1
|
Feng RM, Liu Y, Liu ZQ, Wang L, Chen N, Zhao Y, Yi HW. Advances in nucleic acid aptamer-based detection of respiratory virus and bacteria: a mini review. Virol J 2024; 21:237. [PMID: 39350296 PMCID: PMC11443872 DOI: 10.1186/s12985-024-02513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024] Open
Abstract
Respiratory pathogens infecting the human respiratory system are characterized by their diversity, high infectivity, rapid transmission, and acute onset. Traditional detection methods are time-consuming, have low sensitivity, and lack specificity, failing to meet the needs of rapid clinical diagnosis. Nucleic acid aptamers, as an emerging and innovative detection technology, offer novel solutions with high specificity, affinity, and broad target applicability, making them particularly promising for respiratory pathogen detection. This review highlights the progress in the research and application of nucleic acid aptamers for detecting respiratory pathogens, discussing their selection, application, potential in clinical diagnosis, and future development. Notably, these aptamers can significantly enhance the sensitivity and specificity of detection when combined with detection techniques such as fluorescence, colorimetry and electrochemistry. This review offers new insights into how aptamers can address the limitations of traditional diagnostic methods and advance clinical diagnostics. It also highlights key challenges and future research directions for the clinical application of nucleic acid aptamers.
Collapse
Affiliation(s)
- Rui-Min Feng
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
- Laboratory Department, the People's Hospital of Yanhu District, Yuncheng, Shanxi, People's Republic of China
| | - Ye Liu
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Zhi-Qiang Liu
- Central Laboratory, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Li Wang
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Nan Chen
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Yu Zhao
- Oncology Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
| | - Hua-Wei Yi
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
- Central Laboratory, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Mili M, Bachu V, Kuri PR, Singh NK, Goswami P. Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications. Biophys Chem 2024; 309:107218. [PMID: 38547671 DOI: 10.1016/j.bpc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.
Collapse
Affiliation(s)
- Malaya Mili
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Pooja Rani Kuri
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Hu M, Yue F, Dong J, Tao C, Bai M, Liu M, Zhai S, Chen S, Liu W, Qi G, Vrublevsky I, Sun X, Guo Y. Screening of broad-spectrum aptamer and development of electrochemical aptasensor for simultaneous detection of penicillin antibiotics in milk. Talanta 2024; 269:125508. [PMID: 38070284 DOI: 10.1016/j.talanta.2023.125508] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Penicillin antibiotics (PENs) play an important role in killing pathogenic bacteria. However, the residues of various penicillin antibiotics in milk gradually accumulate in the human body with the increase of milk intake, which causes direct harm to the human body. Aptamers can be used as recognition element of sensors. It is great significance to use broad-spectrum aptamers for simultaneous detection of PENs. In this study, we reported the screening and identification of DNA aptamers for PENs. The aptamers were screened by graphene oxide-systematic evolution of ligands by exponential enrichment (GO-SELEX). The broad-spectrum aptamers with high affinity and specificity were successfully obtained after 13 rounds of screening. The affinity and specificity of candidate aptamers were analyzed by a GO fluorescence competition method. Further sequence analysis revealed that a truncated 47 nt aptamer (P-11-1) had a higher affinity than the original 79 nt aptamer. The truncated aptamer P-11-1 was used as a recognition element, and an electrochemical aptasensor was prepared using gold nanoparticles (AuNPs) combined with ferroferric oxide-multi walled carbon nanotube (Fe3O4-MWCNTs) complex. The results showed that the developed aptasensor achieved the simultaneous detection of PENs in milk samples across a concentration range of 2 nM-10,000 nM, achieving a limit of detection of 0.667 nM. This methodology provided a simple and sensitive new thinking for antibiotic multi-residue detection.
Collapse
Affiliation(s)
- Mengjiao Hu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Fengling Yue
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiwei Dong
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Chong Tao
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mengyuan Bai
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mengyue Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Shengxi Zhai
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Shihao Chen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Wenzheng Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangyu Qi
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Igor Vrublevsky
- Department of Information Security, Belarusian State University of Informatics and Radioelectronics, Minsk 220013, Belarus
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
4
|
Gutiérrez-Santana JC, Coria-Jiménez VR. Diagnosis and Therapeutic Strategies Based on Nucleic Acid Aptamers Selected against Pseudomonas aeruginosa: The Challenge of Cystic Fibrosis. ChemMedChem 2024; 19:e202300544. [PMID: 38016927 DOI: 10.1002/cmdc.202300544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Antimicrobial resistance (AMR) is a rapidly spreading global health problem, and approximately five million deaths associated with AMR pathogens were identified prior to the COVID-19 pandemic. Pseudomonas aeruginosa has developed increasing AMR, and in patients with cystic fibrosis (CF) colonized by this bacterium, rare phenotypes have emerged that complicate the diagnosis and treatment of the hosts, in addition to multiple associated "epidemic strains" with high morbidities and mortalities. The conjugation of aptamers with fluorochromes or nanostructures has allowed the design of new identification strategies for Pseudomonas aeruginosa with detection limits of up to 1 cell ⋅ mL-1 , and the synergy of aptamers with antibiotics, antimicrobial peptides and nanostructures has exhibited promising therapeutic qualities. Some selected aptamers against this bacterium have shown intrinsic antimicrobial activity. However, these aptamers have been poorly evaluated in clinical isolates and have shown decreased interactions for CF isolates, demonstrating, in these cases, uncommon phenotypes resulting from the selective qualities of this disease as well as the great adaptive capacity of the pathogen. Therefore, finding an aptamer or set of aptamers that have the ability to recognize strange phenotypes of this bacillus is crucial in the battle against AMR.
Collapse
Affiliation(s)
- Juan Carlos Gutiérrez-Santana
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco Coyoacán, 04530, Ciudad de México, México
| | - Victor Rafael Coria-Jiménez
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco Coyoacán, 04530, Ciudad de México, México
| |
Collapse
|
5
|
Yu H, Zhu J, Shen G, Deng Y, Geng X, Wang L. Improving aptamer performance: key factors and strategies. Mikrochim Acta 2023; 190:255. [PMID: 37300603 DOI: 10.1007/s00604-023-05836-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Aptamers are functional single-stranded oligonucleotide fragments isolated from randomized libraries by Systematic Evolution of Ligands by Exponential Enrichment (SELEX), exhibiting excellent affinity and specificity toward targets. Compared with traditional antibody reagents, aptamers display many desirable properties, such as low variation and high flexibility, and they are suitable for artificial and large-scale synthesis. These advantages make aptamers have a broad application potential ranging from biosensors, bioimaging to therapeutics and other areas of application. However, the overall performance of aptamer pre-selected by SELEX screening is far from being satisfactory. To improve aptamer performance and applicability, various post-SELEX optimization methods have been developed in the last decade. In this review, we first discuss the key factors that influence the performance or properties of aptamers, and then we summarize the key strategies of post-SELEX optimization which have been successfully used to improve aptamer performance, such as truncation, extension, mutagenesis and modification, splitting, and multivalent integration. This review shall provide a comprehensive summary and discussion of post-SELEX optimization methods developed in recent years. Moreover, by discussing the mechanism of each approach, we highlight the importance of choosing the proper method to perform post-SELEX optimization.
Collapse
Affiliation(s)
- Hong Yu
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Jiangxiong Zhu
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Guoqing Shen
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yun Deng
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Xueqing Geng
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Lumei Wang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China.
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China.
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
6
|
Han C, Xing W, Li W, Fang X, Zhao J, Ge F, Ding W, Qu P, Luo Z, Zhang L. Aptamers dimerization inspired biomimetic clamp assay towards impedimetric SARS-CoV-2 antigen detection. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 380:133387. [PMID: 36694572 PMCID: PMC9851723 DOI: 10.1016/j.snb.2023.133387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Antigen-detecting rapid diagnostic testing (Ag-RDT) has contributed to containing the spread of SARS-CoV-2 variants of concern (VOCs). In this study, we proposed a biomimetic clamp assay for impedimetric SARS-CoV-2 nucleocapsid protein (Np) detection. The DNA biomimetic clamp (DNA-BC) is formed by a pair of Np aptamers connected via a T20 spacer. The 5'- terminal of the DNA-BC is phosphate-modified and then anchored on the surface of the screen-printed gold electrode, which has been pre-coated with Au@UiO-66-NH2. The integrated DNA-material sensing biochip is fabricated through the strong Zr-O-P bonds to form a clamp-type impedimetric aptasensor. It is demonstrated that the aptasensor could achieve Np detection in one step within 11 min and shows pronounced sensitivity with a detection limit of 0.31 pg mL-1. Above all, the aptasensor displays great specificity and stability under physiological conditions as well as various water environments. It is a potentially promising strategy to exploit reliable Ag-RDT products to confront the ongoing epidemic.
Collapse
Affiliation(s)
- Cong Han
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Wenping Xing
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Wenjin Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Xiaona Fang
- The Cancer Hospital of the University of Chinese Academy of Sciences, Aptamer Selection Center, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jian Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Feng Ge
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin 300071, China
| | - Wei Ding
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin 300071, China
| | - Pengpeng Qu
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin 300071, China
| | - Zhaofeng Luo
- The Cancer Hospital of the University of Chinese Academy of Sciences, Aptamer Selection Center, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Liyun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Cascade-amplified fluorescence polarization assay for miRNA based on aggregation strategy of Y-shaped DNA. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Su Y, Zhu L, Wu Y, Liu Z, Xu W. Progress and challenges in bacterial whole-cell-components Aptamer advanced screening and site identification. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Cai R, Chen X, Zhang Y, Wang X, Zhou N. Systematic bio-fabrication of aptamers and their applications in engineering biology. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2022; 3:223-245. [PMID: 38013802 PMCID: PMC9550155 DOI: 10.1007/s43393-022-00140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 10/27/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules that have high affinity and selectivity to bind to specific targets. Compared to antibodies, aptamers are easy to in vitro synthesize with low cost, and exhibit excellent thermal stability and programmability. With these features, aptamers have been widely used in biology and medicine-related fields. In the meantime, a variety of systematic evolution of ligands by exponential enrichment (SELEX) technologies have been developed to screen aptamers for various targets. According to the characteristics of targets, customizing appropriate SELEX technology and post-SELEX optimization helps to obtain ideal aptamers with high affinity and specificity. In this review, we first summarize the latest research on the systematic bio-fabrication of aptamers, including various SELEX technologies, post-SELEX optimization, and aptamer modification technology. These procedures not only help to gain the aptamer sequences but also provide insights into the relationship between structure and function of the aptamers. The latter provides a new perspective for the systems bio-fabrication of aptamers. Furthermore, on this basis, we review the applications of aptamers, particularly in the fields of engineering biology, including industrial biotechnology, medical and health engineering, and environmental and food safety monitoring. And the encountered challenges and prospects are discussed, providing an outlook for the future development of aptamers.
Collapse
Affiliation(s)
- Rongfeng Cai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
10
|
Chen X, Yang L, Tang J, Wen X, Zheng X, Chen L, Li J, Xie Y, Le T. An AuNPs-Based Fluorescent Sensor with Truncated Aptamer for Detection of Sulfaquinoxaline in Water. BIOSENSORS 2022; 12:bios12070513. [PMID: 35884316 PMCID: PMC9312917 DOI: 10.3390/bios12070513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
Abstract
Herein, we developed a novel truncation technique for aptamer sequences to fabricate highly sensitive aptasensors based on molecular docking and molecular dynamics simulations. The binding mechanism and energy composition of the aptamer/sulfaquinoxaline (SQX) complexes were investigated. We successfully obtained a new SQX-specific aptamer (SBA28-1: CCCTAGGGG) with high affinity (Kd = 27.36 nM) and high specificity determined using graphene oxide. This aptamer has a unique stem-loop structure that can bind to SQX. Then, we fabricated a fluorescence aptasensor based on SBA28-1, gold nanoparticles (AuNPs), and rhodamine B (RhoB) that presented a good linear range of 1.25–160 ng/mL and a limit of detection of 1.04 ng/mL. When used to analyze water samples, the aptasensor presented acceptable recovery rates of 93.1–100.1% and coefficients of variation (CVs) of 2.2–10.2%. In conclusion, the fluorescence aptasensor can accurately and sensitively detect SQX in water samples and has good application prospects.
Collapse
Affiliation(s)
- Xingyue Chen
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Lulan Yang
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Jiaming Tang
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Xu Wen
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Xiaoling Zheng
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Lingling Chen
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Jiaqi Li
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Yong Xie
- Bioassay 3D Reconstruction Laboratory, Chongqing College of Electronic Engineering, Chongqing 401331, China
- Correspondence: (Y.X.); (T.L.)
| | - Tao Le
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
- Correspondence: (Y.X.); (T.L.)
| |
Collapse
|
11
|
Ma P, Ye H, Guo H, Ma X, Yue L, Wang Z. Aptamer truncation strategy assisted by molecular docking and sensitive detection of T-2 toxin using SYBR Green I as a signal amplifier. Food Chem 2022; 381:132171. [DOI: 10.1016/j.foodchem.2022.132171] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/26/2022]
|
12
|
A novel fluorescent aptasensor based on mesoporous silica nanoparticles for the selective detection of sulfadiazine in edible tissue. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Ye H, Yang Z, Khan IM, Niazi S, Guo Y, Wang Z, Yang H. Split aptamer acquisition mechanisms and current application in antibiotics detection: a short review. Crit Rev Food Sci Nutr 2022; 63:9098-9110. [PMID: 35507474 DOI: 10.1080/10408398.2022.2064810] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Antibiotic contamination is becoming a prominent global issue. Therefore, sensitive, specific and simple technology is desirable the demand for antibiotics detection. Biosensors based on split aptamer has gradually attracted extensive attention for antibiotic detection due to its higher sensitivity, lower cost, false positive/negative avoidance and flexibility in sensor design. Although many of the reported split aptamers are antibiotics aptamers, the acquisition and mechanism of splitting is still unknow. In this review, six reported split aptamers in antibiotics are outlined, including Enrofloxacin, Kanamycin, Tetracycline, Tobramycin, Neomycin, Streptomycin, which have contributed to promote interest, awareness and thoughts into this emerging research field. The study introduced the pros and cons of split aptamers, summarized the assembly principle of split aptamer and discussed the intermolecular binding of antibiotic-aptamer complexes. In addition, the recent application of split aptamers in antibiotic detection are introduced. Split aptamers have a promising future in the design and development of biosensors for antibiotic detection in food and other field. The development of the antibiotic split aptamer meets many challenges including mechanism discovery, stability improvement and new biosensor development. It is believed that split aptamer could be a powerful molecular probe and plays an important role in aptamer biosensor.
Collapse
Affiliation(s)
- Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhixin Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| | | | - Sobia Niazi
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhouping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Pacheco M, Jurado-Sánchez B, Escarpa A. Transition metal dichalcogenide-based Janus micromotors for on-the-fly Salmonella detection. Mikrochim Acta 2022; 189:194. [PMID: 35426053 PMCID: PMC9010330 DOI: 10.1007/s00604-022-05298-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022]
Abstract
Janus micromotors encapsulating transition metal dichalcogenides (TMDs) and modified with a rhodamine (RhO)-labeled affinity peptide (RhO-NFMESLPRLGMH) are used here for Salmonella enterica endotoxin detection. The OFF–ON strategy relies on the specific binding of the peptide with the TMDs to induce fluorescence quenching (OFF state); which is next recovered due to selectively binding to the endotoxin (ON state). The increase in the fluorescence of the micromotors can be quantified as a function of the concentration of endotoxin in the sample. The developed strategy was applied to the determination of Salmonella enterica serovar Typhimurium endotoxin with high sensitivity (limits of detection (LODs) of 2.0 µg/mL using MoS2, and 1.2 µg/mL using WS2), with quantitative recoveries (ranging from 93.7 ± 4.6 % to 94.3 ± 6.6%) in bacteria cultures in just 5 min. No fluorescence recovery is observed in the presence of endotoxins with a similar structure, illustrating the high selectivity of the protocol, even against endotoxins of Salmonella enterica serovar Enteritidis with great similarity in its structure, demonstrating the high bacterial specificity of the developed method. These results revealed the analytical potential of the reported strategy in multiplexed assays using different receptors or in the design of portable detection devices.
Collapse
Affiliation(s)
- Marta Pacheco
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain.
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain.
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
| |
Collapse
|
15
|
Non-immobilized GO-SELEX of aptamers for label-free detection of thiamethoxam in vegetables. Anal Chim Acta 2022; 1202:339677. [DOI: 10.1016/j.aca.2022.339677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/19/2022]
|
16
|
A novel labeled and label-free dual electrochemical detection of endotoxin based on aptamer-conjugated magnetic reduced graphene oxide-gold nanocomposite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Aptamers-Diagnostic and Therapeutic Solution in SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23031412. [PMID: 35163338 PMCID: PMC8836149 DOI: 10.3390/ijms23031412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
The SARS-CoV-2 virus is currently the most serious challenge to global public health. Its emergence has severely disrupted the functioning of health services and the economic and social situation worldwide. Therefore, new diagnostic and therapeutic tools are urgently needed to allow for the early detection of the SARS-CoV-2 virus and appropriate treatment, which is crucial for the effective control of the COVID-19 disease. The ideal solution seems to be the use of aptamers—short fragments of nucleic acids, DNA or RNA—that can bind selected proteins with high specificity and affinity. They can be used in methods that base the reading of the test result on fluorescence phenomena, chemiluminescence, and electrochemical changes. Exploiting the properties of aptamers will enable the introduction of rapid, sensitive, specific, and low-cost tests for the routine diagnosis of SARS-CoV-2. Aptamers are excellent candidates for the development of point-of-care diagnostic devices and are potential therapeutic tools for the treatment of COVID-19. They can effectively block coronavirus activity in multiple fields by binding viral proteins and acting as carriers of therapeutic substances. In this review, we present recent developments in the design of various types of aptasensors to detect and treat the SARS-CoV-2 infection.
Collapse
|
18
|
Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv 2022; 55:107902. [DOI: 10.1016/j.biotechadv.2021.107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
|
19
|
Sensitive detection of patulin based on DNase Ⅰ-assisted fluorescent aptasensor by using AuNCs-modified truncated aptamer. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Li Y, Yang X, Hou F, Chen D, Liu Y, Yu D, Ming D, Yang Y, Huang H. Near-Infrared-Fluorescent Probe for Turn-On Lipopolysaccharide Analysis Based on PEG-Modified Gold Nanorods with Plasmon-Enhanced Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57058-57066. [PMID: 34784169 DOI: 10.1021/acsami.1c19746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipopolysaccharide (LPS), as the major component of the outer membrane of Gram-negative bacteria, can trigger a variety of biological effects such as sepsis, septic shock, and even multiorgan failure. Herein, we developed a near-infrared-fluorescent probe for fluorescent turn-on analysis of LPS based on plasmon-enhanced fluorescence (PEF). Gold nanorods (Au NRs) modified polyethylene glycol (PEG) was used as PEF materials. Au NRs were prepared with different longitudinal surface plasmon resonance (LSPR), and their fluorescence enhancement was investigated. Three kinds of molecular weights (1000, 5000, and 10000) of polyethylene glycol (PEG) were employed to control the distance between the Au NRs and the fluorescence substances of cyanine 7 (Cy7). Experimental analysis showed that the enhancement was related to the spectral overlap between the plasmon resonance of Au NRs and the extinction/emission of fluorophore. The three-dimensional finite-difference time-domain (3D-FDTD) simulation further revealed that the enhancement was caused by local electric field enhancement. Furthermore, the probe was used for the ultrasensitive analysis of LPS with a detection limit of 3.85 ng/mL and could quickly distinguish the Gram-negative bacterium-Escherichia coli (E. coli) (with LPS in the membrane) from Gram-positive bacterium-Staphylococcus aureus (S. aureus) (without LPS), as well as quantitative determination of E. coli with a detection limit of 1.0 × 106 cfu/mL. These results suggested that the prepared probe has great potential for biomedical diagnosis and selective detection of LPS from different bacterial strains.
Collapse
Affiliation(s)
- Yiting Li
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xinyu Yang
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Fan Hou
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Dong Chen
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yifan Liu
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Dinghua Yu
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Dengming Ming
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yaqiong Yang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - He Huang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
21
|
Ma P, Guo H, Duan N, Ma X, Yue L, Gu Q, Wang Z. Label free structure-switching fluorescence polarization detection of chloramphenicol with truncated aptamer. Talanta 2021; 230:122349. [PMID: 33934798 DOI: 10.1016/j.talanta.2021.122349] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
In this study, the original chloramphenicol aptamer containing 80 bases was truncated to 30 bases with high affinity by the SYBR Green I assay. It was found that the ionic strength and type affect the recognition of aptamers, especially magnesium ion played a vital role in the binding process. Furthermore, the binding performance of aptamer, including binding mode, key binding sites and conformational changes were further investigated by circular dichroism spectroscopy, UV-vis absorption spectrum and molecular docking. Based on these research data, we inferred that chloramphenicol bound to the minor groove region in the aptamer double helix. Finally, the optimized aptamer LLR10 was used to develop a novel label free fluorescence polarization assay to detect chloramphenicol within SYBR Green I as the source of fluorescence polarization signal. Under optimal conditions, the designed method showed a linear detection range of 0.1-10 nM with a detection limit of 0.06 nM. Additionally, the aptasensor exhibited a high accuracy to the detection of chloramphenicol in milk samples with a recovery rate from 93.7% to 98.4%. Therefore, the developed label free fluorescence polarization aptasensor provides a new idea for the rapid, reliable and sensitive detection of chloramphenicol, which can be applied to food safety control.
Collapse
Affiliation(s)
- Pengfei Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Hualin Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Qianhui Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Three Squirrels Inc., Wuhu, 241000, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
22
|
Srivastava S, Abraham PR, Mukhopadhyay S. Aptamers: An Emerging Tool for Diagnosis and Therapeutics in Tuberculosis. Front Cell Infect Microbiol 2021; 11:656421. [PMID: 34277465 PMCID: PMC8280756 DOI: 10.3389/fcimb.2021.656421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) has been plaguing human civilization for centuries, and currently around one-third of the global population is affected with TB. Development of novel intervention tools for early diagnosis and therapeutics against Mycobacterium tuberculosis (M.tb) is the main thrust area in today's scenario. In this direction global efforts were made to use aptamers, the chemical antibodies as tool for TB diagnostics and therapeutics. This review describes the various aptamers introduced for targeting M.tb and highlights the need for development of novel aptamers to selectively target virulent proteins of M.tb for vaccine and anti-TB drugs. The objective of this review is to highlight the diagnostic and therapeutic application of aptamers used for tuberculosis. The discovery of aptamers, SELEX technology, different types of SELEX development processes, DNA and RNA aptamers reported for diseases and pathogenic agents as well have also been described in detail. But the emphasis of this review is on the development of aptamers which can block the function of virulent mycobacterial components for developing newer TB vaccine candidates and/or drug targets. Aptamers designed to target M.tb cell wall proteins, virulent factors, secretory proteins, or combination could orchestrate advanced diagnosis and therapeutic measures for tuberculosis.
Collapse
Affiliation(s)
- Shruti Srivastava
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Philip Raj Abraham
- Unit of OMICS, ICMR-Vector Control Research Centre (VCRC), Puducherry, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
23
|
Li W. Prospective Application of Aptamer-based Assays and Therapeutics in Bloodstream Infections. Mini Rev Med Chem 2020; 20:831-840. [PMID: 32048971 DOI: 10.2174/1389557520666200212105813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
Sepsis is still a severe health problem worldwide with high morbidity and mortality. Blood bacterial culture remains the gold standard for the detection of pathogenic bacteria in bloodstream infections, but it is time-consuming, and both the sophisticated equipment and well-trained personnel are required. Immunoassays and genetic diagnosis are expensive and limited to specificity and sensitivity. Aptamers are single-stranded deoxyribonucleic acid (ssDNA) and ribonucleic acid (RNA) oligonucleotide or peptide sequence generated in vitro based on the binding affinity of aptamer-target by a process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX). By taking several advantages over monoclonal antibodies and other conventional small-molecule therapeutics, such as high specificity and affinity, negligible batch-to-batch variation, flexible modification and production, thermal stability, low immunogenicity and lack of toxicity, aptamers are presently becoming promising novel diagnostic and therapeutic agents. This review describes the prospective application of aptamerbased laboratory diagnostic assays and therapeutics for pathogenic bacteria and toxins in bloodstream infections.
Collapse
Affiliation(s)
- Weibin Li
- Institute for Laboratory Medicine, 900th Hospital of Joint Service Corps, PLA, China.,Laboratory Department of Fujian Medical University, No. 156 North Xi-er Huan Road, Fuzhou City, Fujian Province, Fuzhou 350025, China
| |
Collapse
|
24
|
Hendrickson OD, Taranova NA, Zherdev AV, Dzantiev BB, Eremin SA. Fluorescence Polarization-Based Bioassays: New Horizons. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7132. [PMID: 33322750 PMCID: PMC7764623 DOI: 10.3390/s20247132] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Fluorescence polarization holds considerable promise for bioanalytical systems because it allows the detection of selective interactions in real time and a choice of fluorophores, the detection of which the biosample matrix does not influence; thus, their choice simplifies and accelerates the preparation of samples. For decades, these possibilities were successfully applied in fluorescence polarization immunoassays based on differences in the polarization of fluorophore emissions excited by plane-polarized light, whether in a free state or as part of an immune complex. However, the results of recent studies demonstrate the efficacy of fluorescence polarization as a detected signal in many bioanalytical methods. This review summarizes and comparatively characterizes these developments. It considers the integration of fluorescence polarization with the use of alternative receptor molecules and various fluorophores; different schemes for the formation of detectable complexes and the amplification of the signals generated by them. New techniques for the detection of metal ions, nucleic acids, and enzymatic reactions based on fluorescence polarization are also considered.
Collapse
Affiliation(s)
- Olga D. Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Nadezhda A. Taranova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Sergei A. Eremin
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
- Department of Chemical Enzymology, Chemical Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
25
|
Li HY, Jia WN, Li XY, Zhang L, Liu C, Wu J. Advances in detection of infectious agents by aptamer-based technologies. Emerg Microbes Infect 2020; 9:1671-1681. [PMID: 32623963 PMCID: PMC7473197 DOI: 10.1080/22221751.2020.1792352] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases still remain one of the biggest challenges for human health. Accurate and early detection of infectious pathogens are crucial for transmission control, clinical diagnosis, and therapy. For a traditional reason, most immunological and microbiological laboratories are equipped with instruments designated for antibody-based assays in detection of infectious pathogens or clinical diagnosis. Emerging aptamer-based technologies have pushed a shift from antibody-based to aptamer-based assays due to equal specificity, even better sensitivity, lower manufacturing cost and more flexibility in amending for chemiluminescent, electrochemical or fluorescent detection in a multifaceted and high throughput fashion in comparison of aptamer-based to antibody-based assays. The nature of aptamer-based technologies is particularly suitable for point-of-care testing in remote areas at warm or hot atmosphere, and mass screening for potential infection in pandemic of emerging infectious agents, such as SARS-CoV or SARS-CoV-2 in an epicentre or other regions. This review intends to summarize currently available aptamer-based technologies in detection of bacterial, viral, and protozoan pathogens for research and clinical application. It is anticipated that potential technologies will be further optimized and validated for clinical translation in meeting increasing demands for prompt, precise, and reliable detection of specific pathogens in various atmospheric conditions.
Collapse
Affiliation(s)
- Hui-Yan Li
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Wan-Nan Jia
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Xin-Yi Li
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Li Zhang
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Chang Liu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Jian Wu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, People’s Republic of China
| |
Collapse
|
26
|
Jiang Z, Feng B, Xu J, Qing T, Zhang P, Qing Z. Graphene biosensors for bacterial and viral pathogens. Biosens Bioelectron 2020; 166:112471. [PMID: 32777726 PMCID: PMC7382337 DOI: 10.1016/j.bios.2020.112471] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
The infection and spread of pathogens (e.g., COVID-19) pose an enormous threat to the safety of human beings and animals all over the world. The rapid and accurate monitoring and determination of pathogens are of great significance to clinical diagnosis, food safety and environmental evaluation. In recent years, with the evolution of nanotechnology, nano-sized graphene and graphene derivatives have been frequently introduced into the construction of biosensors due to their unique physicochemical properties and biocompatibility. The combination of biomolecules with specific recognition capabilities and graphene materials provides a promising strategy to construct more stable and sensitive biosensors for the detection of pathogens. This review tracks the development of graphene biosensors for the detection of bacterial and viral pathogens, mainly including the preparation of graphene biosensors and their working mechanism. The challenges involved in this field have been discussed, and the perspective for further development has been put forward, aiming to promote the development of pathogens sensing and the contribution to epidemic prevention.
Collapse
Affiliation(s)
- Zixin Jiang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China.
| | - Jin Xu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China.
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, Hunan Province, China.
| |
Collapse
|
27
|
Engineering Janus micromotors with WS2 and affinity peptides for turn-on fluorescent sensing of bacterial lipopolysaccharides. Biosens Bioelectron 2020; 165:112286. [DOI: 10.1016/j.bios.2020.112286] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 11/20/2022]
|
28
|
Ye H, Zhou Y, Ma P, Guo Y, Wang Z. Analysis of the anti-inflammatory effect of the aptamer LA27 and its binding mechanism. Int J Biol Macromol 2020; 165:308-313. [PMID: 32931836 DOI: 10.1016/j.ijbiomac.2020.09.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 11/27/2022]
Abstract
Lipopolysaccharide (LPS) is an important pathogenic factor and plays a key role in human diseases such as fever, shock, and sepsis. Blocking the toxicity of LPS through antagonism is considered the best choice for the treatment of LPS-induced diseases. In this research, nucleic acid aptamer LA27, which was previously selected and optimized by our group, was used as an LPS inhibitor to treat human HepG2 cells stimulated by LPS from four different sources (StLPS, EcoliLPS, PaLPS, and SeLPS): the levels of expression of three inflammatory cytokines factors (TNF-α, IL-1β, and IL-6) were evaluated by ELISA on LA27-treated and untreated cells incubated for 12 h with LPS. The results of the assays indicated that LA27 exhibited considerable anti-inflammatory activity. The binding site and interactions between aptamer LA27 and LPSs were also simulated using Molecular Operating Environment (MOE) 2018 software. MOE simulation results showed that, under a combination of the hydrophobic interaction, hydrogen bonding, and electrostatic interactions, the fatty acid chain of LPS could interact with the wide hydrophobic region of the aptamer, constituting its major groove, and formed stable complex of T-type. The present research indicated that LA27 might be a potential therapeutic agent for sepsis and other diseases, which provides a new path for the development of LPS antagonists.
Collapse
Affiliation(s)
- Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - You Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Pengfei Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
29
|
Trunzo NE, Hong KL. Recent Progress in the Identification of Aptamers Against Bacterial Origins and Their Diagnostic Applications. Int J Mol Sci 2020; 21:ijms21145074. [PMID: 32708376 PMCID: PMC7404326 DOI: 10.3390/ijms21145074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Aptamers have gained an increasing role as the molecular recognition element (MRE) in diagnostic assay development, since their first conception thirty years ago. The process to screen for nucleic acid-based binding elements (aptamers) was first described in 1990 by the Gold Laboratory. In the last three decades, many aptamers have been identified for a wide array of targets. In particular, the number of reports on investigating single-stranded DNA (ssDNA) aptamer applications in biosensing and diagnostic platforms have increased significantly in recent years. This review article summarizes the recent (2015 to 2020) progress of ssDNA aptamer research on bacteria, proteins, and lipids of bacterial origins that have implications for human infections. The basic process of aptamer selection, the principles of aptamer-based biosensors, and future perspectives will also be discussed.
Collapse
|
30
|
Chemical Modification of Aptamers for Increased Binding Affinity in Diagnostic Applications: Current Status and Future Prospects. Int J Mol Sci 2020; 21:ijms21124522. [PMID: 32630547 PMCID: PMC7350236 DOI: 10.3390/ijms21124522] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Aptamers are short single stranded DNA or RNA oligonucleotides that can recognize analytes with extraordinary target selectivity and affinity. Despite their promising properties and diagnostic potential, the number of commercial applications remains scarce. In order to endow them with novel recognition motifs and enhanced properties, chemical modification of aptamers has been pursued. This review focuses on chemical modifications, aimed at increasing the binding affinity for the aptamer's target either in a non-covalent or covalent fashion, hereby improving their application potential in a diagnostic context. An overview of current methodologies will be given, thereby distinguishing between pre- and post-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) modifications.
Collapse
|
31
|
Chen M, Wan B, Du W, Hu H, Zeng L, Duan X, Liu J, Wei Z, Tang L, Peng Y. A ligation-triggered and protein-assisted fluorescence anisotropy amplification platform for sensitive and selective detection of small molecules in a biological matrix. RSC Adv 2020; 10:21789-21794. [PMID: 35516648 PMCID: PMC9054510 DOI: 10.1039/c9ra09621c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/31/2020] [Indexed: 11/30/2022] Open
Abstract
Effective detection of biomolecules is important for biological research and medical diagnosis. We here propose a ligation-triggered and protein-assisted fluorescence anisotropy amplification platform for sensitive and selective detection of small biomolecules in a complex biological matrix. In the proposed method, in the presence of target small molecules, FAM-labeled DNA 1 and biotin-labeled DNA2 were ligated to produce an integrated DNA. As a result, taking advantage of the extraordinary strong interaction between biotin and streptavidin, we employed a novel mass amplification strategy for sensitive detection of small molecules through fluorescence anisotropy. The method could detect ATP from 0.05 to 1 μM, with a detection limit of 41 nM, and detect NAD+ from 0.01 to 1 μM, with a detection limit of 6.7 nM. Furthermore, ligase-specific dependence of different cofactors provides good selectivity for the detection platform. As a result, the new platform has a broad spectrum of applications both in bioanalysis and biomedical fields. A ligation-triggered and protein-assisted fluorescence anisotropy amplification platform has been developed for sensitive and selective detection of small molecules in a biological matrix.![]()
Collapse
Affiliation(s)
- Meizi Chen
- Department of General Internal Medicine, The First People's Hospital of Chenzhou Chenzhou 423000 P. R. China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University Nanjing 211100 P. R. China
| | - Wei Du
- Department of Cardiology, The First People's Hospital of Chenzhou Chenzhou 423000 Hunan P. R. China
| | - Hongbo Hu
- Department of General Internal Medicine, The First People's Hospital of Chenzhou Chenzhou 423000 P. R. China
| | - Long Zeng
- Department of General Internal Medicine, The First People's Hospital of Chenzhou Chenzhou 423000 P. R. China
| | - Xintong Duan
- Department of General Internal Medicine, The First People's Hospital of Chenzhou Chenzhou 423000 P. R. China
| | - Jia Liu
- Department of General Internal Medicine, The First People's Hospital of Chenzhou Chenzhou 423000 P. R. China
| | - Zixiang Wei
- Department of General Internal Medicine, The First People's Hospital of Chenzhou Chenzhou 423000 P. R. China
| | - Li Tang
- Radiation Oncology Center, Chongqing University Cancer Hospital/Chongqing Cancer Institute Chongqing 400030 P. R. China
| | - Yongbo Peng
- Department of General Internal Medicine, The First People's Hospital of Chenzhou Chenzhou 423000 P. R. China .,Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine Changsha 410208 P. R. China
| |
Collapse
|
32
|
Huang L, Tao H, Zhao S, Yang K, Cao QY, Lan M. A Tetraphenylethylene-Based Aggregation-Induced Emission Probe for Fluorescence Turn-on Detection of Lipopolysaccharide in Injectable Water with Sensitivity Down to Picomolar. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Li Huang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hui Tao
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Shaojing Zhao
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke Yang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qian-Yong Cao
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Shenzhen Research Institute of Central South University, Shenzhen 518057, P. R. China
| |
Collapse
|
33
|
Chen J, Liu J, Chen X, Qiu H. Recent progress in nanomaterial-enhanced fluorescence polarization/anisotropy sensors. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|