1
|
Khan MQ, Ahmad K, Khan RA. Design and Fabrication of Tryptophan Sensor Using Voltammetric Method. MICROMACHINES 2024; 15:1047. [PMID: 39203698 PMCID: PMC11356631 DOI: 10.3390/mi15081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024]
Abstract
L-tryptophan is an amino acid that significantly impacts metabolic activity in both humans and herbivorous animals. It is also known as a precursor for melatonin and serotonin, and its levels must be regulated in the human body. Therefore, there is a need to develop a cost-effective, simple, sensitive, and selective method for detecting L-tryptophan. Herein, we report the fabrication of an L-tryptophan sensor using a nickel-doped tungsten oxide ceramic-modified electrode. The Ni-WO3 was synthesized using simple strategies and characterized by various advanced techniques such as powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectron X-ray spectroscopy. Furthermore, a glassy carbon electrode was modified with the synthesized Ni-WO3 and explored as the L-tryptophan (L-TRP) sensor. Cyclic voltammetry and differential pulse voltammetry were used to investigate the sensing ability of the modified electrode (Ni-WO3/GC). The Ni-WO3/GC exhibited an excellent limit of detection of 0.4 µM with a good dynamic linear range. The Ni-WO3/GC also demonstrated excellent selectivity in the presence of various electroactive molecules. The Ni-WO3/GC also showed decent reproducibility, repeatability, stability, and storage stability. This work proposes the fabrication of novel Ni-WO3/GC for the sensing of L-tryptophan. So far, no report is available on the use of Ni-WO3/GC for the sensing of L-TRP. This is the first report on the use of Ni-WO3/GC for the sensing of L-TRP sensing applications.
Collapse
Affiliation(s)
- Mohd Quasim Khan
- Department of Chemistry, M.M.D.C, Moradabad, M.J.P. Rohilkhand University, Bareilly 244001, U.P., India
| | - Khursheed Ahmad
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Imanzadeh H, Sefid-Sefidehkhan Y, Afshary H, Afruz A, Amiri M. Nanomaterial-based electrochemical sensors for detection of amino acids. J Pharm Biomed Anal 2023; 230:115390. [PMID: 37079932 DOI: 10.1016/j.jpba.2023.115390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Amino acids are the building blocks of proteins and muscle tissue. They also play a significant role in physiological processes related to energy, recovery, mood, muscle and brain function, fat burning and stimulating growth hormone or insulin secretion. Accurate determination of amino acids in biological fluids is necessary because any changes in their normal ranges in the body warn diseases like kidney disease, liver disease, type 2 diabetes and cancer. To date, many methods such as liquid chromatography, fluorescence mass spectrometry, etc. have been used for the determination of amino acids. Compared with the above techniques, electrochemical systems using modified electrodes offer a rapid, accurate, cheap, real-time analytical path through simple operations with high selectivity and sensitivity. Nanomaterials have found many interests to create smart electrochemical sensors in different application fields e.g. biomedical, environmental, and food analysis because of their exceptional properties. This review summarizes recent advances in the development of nanomaterial-based electrochemical sensors in 2017-2022 for the detection of amino acids in various matrices such as serum, urine, blood and pharmaceuticals.
Collapse
Affiliation(s)
- Hamideh Imanzadeh
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Hosein Afshary
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Afruz
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
3
|
Noroozi S, Safa F, Shariati S, Islamnezhad A. Differential pulse voltammetric assessment of phthalate molecular blocking effect on the copper electrode modified by multi-walled carbon nanotubes: Statistical optimization by Box-Behnken experimental design. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
4
|
Luu TVH, Nguyen QB, Nguyen THC, Pham NC, Duong TL, Le BH, Nguyen VNM, Vu MC, Pham NN, Dao NN, Nguyen TK. One-pot hydrothermal preparation of capsule-like nanocomposites of C/Ce-co-doped ZnO supported on graphene to enhance photodegradation. NEW J CHEM 2023. [DOI: 10.1039/d2nj04937f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nanocapsule composites of C/Ce-co-doped ZnO supported on graphene synthesized by a one-pot hydrothermal method with a band gap of 2.72 eV were used to enhance the photodegradation of methylene blue under various conditions.
Collapse
Affiliation(s)
- Thi Viet Ha Luu
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 700000, Vietnam
| | - Quang Bac Nguyen
- Institute of Material Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Thi Ha Chi Nguyen
- Institute of Material Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Ngoc Chuc Pham
- Institute of Material Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Thi Lim Duong
- Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Bao Hung Le
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
- Vietnam – Russian Tropical Centre, 63 Nguyen Van Huyen, Cau Giay, Hanoi 100000, Vietnam
| | - Vu Ngoc Mai Nguyen
- Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh 590000, Vietnam
| | - Minh Chau Vu
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
- Vietnam – Russian Tropical Centre, 63 Nguyen Van Huyen, Cau Giay, Hanoi 100000, Vietnam
| | - Ngo Nghia Pham
- Institute of Environmental Engineering and Management, University of Witten/Herdecke, Alfred-Herrhausen-Str. 44, 58455 Witten, Germany
- Faculty of Chemistry, VNU University of Science, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| | - Ngoc Nhiem Dao
- Institute of Material Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Trung Kien Nguyen
- Institute of Material Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|
5
|
Khan MQ, Khan RA, Ahmad K, Kim H. Fabrication of a ZnO Hexagonal Plates/rGO Composite for Application in Nitrite Sensing and Photocatalytic Hydrogen Production. ChemistrySelect 2022. [DOI: 10.1002/slct.202203160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohd Quasim Khan
- Department of Chemistry M.M.D.C. Moradabad M.J.P. Rohilkhand University Bareilly, U.P 244001 India
| | - Rais Ahmad Khan
- Department of Chemistry College of Science King Saud University Riyadh 11451 Kingdom of Saudi Arabia
| | - Khursheed Ahmad
- School of Materials Science and Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Haekyoung Kim
- School of Materials Science and Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
6
|
Synthesis of novel MoWO 4 with ZnO nanoflowers on multi-walled carbon nanotubes for counter electrode application in dye-sensitized solar cells. Sci Rep 2022; 12:12490. [PMID: 35864149 PMCID: PMC9304385 DOI: 10.1038/s41598-022-16791-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/15/2022] [Indexed: 12/22/2022] Open
Abstract
Novel MoWO4 with ZnO nanoflowers was synthesized on multi-walled carbon nanotubes (MW-Z@MWCNTs) through a simple hydrothermal method, and this unique structure was applied as a counter electrode (CE) for dye-sensitized solar cells (DSSC) for the first time. The synergetic effect of ZnO nanoflowers and MoWO4 on MWCNTs was systematically investigated by different techniques. The amount of MWCNTs was optimized to achieve the best DSSC performance. It was found that the 1.5% MW-Z@MWCNTs composite structure had the highest power conversion efficiency of 9.96%, which is greater than that of traditional Pt CE. Therefore, MW-Z@MWCNTs-based CE can be used to replace traditional Pt-based electrodes in the future.
Collapse
|
7
|
Natesan M, Subramaniyan P, Chen TW, Chen SM, Ajmal Ali M, Al-Zaqri N. Ceria-doped zinc oxide nanorods assembled into microflower architectures as electrocatalysts for sensing of piroxicam in urine sample. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Moulaee K, Neri G. Electrochemical Amino Acid Sensing: A Review on Challenges and Achievements. BIOSENSORS 2021; 11:502. [PMID: 34940259 PMCID: PMC8699811 DOI: 10.3390/bios11120502] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 05/05/2023]
Abstract
The rapid growth of research in electrochemistry in the last decade has resulted in a significant advancement in exploiting electrochemical strategies for assessing biological substances. Among these, amino acids are of utmost interest due to their key role in human health. Indeed, an unbalanced amino acid level is the origin of several metabolic and genetic diseases, which has led to a great need for effective and reliable evaluation methods. This review is an effort to summarize and present both challenges and achievements in electrochemical amino acid sensing from the last decade (from 2010 onwards) to show where limitations and advantages stem from. In this review, we place special emphasis on five well-known electroactive amino acids, namely cysteine, tyrosine, tryptophan, methionine and histidine. The recent research and achievements in this area and significant performance metrics of the proposed electrochemical sensors, including the limit of detection, sensitivity, stability, linear dynamic range(s) and applicability in real sample analysis, are summarized and presented in separate sections. More than 400 recent scientific studies were included in this review to portray a rich set of ideas and exemplify the capabilities of the electrochemical strategies to detect these essential biomolecules at trace and even ultra-trace levels. Finally, we discuss, in the last section, the remaining issues and the opportunities to push the boundaries of our knowledge in amino acid electrochemistry even further.
Collapse
Affiliation(s)
- Kaveh Moulaee
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 16846-13114, Iran
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
| |
Collapse
|
9
|
Chen B, Xie Q, Zhang S, Lin L, Zhang Y, Zhang L, Jiang Y, Zhao M. A novel electrochemical molecularly imprinted senor based on CuCo2O4@ biomass derived carbon for sensitive detection of tryptophan. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Arabkhani P, Javadian H, Asfaram A, Sadeghfar F, Sadegh F. Synthesis of magnetic tungsten disulfide/carbon nanotubes nanocomposite (WS 2/Fe 3O 4/CNTs-NC) for highly efficient ultrasound-assisted rapid removal of amaranth and brilliant blue FCF hazardous dyes. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126644. [PMID: 34329103 DOI: 10.1016/j.jhazmat.2021.126644] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
In this research, the potentiality of magnetic tungsten disulfide/carbon nanotubes nanocomposite (WS2/Fe3O4/CNTs-NC) as an adsorbent for the ultrasound-assisted removal of amaranth (AM) and brilliant blue FCF (BB FCF) dyes was investigated. The experiments were conducted using a central composite design (CCD) with the inputs of solution pH (X1: 2.0-10), adsorbent mass (X4: 4-20 mg), AM concentration (X2: 10-50 mg L-1), BB FCF concentration (X3: 10-50 mg L-1), and sonication time (X5: 2-12 min). At the optimum conditions, the removal percentages of 99.30% and 98.50% were obtained for AM and BB FCF, respectively. The adsorption of the dyes was described by Langmuir isotherm and pseudo-second-order (PSO) kinetic models. The maximum adsorption capacities of AM and BB FCF were 174.8 mg g-1 and 166.7 mg g-1, respectively. The adsorption thermodynamic study showed that the adsorption of the dyes occurred endothermically and spontaneously. The removal percentages of AM and BB FCF from the real samples were in the range of 94.52-99.65% for the binary solutions. The removal percentage for each dye after five cycles of adsorption/desorption was > 90%. This work provides a useful insight to the potential application of CNTs-based magnetic nanocomposite for the treatment of wastewaters contaminated with dyes.
Collapse
Affiliation(s)
- Payam Arabkhani
- Department of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Hamedreza Javadian
- Chemistry & Chemical Engineering Research Center of Iran (CCERCI), P.O. Box 14335-186, Tehran, Iran
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Fardin Sadeghfar
- Department of Physics, Faculty of Sciences, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran
| | - Fatemeh Sadegh
- Department of Chemistry, Faculty of Sciences, University of Sistan of Baluchestan, Zahedan, Iran
| |
Collapse
|
11
|
Maheshwaran S, Tamilalagan E, Chen SM, Akilarasan M, Huang YF, AlMasoud N, Abualnaja KM, Ouladsmne M. Rationally designed f-MWCNT-coated bismuth molybdate (f-MWCNT@BMO) nanocomposites for the voltammetric detection of biomolecule dopamine in biological samples. Mikrochim Acta 2021; 188:315. [PMID: 34462824 DOI: 10.1007/s00604-021-04978-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/07/2021] [Indexed: 11/27/2022]
Abstract
Selective and sensitive dopamine (DPA) sensor was developed using hydrothermally prepared functionalized multi-walled carbon nanotube-coated bismuth molybdate (f-MWCNT@BMO). The f-MWCNT@BMO-reinforced electrode exhibited an outstanding electrocatalytic activity towards DPA oxidation. The nanocomposite-reinforced electrode displayed a rapid response towards DPA sensing and possessed the minimized potential of (Epa + 0.285 V vs Ag/AgCl) in 0.1 M phosphate buffer (PB). The electrochemical results of prepared sensors were analyzed using the differential pulse voltammetry method (DPV). As a result, the f-MWCNT@BMO-reinforced electrode exhibited a widelinear range of 10 nM - 814 μM with a very low detection limit of 3.4 nM towards DPA oxidation. The developed sensor shows excellent selectivity in presence of similar functional group biomolecules. The detection of DPA in real samples was evaluated in human serum, as the results of the proposed sensor possessed good recoveries.
Collapse
Affiliation(s)
- Selvarasu Maheshwaran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Elayappan Tamilalagan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Muthumariappan Akilarasan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Yu-Feng Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Khamael M Abualnaja
- Department of Chemistry, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Mohmed Ouladsmne
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
12
|
Guo H, Fan T, Yao W, Yang W, Wu N, Liu H, Wang M, Yang W. Simultaneous determination of 4-aminophenol and acetaminophen based on high electrochemical performance of ZIF-67/MWCNT-COOH/Nafion composite. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Priya T, Dhanalakshmi N, Thennarasu S, Pulikkutty S, Karthikeyan V, Thinakaran N. Synchronous detection of cadmium and lead in honey, cocos nucifera and egg white samples using multiwalled carbon nanotube/hyaluronic acid/amino acids nanocomposites. Food Chem 2020; 317:126430. [DOI: 10.1016/j.foodchem.2020.126430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 01/13/2020] [Accepted: 02/17/2020] [Indexed: 12/07/2022]
|
14
|
Luu TVH, Luu MD, Dao NN, Le VT, Nguyen HT, Doan VD. Immobilization of C/Ce-codoped ZnO nanoparticles on multi-walled carbon nanotubes for enhancing their photocatalytic activity. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1740728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Thi Viet Ha Luu
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Minh Dai Luu
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc Nhiem Dao
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research & Development, Duy Tan University, Danang, Vietnam
| | - Hoai Thuong Nguyen
- Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Van Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Kemmegne-Mbouguen JC, Tchoumi FP, Mouafo-Tchinda E, Langmi HW, Bambalaza SE, Musyoka NM, Kowenje C, Mokaya R. Simultaneous quantification of acetaminophen and tryptophan using a composite graphene foam/Zr-MOF film modified electrode. NEW J CHEM 2020. [DOI: 10.1039/d0nj02374d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Derived synergistic effect of a composite results in high selectivity and sensitivity with low detection limits and wide concentration ranges.
Collapse
Affiliation(s)
| | - Firmin Parfait Tchoumi
- Laboratoire de Chimie Physique et Analytique Appliquée
- Faculté des Sciences
- Université de Yaoundé I
- Yaoundé
- Cameroon
| | - Edwige Mouafo-Tchinda
- Laboratoire de Chimie Physique et Analytique Appliquée
- Faculté des Sciences
- Université de Yaoundé I
- Yaoundé
- Cameroon
| | | | - Sonwabo E. Bambalaza
- Centre for Nanostructures and Advanced Materials (CeNAM)
- Chemicals Cluster
- Council for Scientific and Industrial Research (CSIR)
- Brummeria
- South Africa
| | - Nicholas M. Musyoka
- Centre for Nanostructures and Advanced Materials (CeNAM)
- Chemicals Cluster
- Council for Scientific and Industrial Research (CSIR)
- Brummeria
- South Africa
| | | | - Robert Mokaya
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| |
Collapse
|
16
|
Yao W, Guo H, Liu H, Li Q, Wu N, Li L, Wang M, Fan T, Yang W. Highly electrochemical performance of Ni-ZIF-8/ N S-CNTs/CS composite for simultaneous determination of dopamine, uric acid and L-tryptophan. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104357] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Keerthi M, Boopathy G, Chen SM, Chen TW, Lou BS. A core-shell molybdenum nanoparticles entrapped f-MWCNTs hybrid nanostructured material based non-enzymatic biosensor for electrochemical detection of dopamine neurotransmitter in biological samples. Sci Rep 2019; 9:13075. [PMID: 31506456 PMCID: PMC6736870 DOI: 10.1038/s41598-019-48999-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/01/2019] [Indexed: 11/09/2022] Open
Abstract
Dopamine (DA) is a critical neurotransmitter and has been known to be liable for several neurological diseases. Hence, its sensitive and selective detection is essential for the early diagnosis of diseases related to abnormal levels of DA. In this study, we reported novel molybdenum nanoparticles self-supported functionalized multiwalled carbon nanotubes (Mo NPs@f-MWCNTs) based core-shell hybrid nanomaterial with an average diameter of 40–45 nm was found to be the best for electrochemical DA detection. The Mo NPs@f-MWCNTs hybrid material possesses tremendous superiority in the DA sensing is mainly due to the large surface area and numerous electroactive sites. The morphological and structural characteristics of the as-synthesized hybrid nanomaterial were examined by XRD, Raman, FE-SEM, HR-TEM, EDX. The electrochemical characteristics and catalytic behavior of the as-prepared Mo NPs@f-MWCNTs modified screen-printed carbon electrode for the determination of DA were systematically investigated via electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The results demonstrate that the developed DA biosensor exhibit a low detection limit of 1.26 nM, excellent linear response of 0.01 µM to 1609 µM with good sensitivity of 4.925 µA µM−1 cm−2. We proposed outstanding appreciable stability sensor was expressed to the real-time detection of DA in the real sample analysis of rat brain, human blood serum, and DA hydrochloride injection.
Collapse
Affiliation(s)
- Murugan Keerthi
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Gopal Boopathy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan.
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan. .,Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| |
Collapse
|
18
|
Govindasamy M, Wang SF, Pan WC, Subramanian B, Ramalingam RJ, Al-Lohedan H. Facile sonochemical synthesis of perovskite-type SrTiO 3 nanocubes with reduced graphene oxide nanocatalyst for an enhanced electrochemical detection of α-amino acid (tryptophan). ULTRASONICS SONOCHEMISTRY 2019; 56:193-199. [PMID: 31101255 DOI: 10.1016/j.ultsonch.2019.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 05/21/2023]
Abstract
In this paper, perovskite-type SrTiO3 nanocubes decorated reduced graphene oxide is synthesized by sonochemical method. The as-synthesized SrTiO3@RGO nanocomposite was confirmed by XRD, TEM, SEM, elemental mapping and electrochemical technique. Furthermore, surface morphological and X-ray diffraction studies revealed the formation and high loading of SrTiO3 nanocubes on reduced graphene oxide matrix. The SrTiO3@RGO nanocomposite modified electrode shows an excellent electrochemical detection towards of amino acid (tryptophan). The developed sensor was showed a wide linear range from 30 nM to 917.3 µM and detection limit is 7.15 nM. Furthermore, the sensitivity was calculated to be 9.11 µA µM-1 cm2. In addition, the proposed modified sensor is exhibited good selectivity, stability, reproducibility and repeatability. The SrTiO3@RGO catalyst modified electrode was successfully applied to tryptophan analysis in biological samples.
Collapse
Affiliation(s)
- Mani Govindasamy
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| | - Wei Chih Pan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan
| | - Bowya Subramanian
- Department of Electrical Engineering and Computer Science, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Department of Information Technology, KSR College of Engineering, Tiruchengode, Tamil Nadu, India
| | - R Jothi Ramalingam
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Hamad Al-Lohedan
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
Fernández L, Herrero M, Alonso B, Casado CM, Armada MPG. Three-dimensional electrocatalytic surface based on an octasilsesquioxane dendrimer for sensing applications. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin. Biosens Bioelectron 2018; 127:207-214. [PMID: 30611108 DOI: 10.1016/j.bios.2018.12.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022]
Abstract
This work describes a hybrid electrochemical sensor for highly sensitive detection of pesticide cypermethrin (CYP). Firstly, Ag and N co-doped zinc oxide (Ag-N@ZnO) was produced by sol-gel method, and then Ag-N@ZnO was ultrasonically supported on activated carbon prepared from coconut husk (Ag-N@ZnO/CHAC). Finally, a layer of molecularly imprinted polymer (MIP) was in situ fabricated on glassy carbon electrode by electro-polymerization, with dopamine and resorcinol as dual functional monomers (DM), CYP acting as template (DM-MIP-Ag-N@ZnO/CHAC). Morphological features, composition information and electrochemical properties of DM-MIP-Ag-N@ZnO/CHAC were investigated in detail. It is worth to mention that for the first time response surface method was used to investigate the effect of double monomers and to optimize the ratio between template and monomers. Compared with typical one-monomer involving MIP, the MIP prepared with dual functional monomers (DMMIP) of monomers showed higher response and better selectivity. Under the optimal conditions, a calibration curve of current shift versus concentration of CYP was obtained in the range of 2 × 10-13~8 × 10-9 M, and the developed sensor gave a remarkably low detection limit (LOD) of 6.7 × 10-14 M (S/N = 3). Determination of CYP in real samples was conducted quickly and accurately with our sensor. The DMMIP-Ag-N@ZnO/CHAC electrochemical sensor proposed in this paper has great potential in food safety, drug residue determination and environmental monitoring.
Collapse
|
21
|
Kubendhiran S, Karikalan N, Chen SM, Sundaresan P, Karthik R. Synergistic activity of single crystalline bismuth sulfide and sulfur doped graphene towards the electrocatalysis of tryptophan. J Catal 2018. [DOI: 10.1016/j.jcat.2018.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Dhanalakshmi N, Priya T, Thinakaran N. Highly electroactive Ce-ZnO/rGO nanocomposite: Ultra-sensitive electrochemical sensing platform for carbamazepine determination. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.08.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Ahmadi M, Rad-Moghadam K, Hatami M. Investigation of morphological aspects and thermal properties of ZnO/poly(amide–imide) nanocomposites based on levodopa-mediated diacid monomer. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2366-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|