1
|
Xu S, Zhou T, Wang J, Guo G, Chen Z, Li H, Yang Z, Gao Y. Determination of deoxynivalenol (DON) by a label-free electrochemical immunosensor based on NiFe PBA nanozymes. Food Chem 2024; 463:141436. [PMID: 39340910 DOI: 10.1016/j.foodchem.2024.141436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
Deoxynivalenol (DON) contamination in food products significantly threatens human health, necessitating a reliable and sensitive detection method. This study aims to develop a simple, low-cost, and effective electrochemical immunoassay method for detecting DON based on the nickel‑iron bimetallic Prussian blue analog (NiFe PBA). The NiFe PBA nanozymes with high peroxidase-like activity were synthesized using an environmentally friendly chemical precipitation method. In the presence of hydrogen peroxide (H2O2), the current change of thionine oxidation initiated by NiFe PBA nanozymes can be exploited to diagnose DON. Under optimal conditions, the proposed method achieved quantitative detection of DON in the range of 10-107 pg mL-1 with a detection limit of 4.5 pg mL-1 (S/N = 3), demonstrating excellent selectivity, reproducibility, and stability. In addition, the DON immunosensor provides satisfactory results for the detection in real samples, demonstrating the feasibility of the proposed sensor in detecting of DON in such products.
Collapse
Affiliation(s)
- Suhui Xu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Tianhao Zhou
- College of Agricultural and Environmental Sciences, University of California, California 95616, United States
| | - Jiamin Wang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ge Guo
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhiyan Chen
- School of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Huaxiang Li
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhenquan Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yajun Gao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
2
|
Qin M, Khan IM, Ding N, Qi S, Dong X, Zhang Y, Wang Z. Aptamer-modified paper-based analytical devices for the detection of food hazards: Emerging applications and future perspective. Biotechnol Adv 2024; 73:108368. [PMID: 38692442 DOI: 10.1016/j.biotechadv.2024.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Food analysis plays a critical role in assessing human health risks and monitoring food quality and safety. Currently, there is a pressing need for a reliable, portable, and quick recognition element for point-of-care testing (POCT) to better serve the demands of on-site food analysis. Aptamer-modified paper-based analytical devices (Apt-PADs) have excellent characteristics of high portability, high sensitivity, high specificity, and on-site detection, which have been widely used and concerned in the field of food safety. The article reviews the basic components and working principles of Apt-PADs, and introduces their representative applications detecting food hazards. Finally, the advantages, challenges, and future directions of Apt-PADs-based sensing performance are discussed, to provide new directions and insights for researchers to select appropriate Apt-PADs according to specific applications.
Collapse
Affiliation(s)
- Mingwei Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, PR China
| | - Ning Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Quantum-Dot-Bead-Based Fluorescence-Linked Immunosorbent Assay for Sensitive Detection of Cry2A Toxin in Cereals Using Nanobodies. Foods 2022; 11:foods11182780. [PMID: 36140908 PMCID: PMC9497650 DOI: 10.3390/foods11182780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 12/29/2022] Open
Abstract
In this study, a quantum-dot-bead (QB)-based fluorescence-linked immunosorbent assay (FLISA) using nanobodies was established for sensitive determination of the Cry2A toxin in cereal. QBs were used as the fluorescent probe and conjugated with a Cry2A polyclonal antibody. An anti-Cry2A nanobody P2 was expressed and used as the capture antibody. The results revealed that the low detection limit of the developed QB-FLISA was 0.41 ng/mL, which had a 19-times higher sensitivity than the traditional colorimetric ELISA. The proposed assay exhibited a high specificity for the Cry2A toxin, and it had no evident cross-reactions with other Cry toxins. The recoveries of Cry2A from the spiked cereal sample ranged from 86.6–117.3%, with a coefficient of variation lower than 9%. Moreover, sample analysis results of the QB-FLISA and commercial ELISA kit correlated well with each other. These results indicated that the developed QB-FLISA provides a potential approach for the sensitive determination of the Cry2A toxin in cereals.
Collapse
|
4
|
Zhou J, Qian W, Yang Q, Liang C, Chen Y, Wang A, Zhang G. Analysis of virginiamycin M1 in swine feed, muscle and liver samples by quantum dots-based fluorescent immunochromatographic assay. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1390-1400. [PMID: 35679322 DOI: 10.1080/19440049.2022.2081366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Based on a highly sensitive and specific monoclonal antibody (mAb) against virginiamycin M1 (VIR M1), a quantum dots-based fluorescent immunochromatographic assay (QDs-ICA) for quick and sensitive analysis of VIR M1 was established for the first time. The mAb showed a half-maximal inhibitory concentration (IC50) of 0.5 ng/mL and cross-reactivity (CR) values below 0.1% for other three analogues when used in enzyme-linked immunosorbent assay (ELISA). The mAb was conjugated to ZnCdSe/ZnS (core/shell) QDs with maximum emission wavelength of 610 nm (orange-red) which was selected as fluorescent probe to increase QDs-ICA sensitivity. The cut-off value of QDs-ICA was 12.5 ng/mL. QDs-ICA showed a linear range from 0.7 to 14.5 ng/mL with a limit of quantification of 0.7 ng/mL. Compared with existing methods for the analysis of VIR M1, the QDs-ICA exhibited higher sensitivity. For analysis of VIR M1 concentrations spiked into swine feed, muscle and liver samples, recovery rates ranged from 94.0% to 111.6% with the highest coefficient of variation (CV) of 6.7% for intra-assay, and for inter-assay ranged from 94.7% to 107.6% with the highest CV of 9.4%. In conclusion, the QDs-ICA could be a potential method for analyzing VIR M1 in animal feed and animal-derived food.
Collapse
Affiliation(s)
- Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Wenjing Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Qingbao Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
5
|
Zhou J, Wang Z, Qian W, Liang C, Chen Y, Liu H, Liu Y, Zhu X, Wang A. Quantum dot-based fluorescence immunosorbent assay for the rapid detection of bacitracin zinc in feed samples. LUMINESCENCE 2022; 37:1300-1308. [PMID: 35637545 DOI: 10.1002/bio.4296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Bacitracin zinc (BAC), a polypeptide antibiotic, is utilized as a feed additive due to its ability to promote growth in animals. However, the abuse of BAC can lead to a great threat to food safety. Therefore, there is an urgent need to develop a rapid and sensitive detection method. In this study, a monoclonal antibody (mAb) against BAC with excellent sensitivity and specificity was obtained. For the first time, quantum dots (QDs) were conjugated with the prepared mAb against BAC and rabbit anti-mouse antibody to fabricate a direct and an indirect competitive fluorescence-linked immunosorbent assay (dc-FLISA and ic-FLISA) to detect BAC. The IC50 of dc-FLISA and ic-FLISA were 0.28 ng/ml and 0.17 ng/ml, respectively. The limits of detection were 0.0016 ng/ml and 0.001 ng/ml, respectively, and the detection ranges were 0.0016-46.50 ng/ml and 0.001-35.65 ng/ml, respectively. In addition, the recovery rate of the two methods ranged from 93.5% to 112.0%, and the coefficient of variation (CV) was less than 10%. Therefore, the methods developed in this work have the merits of low cost, simple operation, and high sensitivity, which provide an effective analytical tool for BAC residue detection in feed samples.
Collapse
Affiliation(s)
- Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhuoyang Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjing Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Zhou J, Wang X, Li Y, Chen Y, Liu Y, Liu H, Liang C, Zhu X, Qi Y, Wang A. Fluorescence immunoassay based on phage mimotope for nontoxic detection of Zearalenone in maize. J Food Saf 2022. [DOI: 10.1111/jfs.12982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingming Zhou
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Xueli Wang
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Yanghui Li
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Yumei Chen
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Yankai Liu
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Hongliang Liu
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Chao Liang
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Xifang Zhu
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Yanhua Qi
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Aiping Wang
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
7
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
8
|
Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Wei L, Zhang J, Zha C, Yang Q, Li F, Sun X, Guo Y, Liu Z. A strategy to protect biological activity and amplify signal applied on time-resolved fluorescence immunochromatography for detecting T-2 toxin. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Fluorescent paper strip immunoassay with carbon nanodots@silica for determination of human serum amyloid A1. Mikrochim Acta 2021; 188:386. [PMID: 34664145 DOI: 10.1007/s00604-021-05019-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
A fluorescent paper strip immunoassay in conjunction with carbon nanodots@silica (CND@SiO2) as a label was developed for the quantitative measurements of human serum amyloid A1 (hSAA1) in serum at clinically significant concentrations for lung cancer diagnosis. Monodispersed CND@SiO2 was prepared by cohydrolysis between silane-crosslinked carbon nanodots and silica precursors via the Ströber method and further attached covalently to anti-hSAA1 (14F8) monoclonal antibody [anti-hSAA1(14F8)] specific to the hSAA1 target. The hSAA1 concentrations were then determined by quantifying the blue fluorescence intensity upon 365 nm excitation of the captured hSAA1 with anti-hSAA1(14F8)-CND@SiO2 conjugates in the test line on a paper strip where anti-hSAA1 (10G1) monoclonal antibody was physisorbed. The developed fluorescent paper strip with CND@SiO2 can detect hSAA1 at concentrations ranging from 0.1 to 5 nM (R2 = 0.995), with a limit of detection of 0.258 nM in 10 mM phosphate buffer pH 7.4 containing human serum albumin. The performance of recovery (90.98-109.17%) and repeatability (coefficients of variation < 8.46%) obtained was also acceptable for quantitative determinations. The platform was employed for direct determination of hSAA1 concentrations in undiluted serum samples from lung cancer patients (relative standard deviation (RSD) < 7.46%) and healthy humans (RSD < 3.96%). The results were compared with those obtained using a commercially available enzyme-linked immunosorbent assay alongside liquid chromatography with tandem mass spectrometry measurements.
Collapse
|
11
|
Zhou J, Zhang X, Qian W, Yang Q, Qi Y, Chen Y, Wang A. Quantum dots‐based fluorescence immunoassay for detection of tiamulin in pork. J Food Saf 2021. [DOI: 10.1111/jfs.12930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jingming Zhou
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Xiaoli Zhang
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Wenjing Qian
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Qingbao Yang
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Yanhua Qi
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Yumei Chen
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Aiping Wang
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
12
|
Di Nardo F, Chiarello M, Cavalera S, Baggiani C, Anfossi L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:5185. [PMID: 34372422 PMCID: PMC8348896 DOI: 10.3390/s21155185] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022]
Abstract
The Lateral Flow Immunoassay (LFIA) is by far one of the most successful analytical platforms to perform the on-site detection of target substances. LFIA can be considered as a sort of lab-in-a-hand and, together with other point-of-need tests, has represented a paradigm shift from sample-to-lab to lab-to-sample aiming to improve decision making and turnaround time. The features of LFIAs made them a very attractive tool in clinical diagnostic where they can improve patient care by enabling more prompt diagnosis and treatment decisions. The rapidity, simplicity, relative cost-effectiveness, and the possibility to be used by nonskilled personnel contributed to the wide acceptance of LFIAs. As a consequence, from the detection of molecules, organisms, and (bio)markers for clinical purposes, the LFIA application has been rapidly extended to other fields, including food and feed safety, veterinary medicine, environmental control, and many others. This review aims to provide readers with a 10-years overview of applications, outlining the trends for the main application fields and the relative compounded annual growth rates. Moreover, future perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Fabio Di Nardo
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (M.C.); (S.C.); (C.B.); (L.A.)
| | | | | | | | | |
Collapse
|
13
|
Guo T, Wang C, Zhou H, Zhang Y, Ma L, Wang S. A facile aptasensor based on polydopamine nanospheres for high-sensitivity sensing of T-2 toxin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2654-2658. [PMID: 34036989 DOI: 10.1039/d1ay00642h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A facile fluorescent aptasensor based on polydopamine nanospheres (PDANSs) has been proposed for the rapid and high sensitive sensing of T-2 toxin. PDANSs are dopamine-derived synthetic eumelanin polymers with excellent fluorescence quenching ability, dispersibility and biocompatibility. In the assay, 6-carboxyfluorescein (FAM)-labeled aptamers (FAM-aptamers) were adsorbed onto PDANSs via noncovalent bonding, resulting in quenching fluorescence. In the presence of T-2, the binding of T-2 to the aptamers could promote the formation of the A-form duplex hairpin structure, which was used as a sensing platform to detect T-2 on the basis of fluorescence recovery. The results showed that the aptasensor was rapid and sensitive for the detection of T-2 toxin with a linear detection range of 10-180 μg L-1 and a detection limit of 7.23 μg L-1. The performance of the proposed method was comparable with that of the liquid chromatography-mass spectrometry method (LC-MS). Thus, the aptasensor could be used for the determination of real samples. The design method proposed in this study provides a strategy for the development of PDANS-based toxin biosensors.
Collapse
Affiliation(s)
- Ting Guo
- Ministry of Education, College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Changchang Wang
- Institute of Environment and Safety, Wuhan Academy of Agricultural Science, Wuhan 430207, P. R. China
| | - Hongyuan Zhou
- Ministry of Education, College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Yuhao Zhang
- Ministry of Education, College of Food Science, Southwest University, Chongqing 400715, P. R. China. and Biological Science Research Center, Southwest University, Chongqing 400715, P. R. China
| | - Liang Ma
- Ministry of Education, College of Food Science, Southwest University, Chongqing 400715, P. R. China. and Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, P. R. China and Biological Science Research Center, Southwest University, Chongqing 400715, P. R. China
| | - Shuo Wang
- Ministry of Education, College of Food Science, Southwest University, Chongqing 400715, P. R. China. and Medical College, Nankai University, Tianjin 300457, P. R. China
| |
Collapse
|
14
|
Xiao X, Hu S, Lai X, Peng J, Lai W. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Zhao X, Wang Y, Li J, Huo B, Huang H, Bai J, Peng Y, Li S, Han D, Ren S, Wang J, Gao Z. A fluorescence aptasensor for the sensitive detection of T-2 toxin based on FRET by adjusting the surface electric potentials of UCNPs and MIL-101. Anal Chim Acta 2021; 1160:338450. [PMID: 33894966 DOI: 10.1016/j.aca.2021.338450] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
T-2 toxin is a class A trichothecene mycotoxin produced by Fusarium, which exhibits genotoxic, cytotoxic, and immunotoxic effects in animals and humans. In this study, we developed an aptasensor for the sensitive detection of T-2 toxin, which was based on fluorescence resonance energy transfer (FRET), and acted by adjusting the electric potential on the surface of upconversion nanoparticles (UCNPs) and MIL-101(Cr). In addition, it combined the excellent spectral properties of UCNPs with the good adsorption quenching abilities of metal organic frameworks (MOFs). Under the action of π-π stacking interactions, the UCNPs-aptamer was adsorbed onto the surface of MIL-101, leading to fluorescence quenching due to the occurrence of FRET. After the addition of T-2 toxin, owing to its selective binding to the UCNPs-aptamer, the UCNPs-aptamer moved away from MIL-101(Cr), resulting in fluorescence recovery. Moreover, the extent of fluorescence recovery was positively correlated with the concentration of T-2 toxin. The limit of detection (LOD) of this sensor was 0.087 ng mL-1 (S/N = 3), and a good linear correlation was observed between the fluorescence intensity and the T-2 toxin concentration in the range of 0.1-100 ng mL-1. Moreover, the recovery of this method was 97.52-109.53% for corn meal samples (relative standard deviation, RSD = 1.7-2.4%) and 90.81-100.02% for beer samples (RSD = 2.4-2.7%). By adjusting the surface electric potentials, the efficient fluorescence aptasensor combined the advantages of UCNPs and MIL-101(Cr) and allowed the first application of such a system in toxin detection, thereby indicating its potential food sample analysis and biochemical sensing.
Collapse
Affiliation(s)
- Xudong Zhao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Jingzhi Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China; School of Public Health, Lanzhou University, Lanzhou, 730030, PR China
| | - Bingyang Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China; School of Chemistry, Sun Yat-Sen University, Guangzhou, 510000, PR China
| | - Hui Huang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China; College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Jiang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| |
Collapse
|
16
|
Mahmoudi T, Pourhassan-Moghaddam M, Shirdel B, Baradaran B, Morales-Narváez E, Golmohammadi H. (Nano)tag-antibody conjugates in rapid tests. J Mater Chem B 2021; 9:5414-5438. [PMID: 34143173 DOI: 10.1039/d1tb00571e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibodies (Abs) are naturally derived materials with favorable affinity, selectivity, and fast binding kinetics to the respective antigens, which enables their application as promising recognition elements in the development of various types of biosensors/bioassays, especially in rapid tests. These tests are low-cost and easy-to-use biosensing devices with broad applications including medical or veterinary diagnostics, environmental monitoring and industrial usages such as safety and quality analysis in food, providing on-site quick monitoring of various analytes, making it possible to save analysis costs and time. To reach such features, the conjugation of Abs with various nanomaterials (NMs) as tags is necessary, which range from conventional gold nanoparticles to other nanoparticles recently introduced, where magnetic, plasmonic, photoluminescent, or multi-modal properties play a critical role in the overall performance of the analytical device. In this context, to preserve the Ab affinity and provide a rapid response with long-term storage capability, the use of efficient bio-conjugation techniques is critical. Thanks to their prominent role in rapid tests, many studies have been devoted to the design and development of Abs-NMs conjugates with various chemistries including passive adsorption, covalent coupling, and affinity interactions. In this review, we present the state-of-the-art techniques allowing various Ab-NM conjugates with a special focus on the efficiency of the developed probes to be employed in in vitro rapid tests. Challenges and future perspectives on the development of Ab-conjugated nanotags in rapid diagnostic tests are highlighted along with a survey of the progress in commercially available Ab-NM conjugates.
Collapse
Affiliation(s)
- Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Pourhassan-Moghaddam
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Behnaz Shirdel
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C. Loma del Bosque 115, Lomas del Campestre, 37150 León, Guanajuato, Mexico.
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
17
|
Shi L, Xu L, Xiao R, Zhou Z, Wang C, Wang S, Gu B. Rapid, Quantitative, High-Sensitive Detection of Escherichia coli O157:H7 by Gold-Shell Silica-Core Nanospheres-Based Surface-Enhanced Raman Scattering Lateral Flow Immunoassay. Front Microbiol 2020; 11:596005. [PMID: 33240250 PMCID: PMC7677456 DOI: 10.3389/fmicb.2020.596005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli O157:H7 is regarded as one of the most harmful pathogenic microorganisms related to foodborne diseases. This paper proposes a rapid-detection biosensor for the sensitive and quantitative analysis of E. coli O157:H7 in biological samples by surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFIA). A novel gold-shell silica-core (SiO2/Au) nanosphere (NP) with monodispersity, good stability, and excellent SERS activity was utilized to prepare high-performance tags for the SERS-based LFIA system. The SiO2/Au SERS tags, which were modified with two layers of Raman reporter molecules and monoclonal antibodies, effectively bind with E. coli O157:H7 and form sandwich immune complexes on the test lines. E. coli O157:H7 was quantitatively detected easily by detecting the Raman intensity of the test lines. Under optimal conditions, the limit of detection (LOD) of the SiO2/Au-based SERS-LIFA strips for the target bacteria was 50 cells/mL in PBS solution, indicating these strips are 2,000 times more sensitive than colloidal Au-based LFIA strips. Moreover, the proposed assay demonstrated high applicability in E. coli O157:H7 detection in biological samples, including tap water, milk, human urine, lettuce extract and beef, with a low LOD of 100 cells/mL. Results indicate that the proposed SERS-based LFIA strip is applicable for the sensitive and quantitative determination of E. coli O157:H7.
Collapse
Affiliation(s)
- Luoluo Shi
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, China
- Beijing Institute of Radiation Medicine, Beijing, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ling Xu
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zihui Zhou
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chongwen Wang
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, China
- Beijing Institute of Radiation Medicine, Beijing, China
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Bing Gu
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Zhou J, Yang Q, Liang C, Chen Y, Zhang X, Liu Z, Wang A. Detection of ochratoxin A by quantum dots-based fluorescent immunochromatographic assay. Anal Bioanal Chem 2020; 413:183-192. [PMID: 33064163 DOI: 10.1007/s00216-020-02990-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/10/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
Abstract
Ochratoxin A (OTA) is a toxic metabolite produced mainly by Aspergillus and Penicillium species. A quantitative method was developed for the rapid, simple, and sensitive detection of OTA in corn by quantum dots-based fluorescent immunochromatographic assay (QDs-ICA). The CdSe/ZnS QDs-labelled anti-OTA monoclonal antibody (mAb) conjugates were designed as the fluorescent signal probe. The QDs-ICA included the designation of test line (T line) and control line (C line), which were sprayed with optimal concentrations of the OTA-OVA and staphylococcal protein-A (SPA), respectively. Under the optimal experimental conditions, the QDs-ICA exhibited excellent specificity and good accuracy and precision. For qualitative detection, the cut-off value for the T line of the visual detection method was 2.5 ng/mL. For quantitative detection, the linear regression equation of the standard curve was y = 0.366x + 0.514 with a reliable correlation coefficient (R2 = 0.992). Moreover, the 50% inhibition value (IC50) of the QDs-ICA was 0.91 ng/mL, the limit of detection (LOD) was 0.07 ng/mL, and the detection range was 0.05 to 10 ng/mL. In addition, the recovery rates ranged from 91.82 to 100.35% with a coefficient of variation (CV) below 3% for intra-assay, whereas the recovery rates for inter-assay changed from 94.29 to 104.62% with a CV below 10%. These results indicate that the QDs-ICA can serve as a potential large-scale preliminary device for rapid determination of OTA. Using CdSe/ZnS QDs as the fluorescent signal for quantum dots-based fluorescent immunochromatographic assay, the QDs-ICA provided a novel method for the rapid simultaneous qualitative and quantitative determination of OTA.
Collapse
Affiliation(s)
- Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qingbao Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoli Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhanxiang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
19
|
A competitive immunoassay based on engineered magnetic/fluorescent nanoparticles and biolayer interferometry-based assay for T-2 toxin determination. Mikrochim Acta 2020; 187:514. [PMID: 32839860 DOI: 10.1007/s00604-020-04493-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
For the first time a competitive immunoassay was developed by employing T-2 antibody-functionalized magnetite nanoparticles and T-2 toxin-conjugated fluorescent quantum dots (QDs). Free T-2 and the T-2-modified QDs compete for binding to antibody-modified magnetic beads; the magnetic beads collected by magnetic separation were subjected to fluorescence intensity analysis (with excitation/emission wavelengths at 460/616 nm). This competitive immunoassay for T-2 toxin determination was applied both in a microcentrifuge tube and on a 96-well plate. The dynamic range of the immunoassay is 1-100 ng mL-1, the limit of detection (LOD) is 0.1 ng mL-1, and determination was completed in about 40 min and 30 min in the microcentrifuge tube and 96-well plate, respectively. Moreover, the biolayer interferometry (BLI) technique was employed for T-2 determination for the first time, in which the conjugate of T-2 toxin and bovine serum albumin (BSA) was immobilized on the sensors before detection. Its average recovery of T-2 toxin from barley sample ranged from 82.00 to 123.33%, and the relative standard deviation (RSD) was between 9.42 and 15.73%. The LOD of the BLI-based assay is 5 ng mL-1, and it only takes 10 min to finish the determination. Graphical abstract.
Collapse
|
20
|
Goryacheva OA, Guhrenz C, Schneider K, Beloglazova NV, Goryacheva IY, De Saeger S, Gaponik N. Silanized Luminescent Quantum Dots for the Simultaneous Multicolor Lateral Flow Immunoassay of Two Mycotoxins. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24575-24584. [PMID: 32372638 DOI: 10.1021/acsami.0c05099] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A critical point for the successful development of a fluorescent quantum dot (QD)-based immunoassay is maintaining the high fluorescence quantum yield of QDs during hydrophilization and bioconjugation. In this paper, we carefully designed CdSe/CdS and CdSe/CdS/ZnS core-shell heterostructures and extended them with silica coating of different surface composition allowing preservation of fluorescence quantum yield as high as 70% in aqueous media. The silanized QDs containing epoxy and carboxy surface groups were bioconjugated with monoclonal antibodies. The synthesized fluorescent conjugates were used in a multicolor lateral flow immunoassay for simultaneous determination of two mycotoxins. Zearalenone and deoxynivalenol were chosen as a proof of concept. Cutoff levels for the zearalenone and deoxynivalenol detection were adjusted to be at 40 and 400 μg kg-1, respectively, complying with the European Commission regulation. Validation of the developed test was performed by analysis of 34 naturally contaminated maize and wheat samples; as a confirmatory method, LC-MS/MS was used.
Collapse
Affiliation(s)
- Olga A Goryacheva
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, Dresden 01062, Germany
- Chemistry Institute, Department of General and Inorganic Chemistry, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia
| | - Chris Guhrenz
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, Dresden 01062, Germany
| | - Kristian Schneider
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, Dresden 01062, Germany
| | - Natalia V Beloglazova
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
- Nanotechnology Education and Research Center, South Ural State University, Chelyabinsk 454080, Russia
| | - Irina Yu Goryacheva
- Chemistry Institute, Department of General and Inorganic Chemistry, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia
| | - Sarah De Saeger
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Nikolai Gaponik
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, Dresden 01062, Germany
| |
Collapse
|