximum by 80 nm as a function of pH. Our present investigation delineates an unprecedented switchability of the photoluminescence (PL) properties of the CuNCs with the variations of the pH from pH ∼4 to pH ∼12. Both the Phe-templated CuNCs (B-CuNCs and C-CuNCs) were broadly characterized by various spectroscopic and morphological techniques. The X-ray photoelectron spectroscopy (XPS) studies reveal the presence of different oxidation states in the metallic core of B-CuNCs and C-CuNCs. These results in turn substantiate the pH-induced intercluster conversion of CuNCs through the substantial change in their core composition as well as valence states. Owing to the pH sensitivity, the CuNCs act as an efficient and highly sensitive probe for CO2, and quantitative estimation of the dissolved CO2 in the form of bicarbonate ions has been achieved through the enhancement of the PL intensity, wherein a very low value of the limit of detection (LOD) of ∼60 μM was obtained. Furthermore, we demonstrated that the CuNCs act as an efficient bio-catalyst with peroxidase mimicking enzymatic activity which has been investigated using OPD as a substrate under physiological conditions (pH ∼7.4 and temperature ∼37 °C). The mechanistic investigations confirmed that the oxidation of OPD mainly proceeds through the generation of hydroxyl radicals (˙OH). We hope the present investigations shed light on a multidimensional aspect of MNCs and uncover an upsurging recent interest in MNCs to act as an artificial enzyme.
Collapse
Affiliation(s)
- Shashi Shekhar
- Department of Chemistry, Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India.
| | - Raibat Sarker
- Department of Chemistry, Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India.
| | - Paritosh Mahato
- Department of Chemistry, Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India.
| | - Sameeksha Agrawal
- Department of Chemistry, Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India.
| | - Saptarshi Mukherjee
- Department of Chemistry, Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
7
|
Cheng Y, Zhou H, Xu J, Zhao Y, Chen X, Antoine R, Ding M, Zhang K, Zhang S. Photoluminescent gold nanoclusters as two-photon excited ratiometric pH sensor and photoactivated peroxidase. Mikrochim Acta 2023; 190:225. [PMID: 37195510 DOI: 10.1007/s00604-023-05803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/16/2023] [Indexed: 05/18/2023]
Abstract
A two-photon excited ratiometric fluorescent pH sensor is reported by combining L-cysteine-protected AuNCs (Cys@AuNCs) with fluorescein isothiocyanate (FITC). Cys@AuNCs were synthesized through a one-step self-reduction route and showed pH-responsive photoluminescence at 650 nm. Benefiting from the opposite pH response of Cys@AuNCs and FITC, the fluorescence ratio (F515 nm/F650 nm) of FITC&Cys@AuNCs provided a large dynamic range of 200-fold for pH measurement in the response interval of pH 5.0-8.0. Based on the excellent two-photon absorption coefficient of Cys@AuNCs, the sensor was expected to achieve sensitive quantitation of pH in living cells under two-photon excitation. In addition, colorimetric biosensing based on enzyme-like metal nanoclusters has attracted wide attention due to their low-cost, simplicity, and practicality. It is crucial to develop high catalytic activity nanozyme from the viewpoint of practical application. The synthesized Cys@AuNCs exhibited excellent photoactivated peroxidase-like activity with high substrate affinity and catalytic reaction rate, promising for rapid colorimetric biosensing of field analysis and the control of catalytic reactions by photostimulation.
Collapse
Affiliation(s)
- Yuchi Cheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Yu Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Xihang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, F69100, Villeurbanne, France.
| | - Meng Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No.3663, North Zhongshan Road, Shanghai, 200062, China
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No.3663, North Zhongshan Road, Shanghai, 200062, China.
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Road, Shanghai, 200241, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
8
|
Yan X, Zhong W, Qu S, Li Z, Shang L. Photochromic Tungsten Oxide Quantum Dots-based Fluorescent Photoswitches towards Dual-mode Anti-counterfeiting Application. J Colloid Interface Sci 2023; 646:855-862. [PMID: 37235931 DOI: 10.1016/j.jcis.2023.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Development of new anti-counterfeiting technology to increase the difficulty of imitation and decoding is becoming increasingly important, but still remains challenging yet. In this work, we report the design of new fluorescence photoswitches based on photochromic tungsten oxide quantum dots (WO3 QDs) for dual-mode anti-counterfeiting applications. Complexing photochromic WO3 QDs with fluorescent gold nanoclusters (AuNCs) enables the construction of a photoswitchable fluorescence system (WO3-AuNCs) based on fluorescence resonance energy transfer. Detailed spectral and photophysical characterization showed that WO3 QDs well-retain the photochromic properties within the WO3-AuNCs composite. Importantly, photoresponsive and highly reversible switching of both color and fluorescence signals was successfully achieved by simply alternating the irradiation with UV and visible light. Potential utility of photoswitchable WO3-AuNCs composite as novel dual-mode anti-counterfeiting materials has been successfully demonstrated, including photoswitchable ink, rewritable paper and number encryption. Compared with other anti-counterfeiting materials, the present photochromic WO3 QDs-based fluorescent switches are easily synthesized and handled, and they can provide dual security mode (color and fluorescence). This work provides a generable WO3 QDs-assisted strategy of fabricating advanced fluorescence photoswitches for versatile optical counterfeiting applications.
Collapse
Affiliation(s)
- Xiaojian Yan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Shaohua Qu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Ziqian Li
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China; Chongqing Science and Technology Innovation Center of Northwestern Polytechnical University, Chongqing 401135, China.
| |
Collapse
|
9
|
Aroua LM, Ali R, Albadri AEAE, Messaoudi S, Alminderej FM, Saleh SM. A New, Extremely Sensitive, Turn-Off Optical Sensor Utilizing Schiff Base for Fast Detection of Cu(II). BIOSENSORS 2023; 13:359. [PMID: 36979571 PMCID: PMC10046006 DOI: 10.3390/bios13030359] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Throughout this research, a unique optical sensor for detecting one of the most dangerous heavy metal ions, Cu(II), was designed and developed. The (4-mercaptophenyl) iminomethylphenyl naphthalenyl carbamate (MNC) sensor probe was effectively prepared. The Schiff base of the sensor shows a "turn-off" state with excellent sensitivity to Cu(II) ions. This innovative fluorescent chemosensor possesses distinctive optical features with a substantial Stocks shift (about 114 nm). In addition, MNC has remarkable selectivity for Cu(II) relative to other cations. Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical calculations were performed to examine Cu(II) chelation structures and associated electronic properties in solution, and the results indicate that the luminescence quenching in this complex is due to ICT. Chelation-quenched fluorescence is responsible for the internal charge transfer (ICT)-based selectivity of the MNC sensing molecule for Cu(II) ions. In a 1:9 (v/v) DMSO-HEPES buffer (20 mM, pH = 7.4) solution, Fluorescence and UV-Vis absorption of the MNC probe and Cu(II) ions were investigated. By utilizing a solution containing several metal ions, the interference of other metal ions was studied. This MNC molecule has outstanding selectivity and sensitivity, as well as a low LOD (1.45 nM). Consequently, these distinctive properties enable it to find the copper metal ions across an actual narrow dynamic range (0-1.2 M Cu(II)). The reversibility of the sensor was obtained by employing an EDTA as a powerful chelating agent.
Collapse
Affiliation(s)
- Lotfi M. Aroua
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Laboratory of Structural Organic Chemistry-Synthesis and Physicochemical Studies (LR99ES14), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Chemistry Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Abuzar E. A. E. Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
| | - Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| |
Collapse
|
10
|
Saleh SM, Almotiri MK, Ali R. Green synthesis of highly luminescent gold nanoclusters and their application in sensing Cu(II) and Hg(II). J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Saleh SM, El-Sayed WA, El-Manawaty MA, Gassoumi M, Ali R. An Eco-Friendly Synthetic Approach for Copper Nanoclusters and Their Potential in Lead Ions Sensing and Biological Applications. BIOSENSORS 2022; 12:197. [PMID: 35448257 PMCID: PMC9032517 DOI: 10.3390/bios12040197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 05/12/2023]
Abstract
A new preparation route for high-luminescent blue-emission pepsin copper nanoclusters (Pep-CuNCs) is introduced in this work. The synthesized nanoclusters are based on a pepsin molecule, which is a stomach enzyme that works to digest proteins that exist in undigested food. Here, we have developed an eco-friendly technique through microwave-assisted fast synthesis. The resulting copper nanoclusters (CuNCs) exhibit significant selectivity towards Pb(II) ions. The pepsin molecule was utilized as a stabilizer and reducing agent in the production procedure of Pep-CuNCs. The characteristics of the resulting Pep-CuNCs were studied in terms of size, surface modification, and composition using various sophisticated techniques. The CuNCs responded to Pb(II) ions through the fluorescence quenching mechanism of the CuNCs' fluorescence. Thus, great selectivity of Pep-CuNCs towards Pb(II) ions was observed, allowing sensitive determination of this metal ion at lab-scale and in the environment. The CuNCs have detection limits for Pb(II) in very tenuous concentration at a nanomalar scale (11.54 nM). The resulting Pep-CuNCs were utilized significantly to detect Pb(II) ions in environmental samples. Additionally, the activity of Pep-CuNCs on different human tumor cell lines was investigated. The data for the observed behavior indicate that the Pep-CuNCs displayed their activity against cancer cells in a dose dependent manner against most utilized cancer cell lines.
Collapse
Affiliation(s)
- Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Wael A. El-Sayed
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Photochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - May A. El-Manawaty
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth Street, Cairo 12622, Egypt;
| | - Malek Gassoumi
- Department of Physics, College of Science, Qassim University, P.O. Box 64, Buraidah 51452, Saudi Arabia;
- Laboratory of Condensed Matter and Nanosciences, University of Monastir, Monastir 5000, Tunisia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Chemistry Department, Science College, Suez University, Suez 43518, Egypt
| |
Collapse
|
12
|
Ali R, Alfeneekh B, Chigurupati S, Saleh SM. Green synthesis of pregabalin-stabilized gold nanoclusters and their applications in sensing and drug release. Arch Pharm (Weinheim) 2022; 355:e2100426. [PMID: 35088474 DOI: 10.1002/ardp.202100426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 11/07/2022]
Abstract
This is the first report on the simple preparation of gold nanoclusters stabilized with pregabalin (PREG) as a capping and reducing agent. PREG is an active pharmaceutical ingredient of the commercially available drug "Lyrica" used to treat different diseases like epilepsy and anxiety. PREG has never been used before in the synthesis of any nanoparticles or nanoclusters. The prepared gold nanoclusters (PREG-stabilized gold nanoclusters [PREG-AuNCs]) have blue fluorescence with excitation/emission at 365/425 nm, respectively. The reaction conditions were optimized for the synthesis of the as-prepared AuNCs. Different tools were used for the characterization of the synthesized nanoclusters in terms of size and surface properties. The PREG-AuNCs were exploited as a sensitive and selective fluorescent nanosensor for Cu2+ detection. The quenching of AuNC fluorescence intensity in the presence of Cu2+ is due to the aggregation-induced fluorescence quenching mechanism. The detection limit of Cu2+ ions was found to be 1.11 × 10-7 M. The selectivity of the PREG-AuNCs was studied and proved to be excellent. The drug entrapment efficacy and in vitro drug diffusion studies along with drug release kinetics helped to understand more about the pharmaceutical approaches of PREG-AuNCs. Moreover, we think that PREG-AuNCs open new opportunities as a promising candidate material for drug delivery systems and medical applications.
Collapse
Affiliation(s)
- Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia.,Chemistry Department, Science College, Suez University, Suez, Egypt
| | - Bayader Alfeneekh
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia.,Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Chemistry Branch, Suez University, Suez, Egypt
| |
Collapse
|
13
|
Chakraborty S, Mukherjee S. Effects of protecting groups on luminescent metal nanoclusters: spectroscopic signatures and applications. Chem Commun (Camb) 2021; 58:29-47. [PMID: 34877943 DOI: 10.1039/d1cc05396e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Luminescent metal nanoclusters (NCs) have been established as next-generation fluorophores. Their biocompatible and non-toxic nature, along with excellent chemical- and photo-stability, enables them to find applications in multi-disciplinary areas. However, preparing NCs which are stable is always challenging, primarily owing to their small size and propensity to self-aggregate. In this review, we highlight a holistic approach as to how ligands and templates can monitor the stability of NCs, tune their spectroscopic signatures, and alter their applications. The role of small molecules of a large ligand in the preparation of NCs and their associated limitations are also discussed. We have summarized how these NCs can be utilized in sensing several metal ions, pH, viscosity and temperature of many systems which have biological relevance. Additionally, these luminescent metal NCs find usage in cell-imaging, discriminating between cancerous and non-cancerous cell lines and also targeting specific organelles within the cellular environment.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India.
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
14
|
Ali R, Ali IA, Messaoudi S, Alminderej FM, Saleh SM. An effective optical chemosensor film for selective detection of mercury ions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
16
|
Ali R, Alminderej FM, Saleh SM. A simple, quantitative method for spectroscopic detection of metformin using gold nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118744. [PMID: 32717648 DOI: 10.1016/j.saa.2020.118744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
We synthesized bovine serum albumin (BSA)-stabilized gold nanoclusters (BSA-GNCs) and confirmed their ultra-small size using HRTEM (High-resolution Transmission Electron Microscope) and DLS (Dynamic Light Scattering). The fluorescence intensity of BSA-GNCs is "turned off" in the presence of Cu(II) metal ions. The resulting Cu(II)-mediated BSA-GNCs were utilized to detect metformin, a drug used to control diabetes. Metformin binds to and displaces Cu(II) ions from the BSA on the surface of the nanoclusters, which turns on the fluorescence of the nanoclusters. The interactions between the protein-stabilized nanoclusters were investigated in the absence and presence of Cu(II) using circular dichroism (CD) and Fourier-transform infrared spectroscopy (FTIR). Cu(II)-quenched BSA-GNCs had an extremely high sensitivity to detect metformin, with a low limit of detection (LOD) of 0.068 μM and a dynamic range of limit of quantification (LOQ = 10/3 LOD) of 0.22 to 11 μM. The ability of this novel "turn-on" nanosensor to detect metformin in human serum and urine samples was confirmed: the percentage recovery in fluorescence for spiked analyte ranged from 96.00-98.50% and 92.60-96.62% in human serum and urine samples, respectively. Thus, BSA-GNCs provide a valid, sensitive, specific fluorometric methodology for the detection of metformin in biomedical applications.
Collapse
Affiliation(s)
- Reham Ali
- Chemistry Department, Science College, Suez University, 43518 Suez, Egypt; Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, 43721 Suez, Egypt
| |
Collapse
|
17
|
Saleh SM, Alminderej FM, Ali R, Abdallah OI. Optical sensor film for metribuzin pesticide detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117971. [PMID: 31954291 DOI: 10.1016/j.saa.2019.117971] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
We present a new ratiometric and colorimetric optical sensor film for detection one of the most prevalent pesticide metribuzin. The detection proceeds within the low concentration range between 0 and 1.5 μM. The optical film is based on (a) near infrared (NIR) dye 2-[2-[2-Chloro-3-[2-[1,3-dihydro-3,3-dimethyl-1-(4-sulfobutyl)-2H-indol-2-ylidene]-ethylidene]-1-cyclopen-ten-1-yl]-eth-enyl]-3,3-di-methyl-1-(4-sulfobutyl)-3H-indolium hydroxide and (b) upconverting nanoparticles UCNPs of the NaYF4:Yb,Er type (diameter ~40-100 nm) that can be emitted a dual (green and red) emission under 980 nm laser diode excitation. Commercially available polyvinyl chloride (PVC) was utilized as a homogeneous matrix for immobilizing NIR dye and UCNPs. The color of the NIR dye in the PVC matrix is based on the concentration of the metribuzin. When the sensor film is exposed to metribuzin the color changes from green to blue with a significant blue shift in the absorption peak (656 nm) of the NIR dye. Furthermore, the quenching of the red emission (659 nm) of the UCNPs is proceeded due to an inner filter effect. Thus, increasing the metribuzin concentration causes the red emission of UCNPs to be reduced. Conversely, the green emission (545 nm) of the UCNPs persists uninfluenced by metribuzin and can act as a reference signal. This optical sensor film provides great sensitivity based on their unique luminescence properties of UCNPs and recognition abilities within a very low detection limit for the metribuzin LOD 6.8 × 10-8 M with a linear range of 0.23 to 1.5 μM and a relative standard deviation RSDr (1%, n = 3). The novel optical sensor was applied to the detection of metribuzin in real water samples (surface and ground waters). The sensor film exhibits great selectivity in presence of different types of ions and pesticide molecules. But, atrazine pesticide interferes the analytical signal of the sensor film due to the presence of reactive amino groups in its structure. Memorably, we report the first optical chemical sensor film based on polymer film for metribuzin detection.
Collapse
Affiliation(s)
- Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia; Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, 43721 Suez, Egypt.
| | - Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia; Chemistry Department, Faculty of Science, Suez University, 43518 Suez, Egypt
| | - Osama I Abdallah
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agriculture Research Center, Dokki, Giza 12618, Egypt
| |
Collapse
|
18
|
The natural compound chrysosplenol-D is a novel, ultrasensitive optical sensor for detection of Cu(II). J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Bonanno A, Pérez-Herráez I, Zaballos-García E, Pérez-Prieto J. Gold nanoclusters for ratiometric sensing of pH in extremely acidic media. Chem Commun (Camb) 2020; 56:587-590. [DOI: 10.1039/c9cc08539d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AuNCs capped with β-nicotinamide adenine dinucleotide phosphate exhibit an outstanding performance as ratiometric, fluorescent pH sensors in extremely acid media (0.6–2.7) and in the 7.0–9.2 pH range; the nanocluster itself is the fluorophore.
Collapse
Affiliation(s)
- Adele Bonanno
- Departamento de Química Orgánica
- Universidad de Valencia
- Av. Vicent Andres Estelles s/n
- Burjassot
- Spain
| | - Irene Pérez-Herráez
- Instituto de Ciencia Molecular (ICMol)
- Universidad de Valencia
- Catedrático José Beltrán 2
- Valencia
- Spain
| | - Elena Zaballos-García
- Departamento de Química Orgánica
- Universidad de Valencia
- Av. Vicent Andres Estelles s/n
- Burjassot
- Spain
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol)
- Universidad de Valencia
- Catedrático José Beltrán 2
- Valencia
- Spain
| |
Collapse
|
20
|
β-Cyclodextrin modified silver nanoclusters for highly sensitive fluorescence sensing and bioimaging of intracellular alkaline phosphatase. Talanta 2020; 207:120315. [DOI: 10.1016/j.talanta.2019.120315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
|
21
|
Shamsipur M, Barati A, Nematifar Z. Fluorescent pH nanosensors: Design strategies and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Li Z, Xia L, Li G, Hu Y. Raman spectroscopic imaging of pH values in cancerous tissue by using polyaniline@gold nanoparticles. Mikrochim Acta 2019; 186:162. [DOI: 10.1007/s00604-019-3265-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/18/2019] [Indexed: 11/28/2022]
|
23
|
Cuaran-Acosta D, Londoño-Larrea P, Zaballos-García E, Pérez-Prieto J. Reversible pH-induced fluorescence colour change of gold nanoclusters based on pH-regulated surface interactions. Chem Commun (Camb) 2019; 55:1604-1606. [DOI: 10.1039/c8cc06664g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A water-dispersible, biocompatible, fluorescent ratiometric pH nanosensor over a broad pH range is reported.
Collapse
Affiliation(s)
| | | | | | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia
- Paterna
- Spain
| |
Collapse
|
24
|
Silver nanoclusters functionalized with Ce(III) ions are a viable “turn-on-off” fluorescent probe for sulfide. Mikrochim Acta 2018; 186:16. [DOI: 10.1007/s00604-018-3149-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
|
25
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
26
|
Wang L, Chen Y. Lanthanide doped carbon dots as a fluorescence chromaticity-based pH probe. Mikrochim Acta 2018; 185:489. [DOI: 10.1007/s00604-018-3027-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
|
27
|
|