1
|
Mohammadi F, Zahraee H, Zibadi F, Khoshbin Z, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Progressive cancer targeting by programmable aptamer-tethered nanostructures. MedComm (Beijing) 2024; 5:e775. [PMID: 39434968 PMCID: PMC11491555 DOI: 10.1002/mco2.775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Scientific research in recent decades has affirmed an increase in cancer incidence as a cause of death globally. Cancer can be considered a plurality of various diseases rather than a single disease, which can be a multifaceted problem. Hence, cancer therapy techniques acquired more accelerated and urgent approvals compared to other therapeutic approaches. Radiotherapy, chemotherapy, immunotherapy, and surgery have been widely adopted as routine cancer treatment strategies to suppress disease progression and metastasis. These therapeutic approaches have lengthened the longevity of countless cancer patients. Nonetheless, some inherent limitations have restricted their application, including insignificant therapeutic efficacy, toxicity, negligible targeting, non-specific distribution, and multidrug resistance. The development of therapeutic oligomer nanoconstructs with the advantages of chemical solid-phase synthesis, programmable design, and precise adjustment is crucial for advancing smart targeted drug nanocarriers. This review focuses on the significance of the different aptamer-assembled nanoconstructs as multifunctional nucleic acid oligomeric nanoskeletons in efficient drug delivery. We discuss recent advancements in the design and utilization of aptamer-tethered nanostructures to enhance the efficacy of cancer treatment. Valuably, this comprehensive review highlights self-assembled aptamers as the exceptionally intelligent nano-biomaterials for targeted drug delivery based on their superior stability, high specificity, excellent recoverability, inherent biocompatibility, and versatile functions.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Hamed Zahraee
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Mohammad Ramezani
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Mona Alibolandi
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Khalil Abnous
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Miao M, Guo L, Xue J, Jia Y, Cui Z, Yang H. A controllable Y-shaped DNA structure assisted aptasensor for the simultaneous detection of AFB 1 and OTA based on ARGET ATRP. J Mater Chem B 2024; 12:5861-5868. [PMID: 38775046 DOI: 10.1039/d4tb00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The development of a simple, rapid, and sensitive technology for the simultaneous detection of mycotoxins is of great significance in ensuring the safety of foods and drugs. Herein, a fluorescence aptasensor with high sensitivity and reproducibility for the simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) was developed. In this sensing system, AFB1 and OTA aptamers were co-immobilized on the surface of magnetic beads (MBs) to form a Y-shaped structure through the principle of complementary base pairing, and were used as recognition probes to specifically capture the target. Activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) was used as a signal amplification strategy to improve the sensitivity. The initiator modified at the end of an antibody initiates the ARGET ATRP reaction. Different fluorescence signals were designed to achieve the simultaneous detection of OTA and AFB1 with limits of 426.18 and 79.55 fg mL-1 for AFB1 and OTA, respectively. In addition, experiments were conducted on three types of samples, and the recoveries of the two mycotoxins ranged from 87.30% to 109.50%, with relative standard deviations ranging from 0.50% to 4.92% under reproducible conditions. The results suggest that the developed aptasensor is sufficient to meet the different regulatory requirements of the two mycotoxins in food and drug safety and shows great potential.
Collapse
Affiliation(s)
- Mingsan Miao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, People's Republic of China
| | - Liang Guo
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| | - Jinyan Xue
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| | - Yuzhen Jia
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| | - Zhenzhen Cui
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| |
Collapse
|
3
|
Qu Z, Ren X, Du Z, Hou J, Li Y, Yao Y, An Y. Fusarium mycotoxins: The major food contaminants. MLIFE 2024; 3:176-206. [PMID: 38948146 PMCID: PMC11211685 DOI: 10.1002/mlf2.12112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 07/02/2024]
Abstract
Mycotoxins, which are secondary metabolites produced by toxicogenic fungi, are natural food toxins that cause acute and chronic adverse reactions in humans and animals. The genus Fusarium is one of three major genera of mycotoxin-producing fungi. Trichothecenes, fumonisins, and zearalenone are the major Fusarium mycotoxins that occur worldwide. Fusarium mycotoxins have the potential to infiltrate the human food chain via contamination during crop production and food processing, eventually threatening human health. The occurrence and development of Fusarium mycotoxin contamination will change with climate change, especially with variations in temperature, precipitation, and carbon dioxide concentration. To address these challenges, researchers have built a series of effective models to forecast the occurrence of Fusarium mycotoxins and provide guidance for crop production. Fusarium mycotoxins frequently exist in food products at extremely low levels, thus necessitating the development of highly sensitive and reliable detection techniques. Numerous successful detection methods have been developed to meet the requirements of various situations, and an increasing number of methods are moving toward high-throughput features. Although Fusarium mycotoxins cannot be completely eliminated, numerous agronomic, chemical, physical, and biological methods can lower Fusarium mycotoxin contamination to safe levels during the preharvest and postharvest stages. These theoretical innovations and technological advances have the potential to facilitate the development of comprehensive strategies for effectively managing Fusarium mycotoxin contamination in the future.
Collapse
Affiliation(s)
- Zheng Qu
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural SciencesJinanChina
| | - Zhaolin Du
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Jie Hou
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Ye Li
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Yanpo Yao
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Yi An
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| |
Collapse
|
4
|
Hou S, Ma J, Cheng Y, Wang Z, Yan Y. Overview-gold nanoparticles-based sensitive nanosensors in mycotoxins detection. Crit Rev Food Sci Nutr 2023; 63:11734-11749. [PMID: 35916760 DOI: 10.1080/10408398.2022.2095973] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food-borne mycotoxins is one of the food safety concerns in the world. At present, nanosensors are widely used in the detection and analysis of mycotoxins due to their high specificity and sensitivity. In nanosensor-based mycotoxindetections, the sensitivity is mainly improved from two aspects. On the one hand, based on the principle of immune response, antigens and antibodies can be modified and developed. Such as single-domain heavy chain antibodies, aptamers, peptides, and antigen mimotopes. On the other hand, improvements and innovations have been made on signal amplification materials, including gold nanoparticles (AuNPs), quantum dots, and graphene, etc. Among them, gold nanoparticles can not only be used as a signal amplification material, but also can be used as carriers for identification elements, which can be used for signal amplification in detection. In this article, we systematically summarized the emerging strategies for enhancing the detection sensitivity of traditional gold nanoparticles-based nanosensors, in terms of recognition elements and signal amplification. Representative examples were selected to illustrate the potential mechanism of each strategy in enhancing the colorimetric signal intensity of AuNP and its potential application in biosensing. Finally, our review suggested the challenges and future prospects of gold particles in detection of mycotoxins.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Fan Y, Li J, Amin K, Yu H, Yang H, Guo Z, Liu J. Advances in aptamers, and application of mycotoxins detection: A review. Food Res Int 2023; 170:113022. [PMID: 37316026 DOI: 10.1016/j.foodres.2023.113022] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Mycotoxin contamination in food products can easily cause serious health hazards and economic losses to human beings. How to accurately detect and effectively control mycotoxin contamination has become a global concern. Mycotoxins conventional detection techniques e.g; ELISA, HPLC, have limitations like, low sensitivity, high cost and time-consuming. Aptamer-based biosensing technology has the advantages of high sensitivity, high specificity, wide linear range, high feasibility, and non-destructiveness, which overcomes the shortcomings of conventional analysis techniques. This review summarizes the sequences of mycotoxin aptamers that have been reported so far. Based on the application of four classic POST-SELEX strategies, it also discusses the bioinformatics-assisted POST-SELEX technology in obtaining optimal aptamers. Furthermore, trends in the study of aptamer sequences and their binding mechanisms to targets is also discussed. The latest examples of aptasensor detection of mycotoxins are classified and summarized in detail. Newly developed dual-signal detection, dual-channel detection, multi-target detection and some types of single-signal detection combined with unique strategies or novel materials in recent years are focused. Finally, the challenges and prospects of aptamer sensors in the detection of mycotoxins are discussed. The development of aptamer biosensing technology provides a new approach with multiple advantages for on-site detection of mycotoxins. Although aptamer biosensing shows great development potential, still some challenges and difficulties are there in practical applications. Future research need high focus on the practical applications of aptasensors and the development of convenient and highly automated aptamers. This may lead to the transition of aptamer biosensing technology from laboratory to commercialization.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Life Science Chang Chun Normal University, Changchun 130032, China.
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
6
|
Yu H, Yang H, Liu W, Jin L, Jin B, Wu M. Novel electrochemiluminescence biosensor of fumonisin B 1 detection using MWCNTs-PDMS flexible bipolar electrode. Talanta 2023; 257:124379. [PMID: 36812657 DOI: 10.1016/j.talanta.2023.124379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
A novel portable and disposable bipolar electrode (BPE)-electrochemiluminescence (ECL) device was fabricated for fumonisin B1 (FB1) detection. BPE was fabricated by using MWCNTs and polydimethylsiloxane (PDMS) due to their excellent electrical conductivity and good mechanical stiffness. After the deposition of Au NPs on the cathode of BPE, the ECL signal could be improved 89-fold. Then a specific aptamer-based sensing strategy was constructed by grafting capture DNA on Au surface, followed by hybridizing with aptamer. Meanwhile, an excellent catalyst, Ag NPs was labeled on aptamer to activate oxygen reduction reaction, leading to a 13.8-fold enhancement in ECL signal at the anode of BPE. Under the optimal conditions, the biosensor exhibited a wide linear range of 0.10 pg/mL to 10 ng/mL for FB1 detection. Meanwhile, it demonstrated satisfactory recoveries for real sample detection with good selectivity, making it to be a convenient and sensitive device for mycotoxin assay.
Collapse
Affiliation(s)
- Huihui Yu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Haijian Yang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Weishuai Liu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Longsheng Jin
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bing Jin
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Meisheng Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
7
|
Wang G, Sun J, Li B, Guan F, Huang J, Dong H, Zhang J, Han J, Shen Z, Xu D, Sun X, Guo Y, Zhao S. Multiplex strategy electrochemical platform based on self-assembly dual-site DNA tetrahedral scaffold for one-step detection of diazinon and profenofos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161692. [PMID: 36682560 DOI: 10.1016/j.scitotenv.2023.161692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
In the work, based on self-assembly dual-site DNA tetrahedral scaffold (DTS), thionine (Thi), and 6-(Ferrocenyl)hexanethiol (Fc6S), a multiplex strategy electrochemical platform was fabricated for the simultaneous detection of profenofos (PFF) and diazinon (DZN). Thi and Fc6S were used to label aptamers for the synthesis of probes respectively. Notably, Thi and Fc6S engendered recognizable DPV peaks at different potentials to achieve simultaneous detection of PFF and DZN. In addition to increasing the conductivity of the electrode, the combination of carboxylic acid functionalized multi-walled carbon nanotubes and ferroferric oxide nanoparticles could also increase its higher specific surface area of the electrode interface to adsorb more DTS. Because of the mechanical rigidity of the DTS, the DTS could keep a complementary chain upright and provide more binding sites for aptamers, the binding efficiency between the complementary chain and 2 binding aptamers could be improved. Comparing the aptasensors performance of single-strand DNA with that of the DTS with complementary strands, the benefits of the DTS were highlighted in this system. Under optimal conditions, the detection limits of PFF and DZN were both 3.33 pg/mL and the detection ranges were both 1.00 × 101-1.00 × 107 pg/mL. Meanwhile, the recoveries of PFF and DZN were 87.15%-117.34% and 91.20%-114.19%, respectively. The aptasensor could realize the simultaneous detection of PFF and DZN in vegetables. Furthermore, the aptasensor also had good stability and selectivity. This strategy could provide a good reference for developing effective aptasensors for the simultaneous detection of other small molecules and toxins.
Collapse
Affiliation(s)
- Guanjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Baoxin Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Fukai Guan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haowei Dong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiali Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jie Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zheng Shen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Deyan Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Shancang Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China.
| |
Collapse
|
8
|
Gong Z, Huang Y, Hu X, Zhang J, Chen Q, Chen H. Recent Progress in Electrochemical Nano-Biosensors for Detection of Pesticides and Mycotoxins in Foods. BIOSENSORS 2023; 13:140. [PMID: 36671974 PMCID: PMC9856537 DOI: 10.3390/bios13010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Pesticide and mycotoxin residues in food are concerning as they are harmful to human health. Traditional methods, such as high-performance liquid chromatography (HPLC) for such detection lack sensitivity and operation convenience. Efficient, accurate detection approaches are needed. With the recent development of nanotechnology, electrochemical biosensors based on nanomaterials have shown solid ability to detect trace pesticides and mycotoxins quickly and accurately. In this review, English articles about electrochemical biosensors in the past 11 years (2011-2022) were collected from PubMed database, and various nanomaterials are discussed, including noble metal nanomaterials, magnetic metal nanoparticles, metal-organic frameworks, carbon nanotubes, as well as graphene and its derivatives. Three main roles of such nanomaterials in the detection process are summarized, including biomolecule immobilization, signal generation, and signal amplification. The detection targets involve two types of pesticides (organophosphorus and carbamate) and six types of mycotoxins (aflatoxin, deoxynivalenol, zearalenone, fumonisin, ochratoxin A, and patulin). Although significant achievements have been made in the evolution of electrochemical nano-biosensors, many challenges remain to be overcome.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yueming Huang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
9
|
Current State of Sensors and Sensing Systems Utilized in Beer Analysis. BEVERAGES 2023. [DOI: 10.3390/beverages9010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Beer is one of the most consumed beverages in the world. Advances in instrumental techniques have allowed the analysis and characterization of a large number of beers. However, review studies that outline the methodologies used in beer characterization are scarce. Herein, a systematic review investigating the molecular targets and sensometric techniques in beer characterization was performed following the PRISMA protocol. The study reviewed 270 articles related to beer analysis in order to provide a comprehensive summary of the recent advances in beer analysis, including methods using sensors and sensing systems. The results revealed the use of various techniques that include several technologies, such as nanotechnology and electronics, often combined with scientific data analysis tools. To our knowledge, this study is the first of its kind and provides the reader with a faithful overview of what has been done in the sensor field regarding beer characterization.
Collapse
|
10
|
Yang Y, Ren MY, Xu XG, Han Y, Zhao X, Li CH, Zhao ZL. Recent advances in simultaneous detection strategies for multi-mycotoxins in foods. Crit Rev Food Sci Nutr 2022; 64:3932-3960. [PMID: 36330603 DOI: 10.1080/10408398.2022.2137775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination has become a challenge in the field of food safety testing, given the increasing emphasis on food safety in recent years. Mycotoxins are widely distributed, in heavily polluted areas. Food contamination with these toxins is difficult to prevent and control. Mycotoxins, as are small-molecule toxic metabolites produced by several species belonging to the genera Aspergillus, Fusarium, and Penicillium growing in food. They are considered teratogenic, carcinogenic, and mutagenic to humans and animals. Food systems are often simultaneously contaminated with multiple mycotoxins. Due to the additive or synergistic toxicological effects caused by the co-existence of multiple mycotoxins, their individual detection requires reliable, accurate, and high-throughput techniques. Currently available, methods for the detection of multiple mycotoxins are mainly based on chromatography, spectroscopy (colorimetry, fluorescence, and surface-enhanced Raman scattering), and electrochemistry. This review provides a comprehensive overview of advances in the multiple detection methods of mycotoxins during the recent 5 years. The principles and features of these techniques are described. The practical applications and challenges associated with assays for multiple detection methods of mycotoxins are summarized. The potential for future development and application is discussed in an effort, to provide standards of references for further research.
Collapse
Affiliation(s)
- Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Meng-Yu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xiao-Guang Xu
- School of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xin Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Chun-Hua Li
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zhi-Lei Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
11
|
Electrochemical aptasensing for the detection of mycotoxins in food commodities. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Nanomaterial-based aptamer biosensors for ochratoxin A detection: a review. Anal Bioanal Chem 2022; 414:2953-2969. [PMID: 35296913 DOI: 10.1007/s00216-022-03960-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 01/01/2023]
Abstract
Ochratoxin A (OTA) is a widely distributed mycotoxin that often contaminates food, grains and animal feed. It poses a serious threat to human health because of its high toxicity and persistence. Therefore, the development of an inexpensive, highly sensitive, accurate and rapid method for OTA detection is imperative. In recent years, various nanomaterials used in the establishment of aptasensors have attracted great attention due to their large surface-to-volume ratio, good stability and facile preparation. This review summarizes the development of nanomaterial-based aptasensors for OTA determination and sample treatment over the past 5 years. The nanomaterials used in OTA aptasensors include metal, carbon, luminescent, magnetic and other nanomaterials. Finally, the limitations and future challenges in the development of nanomaterial-based OTA aptasensors are reviewed and discussed.
Collapse
|
13
|
Pérez-Fernández B, Muñiz ADLE. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Anal Chim Acta 2022; 1212:339658. [DOI: 10.1016/j.aca.2022.339658] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
|
14
|
Khoshbin Z, Abnous K, Taghdisi SM, Verdian A, Sameiyan E, Ramezani M, Alibolandi M. An ultra-sensitive dual-responsive aptasensor with combination of liquid crystal and intercalating dye molecules: A food toxin case study. Food Chem 2022; 381:132265. [PMID: 35121315 DOI: 10.1016/j.foodchem.2022.132265] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 01/21/2023]
Abstract
Herein, a label-free aptasensor was designed through forming a double-stranded DNA skeleton on the glass substrate for ultrasensitive quantification of ochratoxin A (OTA) as a case study. The function fundament of the dual-responsive aptasensor was the perturbation of the vertical alignment of the liquid crystals (LCs) and intercalation of the SYBR Green I (SGI) dye molecules between the base pairs of the double-stranded DNA structure. The presence of OTA decomposed the double-stranded structure of DNA by releasing the OTA-specific aptamer from the sensing platform that induced an apparent alteration of the optical and fluorescent responses. The aptasensor specifically detected the ultra-low levels of OTA as 47.0E-9 pM (0.047 aM) and 34.0E-3 pM (34 fM) based on the polarized and fluorescent responses, respectively. The aptasensor monitored OTA in the coffee and grape drink samples. The aptasensor provides promising insight for manufacturing real-time, cost-effective, and portable sensing devices for food control usage.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Elham Sameiyan
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Grabowska I, Hepel M, Kurzątkowska-Adaszyńska K. Advances in Design Strategies of Multiplex Electrochemical Aptasensors. SENSORS (BASEL, SWITZERLAND) 2021; 22:s22010161. [PMID: 35009703 PMCID: PMC8749765 DOI: 10.3390/s22010161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/08/2023]
Abstract
In recent years, the need for simple, fast, and economical detection of food and environmental contaminants, and the necessity to monitor biomarkers of different diseases have considerably accelerated the development of biosensor technology. However, designing biosensors capable of simultaneous determination of two or more analytes in a single measurement, for example on a single working electrode in single solution, is still a great challenge. On the other hand, such analysis offers many advantages compared to single analyte tests, such as cost per test, labor, throughput, and convenience. Because of the high sensitivity and scalability of the electrochemical detection systems on the one hand and the specificity of aptamers on the other, the electrochemical aptasensors are considered to be highly effective devices for simultaneous detection of multiple-target analytes. In this review, we describe and evaluate multi-label approaches based on (1) metal quantum dots and metal ions, (2) redox labels, and (3) enzyme labels. We focus on recently developed strategies for multiplex sensing using electrochemical aptasensors. Furthermore, we emphasize the use of different nanomaterials in the construction of these aptasensors. Based on examples from the existing literature, we highlight recent applications of multiplexed detection platforms in clinical diagnostics, food control, and environmental monitoring. Finally, we discuss the advantages and disadvantages of the aptasensors developed so far, and debate possible challenges and prospects.
Collapse
Affiliation(s)
- Iwona Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
- Correspondence: (I.G.); (K.K.-A.); Tel.: +48-89-523-46-54 (I.G. & K.K.-A.)
| | - Maria Hepel
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA;
| | - Katarzyna Kurzątkowska-Adaszyńska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
- Correspondence: (I.G.); (K.K.-A.); Tel.: +48-89-523-46-54 (I.G. & K.K.-A.)
| |
Collapse
|
16
|
Li R, Wen Y, Wang F, He P. Recent advances in immunoassays and biosensors for mycotoxins detection in feedstuffs and foods. J Anim Sci Biotechnol 2021; 12:108. [PMID: 34629116 PMCID: PMC8504128 DOI: 10.1186/s40104-021-00629-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungus. Many mycotoxin species are highly toxic and are frequently found in cereals and feedstuffs. So, powerful detection methods are vital and effective ways to prevent feed contamination. Traditional detection methods can no longer meet the needs of massive, real-time, simple, and fast mycotoxin monitoring. Rapid detection methods based on advanced material and sensor technology are the future trend. In this review, we highlight recent progress of mycotoxin rapid detection strategies in feedstuffs and foods, especially for simultaneous multiplex mycotoxin determination. Immunoassays, biosensors, and the prominent roles of nanomaterials are introduced. The principles of different types of recognition and signal transduction are explained, and the merits and pitfalls of these methods are compared. Furthermore, limitations and challenges of existing rapid sensing strategies and perspectives of future research are discussed.
Collapse
Affiliation(s)
- Runxian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yang Wen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
Qu C, Xin L, Yu S, Wei M. A homogeneous electrochemical aptasensor based on
DNA
assembly for zearalenone detection. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chenling Qu
- Department of Food Quality and Food Safety, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Lingkun Xin
- Department of Food Quality and Food Safety, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Songcheng Yu
- Department of Sanitary Chemistry, College of Public Health Zhengzhou University Zhengzhou People's Republic of China
| | - Min Wei
- Department of Food Quality and Food Safety, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| |
Collapse
|
18
|
Khoshbin Z, Abnous K, Taghdisi SM, Verdian A. A novel liquid crystal-based aptasensor for ultra-low detection of ochratoxin a using a π-shaped DNA structure: Promising for future on-site detection test strips. Biosens Bioelectron 2021; 191:113457. [PMID: 34175647 DOI: 10.1016/j.bios.2021.113457] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/22/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
Ochratoxin A (OTA) as the most dangerous mycotoxin is produced by Aspergillus Ochraceus and Penicillium verrucosum. OTA can be found in beverages and foodstuffs that induces the teratogenic, nephrotoxic, carcinogenic, and immunosuppressive effects on humans. Hence, developing highly sensitive methods for its detection is of great importance. Herein, a novel aptasensor was designed for the label-free monitoring of the ultra-low OTA levels by a combination of the superiority of aptamers and long-range orientational order of liquid crystals (LCs). The aptasensing strategy was based on the conformational switch of the immobilized π-shaped DNA structure on the glass substrate in presence of the target. A shift in the orientation of LCs from random to homeotropic state led to the apparent alteration of the optical appearance of the aptasensor platform from bright to dark. The LC-based aptasensor especially detects OTA at the ultra-trace level as low as 0.63 aM with comparable selectivity. The aptasensor could detect OTA successfully in the grape juice, coffee, and human serum samples. The LC-based aptasensor paves a way for developing portable and real-time sensing probes with high performance for food safety control and clinical application.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
19
|
Wei M, Yue S, Liu Y. An amplified electrochemical aptasensor for ochratoxin A based on DNAzyme-mediated DNA walker. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Determination of minimal sequence for zearalenone aptamer by computational docking and application on an indirect competitive electrochemical aptasensor. Anal Bioanal Chem 2021; 413:3861-3872. [PMID: 34021369 DOI: 10.1007/s00216-021-03336-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Aptamers are short single-stranded oligonucleotides (either DNA or RNA) that can fold into well-defined three-dimensional (3D) spatial structures which enable them to capture their specific target by complementary shape interactions. Aptamers are selected from large random libraries through the SELEX process and only a small fraction of the sequence is involved in direct docking with the target. In this paper, we describe the possible truncation variants of zearalenone (ZEA) aptamer which might be an effective binding region for the target. The originally selected zearalenone (ZEA) aptamer was 80-mer in length and shown to bind the target with a high affinity (Kd = 41 ± 5 nM). Herein, computational docking simulation was performed with 15 truncated variants to determine the predicted binding energy and responsible binding site of the aptamer-analyte complex. The results revealed that 5 truncated variants had binding energy lower than - 7.0 kcal/mol. Circular dichroism analysis was performed on the shortlisted aptamer and the conformational change of aptamers was observed with the presence of an analyte. Aptamer Z3IN (29-mer) was chosen as the most enhanced affinity for its target with a dissociation constant of 11.77 ± 1.44 nM. The aptamer was further applied in the electrochemical aptasensor of ZEA based on an indirect competitive format. The results demonstrated that the truncated aptamer leads to an enhancement of the sensitivity of the biosensor.
Collapse
|
21
|
Wei M, Xin L, Jin H, Huang Y, Liu Y. Electrochemical Aptasensor for Zearalenone Based on DNA Assembly and Exonuclease III as Amplification Strategy. ELECTROANAL 2021. [DOI: 10.1002/elan.202100043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Min Wei
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Lingkun Xin
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Huali Jin
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Yawei Huang
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Yong Liu
- College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 PR China
| |
Collapse
|
22
|
Mirón-Mérida VA, Gong YY, Goycoolea FM. Aptamer-based detection of fumonisin B1: A critical review. Anal Chim Acta 2021; 1160:338395. [PMID: 33894965 DOI: 10.1016/j.aca.2021.338395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 01/07/2023]
Abstract
Mycotoxin contamination is a current issue affecting several crops and processed products worldwide. Among the diverse mycotoxin group, fumonisin B1 (FB1) has become a relevant compound because of its adverse effects in the food chain. Conventional analytical methods previously proposed to quantify FB1 comprise LC-MS, HPLC-FLD and ELISA, while novel approaches integrate different sensing platforms and fluorescently labelled agents in combination with antibodies. Nevertheless, such methods could be expensive, time-consuming and require experience. Aptamers (ssDNA) are promising alternatives to overcome some of the drawbacks of conventional analytical methods, their high affinity through specific aptamer-target binding has been exploited in various designs attaining favorable limits of detection (LOD). So far, two aptamers specific to FB1 have been reported, and their modified and shortened sequences have been explored for a successful target quantification. In this critical review spanning the last eight years, we have conducted a systematic comparison based on principal component analysis of the aptamer-based techniques for FB1, compared with chromatographic, immunological and other analytical methods. We have also conducted an in-silico prediction of the folded structure of both aptamers under their reported conditions. The potential of aptasensors for the future development of highly sensitive FB1 testing methods is emphasized.
Collapse
Affiliation(s)
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
23
|
Khataee A, Sohrabi H, Arbabzadeh O, Khaaki P, Majidi MR. Frontiers in conventional and nanomaterials based electrochemical sensing and biosensing approaches for Ochratoxin A analysis in foodstuffs: A review. Food Chem Toxicol 2021; 149:112030. [DOI: 10.1016/j.fct.2021.112030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/22/2022]
|
24
|
Liang X, Zhao F, Xiao C, Yue S, Huang Y, Wei M. A ratiometric electrochemical aptasensor for ochratoxin A detection. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiujun Liang
- Department of Food Safety and Nutrition, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou PR China
| | - Fengjuan Zhao
- Shenzhen Customs Food Inspection and Quarantine Technology Center Shenzhen PR China
| | - Chengui Xiao
- Shenzhen Customs Food Inspection and Quarantine Technology Center Shenzhen PR China
| | - Shuang Yue
- Department of Food Safety and Nutrition, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou PR China
| | - Yawei Huang
- Department of Food Safety and Nutrition, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou PR China
| | - Min Wei
- Department of Food Safety and Nutrition, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou PR China
| |
Collapse
|
25
|
Ziółkowski R, Jarczewska M, Górski Ł, Malinowska E. From Small Molecules Toward Whole Cells Detection: Application of Electrochemical Aptasensors in Modern Medical Diagnostics. SENSORS (BASEL, SWITZERLAND) 2021; 21:724. [PMID: 33494499 PMCID: PMC7866209 DOI: 10.3390/s21030724] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
This paper focuses on the current state of art as well as on future trends in electrochemical aptasensors application in medical diagnostics. The origin of aptamers is presented along with the description of the process known as SELEX. This is followed by the description of the broad spectrum of aptamer-based sensors for the electrochemical detection of various diagnostically relevant analytes, including metal cations, abused drugs, neurotransmitters, cancer, cardiac and coagulation biomarkers, circulating tumor cells, and viruses. We described also possible future perspectives of aptasensors development. This concerns (i) the approaches to lowering the detection limit and improvement of the electrochemical aptasensors selectivity by application of the hybrid aptamer-antibody receptor layers and/or nanomaterials; and (ii) electrochemical aptasensors integration with more advanced microfluidic devices as user-friendly medical instruments for medical diagnostic of the future.
Collapse
Affiliation(s)
- Robert Ziółkowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
| | - Marta Jarczewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
| | - Łukasz Górski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
| | - Elżbieta Malinowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (M.J.); (Ł.G.)
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
26
|
Li J, Cai T, Li W, Li W, Song L, Li Q, Lv G, Sun J, Jiao S, Wang S, Jin Y, Zheng T. Highly Sensitive Simultaneous Detection of Multiple Mycotoxins Using a Protein Microarray on a TiO 2-Modified Porous Silicon Surface. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:528-536. [PMID: 33377779 DOI: 10.1021/acs.jafc.0c06859] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new protein microarray method for multiplex mycotoxin detection in parallel has been established on a stable TiO2-modified porous silicon (PSi) surface. A typical competitive immunoassay microarray protocol has been developed for simultaneous detection of multiplex mycotoxins including aflatoxin B1 (AFB1), ochratoxin A (OTA), and fumonisin B1 (FB1) on the TiO2-PSi surface. The epoxy groups were selected to modify the surface of a TiO2-PSi wafer for the immobilization of artificial antigens of mycotoxins because of their high signal-to-noise ratios. Under optimal conditions, the developed method showed wide linear detection ranges of 0.01-1 ng/mL for OTA, 0.001-1 ng/mL for AFB1, and 0.01-1 ng/mL for FB1 and low limit of detections (LODs) of 0.433 ng/mL for OTA, 0.243 ng/mL for AFB1, and 0.093 ng/mL for FB1. The microarray method can specifically identify the three mycotoxins and their analogues. The recovery rates in real samples were within 75-120%, which were in agreement with that of the classical ELISA method. The new method has great application potential for rapid, sensitive, and high-throughput screening of multiplex mycotoxins and other target molecules.
Collapse
Affiliation(s)
- Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Tingting Cai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Laicui Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Guangping Lv
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jialong Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Saisai Jiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siwei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yu Jin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
27
|
Zheng YT, Zhao BS, Zhang HB, Jia H, Wu M. Colorimetric aptasensor for fumonisin B1 detection by regulating the amount of bubbles in closed bipolar platform. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Recent advances in aptasensors for mycotoxin detection: On the surface and in the colloid. Talanta 2020; 223:121729. [PMID: 33303172 DOI: 10.1016/j.talanta.2020.121729] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023]
Abstract
Mycotoxins are a great potential threat to human health, and the progress in the development of mycotoxin detection methods is of an escalating importance with the increasing emphasis on food safety. Aptamer, performing the same function as antibody in specific binding with targets, exhibits profound potential in biosensing since its debut in 1990. Recent years have witnessed the rapid development of aptasensors for mycotoxin detection with the achievement of ultralow limit of detection and high sensitivity in the lab. However, there is still no officially approved aptasensing methods in mycotoxin detection application. In order to provide researchers with inspirations in the design and development of aptasensors for mycotoxin detection, we divide these aptasensors into two types, namely "on the surface" and "in the colloid", according to the location where the key sensing reaction occurs. We also systematically review aptasensors reported in the past 5 years under the abovementioned criterion of classification, and compare the advantages and disadvantages of each kind of aptasensors. Finally, we discuss prospective directions in the development of aptasensors for mycotoxin detection. This paper will offer insight and motivation to practitioners working on the research and practical application of aptasensors in the detection of mycotoxins and other substances.
Collapse
|
29
|
Taghdisi SM, Danesh NM, Ramezani M, Alibolandi M, Nameghi MA, Gerayelou G, Abnous K. A novel electrochemical aptasensor for ochratoxin a sensing in spiked food using strand-displacement polymerase reaction. Talanta 2020; 223:121705. [PMID: 33303155 DOI: 10.1016/j.talanta.2020.121705] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Herein, an aptasensor is presented for electrochemical determination of ochratoxin A (OTA) based on nontarget-triggered production of rolling circular amplification (RCA). The surface of gold electrode is modified with thiolated complementary strand of aptamer (CS) as both capture probe and primer and OTA aptamer (Apt) as both sensing molecule and padlock probe (PLP). Following the addition of OTA, Apt/OTA conjugate is formed and detached from the electrode surface. Therefore, no RCA is produced after incubation of the modified electrode with T4 DNA ligase and phi29 DNA polymerase and a sharp current signal occurs. The analytical response ranged from 30 pM to 120 nM with detection limit of 5 pM. The designed aptasensor showed superior analytical performance in comparison with other approaches for OTA detection. Also, the approach exhibited good performance for OTA determination in spiked grape juice samples. The technique presented in this study, can be applied to develop sensors for detecting different toxins by replacing the relevant aptamers and complementary strands.
Collapse
Affiliation(s)
- Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Alinezhad Nameghi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Golara Gerayelou
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Hernández Y, Lagos LK, Galarreta BC. Development of a label-free-SERS gold nanoaptasensor for the accessible determination of ochratoxin A. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100331] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|