1
|
Entezari S, Thygesen MM, Staehr C, Melnikova E, Skov M, Rajanathan R, Rasmussen M, Rasmussen MM, Matchkov VV. Spinal cord blood flow elevation with systemic vasopressor noradrenaline is partly mediated by vasodilation of spinal arteries due to reduced expression of alpha adrenoreceptors. Spine J 2024:S1529-9430(24)01151-3. [PMID: 39613033 DOI: 10.1016/j.spinee.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND CONTEXT Elevation of mean arterial blood pressure (MAP) has been proposed to raise spinal cord blood flow (SCBF) after traumatic spinal cord injury (TSCI). Current clinical guidelines for cervical TSCI suggest maintaining MAP 85-90 mmHg for 5-7 days using vasopressors, eg, noradrenaline. However, it remains unknown whether these interventions that promote an increased systemic MAP result in improved perfusion in the spinal cord. The local effect of vasopressors on the spinal cord arteries also remains unknown. PURPOSE The aim of this study was to investigate whether the increased systemic MAP results in increased SCBF, and secondly, to examine the mechanism behind noradrenaline (NA) action in spinal cord arteries. STUDY DESIGN An experimental animal study. METHODS The study included nine 38-42 kg landrace pigs. In six pigs, MAP was gradually elevated using NA and continuous SCBF was recorded by laser doppler flowmetry. Spinal cord samples from these 6 pigs were excised for isolation of spinal cord arteries that were used for ex-vivo vascular function assessment in isometric myograph. Segments of mesentery from another 3 pigs were used to dissect mesenteric small arteries that were also studied in myograph, as control peripheral arteries. Other spinal cord and mesenteric arterial segments from the same biopsies were dissected and snap-frozen for the following expression analysis. Adrenoceptor's expression in arteries of all included animals was assessed with quantitative PCR. RESULTS The controlled mixed model found that SCBF was lower at MAP below 50 mmHg and that SCBF increased significantly in the MAP range of 50-100 mmHg (p=.02). Further increase of MAP did not significantly affect SCBF (at MAP range of 100-150 mmHg, p=.15; at 150-200 mmHg, p=.51). However, SCBF significantly increased over the study time-course (at 80 min, p=.002; at 100 min, p<.001), which was dependent on the experimental duration being a confounder of increased exposure to large doses of NA. Isolated spinal arteries did not contract to NA ex-vivo and even showed a tendency for vasorelaxation. This relaxation was abolished by β-adrenoceptor inhibitor, propranolol. In contrast, mesenteric arteries were contracted by NA and propranolol potentiated this contraction. Mesenteric arteries showed a higher expression of α1A adrenoceptors than spinal arteries, while no significant difference was found in other adrenoceptor isoforms. CONCLUSIONS We found SCBF reduced at MAP below 50 mmHg and that the SCBF increased significantly in MAP range between 50 and 100 mmHg. Elevating MAP above 100 mmHg was not associated with a further increase in SCBF. We also showed that NA increases SCBF in-vivo and relaxes spinal arteries ex-vivo. This effect was associated with a low arterial expression of α adrenoceptors over β adrenoceptors in the spinal cord. CLINICAL SIGNIFICANCE These findings challenge the assumption that SCBF is solely dictated by MAP within autoregulatory limits, emphasizing the necessity of considering noradrenaline-induced vasorelaxation in the spinal arteries of TSCI patients.
Collapse
Affiliation(s)
- Seyar Entezari
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurosurgery, CENSE SPINE, Aarhus University Hospital, Aarhus, Denmark
| | - Mathias Møller Thygesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurosurgery, CENSE SPINE, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Mathias Skov
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Mads Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Anesthesiology, Section of Neuro Anesthesiology, Aarhus University Hospital, Aarhus, Denmark
| | - Mikkel Mylius Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurosurgery, CENSE SPINE, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
2
|
Saadoun S, Asif H, Papadopoulos MC. The concepts of Intra Spinal Pressure (ISP), Intra Thecal Pressure (ITP), and Spinal Cord Perfusion Pressure (SCPP) in acute, severe traumatic spinal cord injury: Narrative review. BRAIN & SPINE 2024; 4:103919. [PMID: 39654909 PMCID: PMC11626061 DOI: 10.1016/j.bas.2024.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024]
Abstract
There is increasing interest in monitoring pressure from the injured spinal cord to guide the management of patients with acute, severe traumatic spinal cord injuries (TSCI). This is analogous to monitoring intracranial pressure and cerebral perfusion pressure in traumatic brain injury (TBI). Here, we explore key concepts in this field and novel therapies that are emerging from these ideas. We argue that the Monro-Kellie doctrine, a fundamental principle in TBI, may also apply to TSCI as follows: The injured cord swells, initially displacing surrounding cerebrospinal fluid (CSF) that prevents a rise in spinal cord pressure; once the CSF space is exhausted, the spinal cord pressure at the injury site rises. The spinal Monro-Kellie doctrine allows us to define novel concepts to guide the management of TSCI based on principles employed in the management of TBI such as intraspinal pressure (ISP), intrathecal pressure (ITP), spinal cord perfusion pressure (SCPP), spinal pressure reactivity index (sPRx), and optimum SCPP (SCPPopt). Draining lumbar CSF and expansion duroplasty are currently undergoing clinical trials as novel therapies for TSCI. We conclude that there is acknowledgement that blood pressure targets applied to all TSCI patients are inadequate. Current research aims to develop individualised management based on ISP/ITP and SCPP monitoring. These techniques are experimental. A key controversy is whether the spinal cord pressure is best measured from the injury site (ISP) or from the lumbar cerebrospinal fluid (ITP).
Collapse
Affiliation(s)
- Samira Saadoun
- Academic Neurosurgery Unit, Neuroscience and Cell Biology Research Institute, St. George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Hasan Asif
- Academic Neurosurgery Unit, Neuroscience and Cell Biology Research Institute, St. George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Marios C. Papadopoulos
- Academic Neurosurgery Unit, Neuroscience and Cell Biology Research Institute, St. George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| |
Collapse
|
3
|
Plourde G, Carrier FM, Bijlenga P, Quintard H. Variations in Autoregulation-Based Optimal Cerebral Perfusion Pressure Determination Using Two Integrated Neuromonitoring Platforms in a Trauma Patient. Neurocrit Care 2024; 41:386-392. [PMID: 38424323 DOI: 10.1007/s12028-024-01949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Neuromonitoring devices are often used in traumatic brain injury. The objective of this report is to raise awareness concerning variations in optimal cerebral perfusion pressure (CPPopt) determination using exploratory information provided by two neuromonitoring monitors that are part of research programs (Moberg CNS Monitor and RAUMED NeuroSmart LogO). METHODS We connected both monitors simultaneously to a parenchymal intracranial pressure catheter and recorded the pressure reactivity index (PRx) and the derived CPPopt estimates for a patient with a severe traumatic brain injury. These estimates were available at the bedside and were updated at each minute. RESULTS Using the Bland and Altman method, we found a mean variation of - 3.8 (95% confidence internal from - 8.5 to 0.9) mm Hg between the CPPopt estimates provided by the two monitors (limits of agreement from - 26.6 to 19.1 mm Hg). The PRx and CPPopt trends provided by the two monitors were similar over time, but CPPopt trends differed when PRx values were around zero. Also, almost half of the CPPopt estimates differed by more than 10 mm Hg. CONCLUSIONS These wide variations recorded in the same patient are worrisome and reiterate the importance of understanding and standardizing the methodology and algorithms behind commercial neuromonitoring devices prior to incorporating them in clinical use.
Collapse
Affiliation(s)
- Guillaume Plourde
- Division of Intensive Care Medicine, Department of Medicine, Centre Hospitalier de l'Université de Montréal, 1051 Rue Sanguinet, Montreal, Canada.
| | - François Martin Carrier
- Division of Intensive Care Medicine, Department of Medicine and Department of Anesthesiology, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Philippe Bijlenga
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Hervé Quintard
- Division of Intensive Care Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care, and Emergency Medicine, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
4
|
Zoerle T, Beqiri E, Åkerlund CAI, Gao G, Heldt T, Hawryluk GWJ, Stocchetti N. Intracranial pressure monitoring in adult patients with traumatic brain injury: challenges and innovations. Lancet Neurol 2024; 23:938-950. [PMID: 39152029 DOI: 10.1016/s1474-4422(24)00235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 08/19/2024]
Abstract
Intracranial pressure monitoring enables the detection and treatment of intracranial hypertension, a potentially lethal insult after traumatic brain injury. Despite its widespread use, robust evidence supporting intracranial pressure monitoring and treatment remains sparse. International studies have shown large variations between centres regarding the indications for intracranial pressure monitoring and treatment of intracranial hypertension. Experts have reviewed these two aspects and, by consensus, provided practical approaches for monitoring and treatment. Advances have occurred in methods for non-invasive estimation of intracranial pressure although, for now, a reliable way to non-invasively and continuously measure intracranial pressure remains aspirational. Analysis of the intracranial pressure signal can provide information on brain compliance (ie, the ability of the cranium to tolerate volume changes) and on cerebral autoregulation (ie, the ability of cerebral blood vessels to react to changes in blood pressure). The information derived from the intracranial pressure signal might allow for more individualised patient management. Machine learning and artificial intelligence approaches are being increasingly applied to intracranial pressure monitoring, but many obstacles need to be overcome before their use in clinical practice could be attempted. Robust clinical trials are needed to support indications for intracranial pressure monitoring and treatment. Progress in non-invasive assessment of intracranial pressure and in signal analysis (for targeted treatment) will also be crucial.
Collapse
Affiliation(s)
- Tommaso Zoerle
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cecilia A I Åkerlund
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden; Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Guoyi Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Thomas Heldt
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gregory W J Hawryluk
- Cleveland Clinic Akron General Hospital, Uniformed Services University, Cleveland, OH, USA
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Stroh JN, Foreman B, Bennett TD, Briggs JK, Park S, Albers DJ. Intracranial pressure-flow relationships in traumatic brain injury patients expose gaps in the tenets of models and pressure-oriented management. Front Physiol 2024; 15:1381127. [PMID: 39189028 PMCID: PMC11345185 DOI: 10.3389/fphys.2024.1381127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024] Open
Abstract
Background: The protocols and therapeutic guidance established for treating traumatic brain injury (TBI) in neurointensive care focus on managing cerebral blood flow (CBF) and brain tissue oxygenation based on pressure signals. The decision support process relies on assumed relationships between cerebral perfusion pressure (CPP) and blood flow, pressure-flow relationships (PFRs), and shares this framework of assumptions with mathematical intracranial hemodynamics models. These foundational assumptions are difficult to verify, and their violation can impact clinical decision-making and model validity. Methods: A hypothesis- and model-driven method for verifying and understanding the foundational intracranial hemodynamic PFRs is developed and applied to a novel multi-modality monitoring dataset. Results: Model analysis of joint observations of CPP and CBF validates the standard PFR when autoregulatory processes are impaired as well as unmodelable cases dominated by autoregulation. However, it also identifies a dynamical regime -or behavior pattern-where the PFR assumptions are wrong in a precise, data-inferable way due to negative CPP-CBF coordination over long timescales. This regime is of both clinical and research interest: its dynamics are modelable under modified assumptions while its causal direction and mechanistic pathway remain unclear. Conclusion: Motivated by the understanding of mathematical physiology, the validity of the standard PFR can be assessed a) directly by analyzing pressure reactivity and mean flow indices (PRx and Mx) or b) indirectly through the relationship between CBF and other clinical observables. This approach could potentially help to personalize TBI care by considering intracranial pressure and CPP in relation to other data, particularly CBF. The analysis suggests a threshold using clinical indices of autoregulation jointly generalizes independently set indicators to assess CA functionality. These results support the use of increasingly data-rich environments to develop more robust hybrid physiological-machine learning models.
Collapse
Affiliation(s)
- J. N. Stroh
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Bioengineering, University of Colorado Denver |Anschutz Medical Campus, Denver, CO, United States
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, United States
- Gardner Neuroscience Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Tellen D. Bennett
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pediatric Intensive Care, Children’s Hospital of Colorado, Aurora, CO, United States
| | - Jennifer K. Briggs
- Department of Bioengineering, University of Colorado Denver |Anschutz Medical Campus, Denver, CO, United States
| | - Soojin Park
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
- Department of Neurology, New York Presbyterian/Columbia University Irving Medical Center, New York, NY, United States
| | - David J. Albers
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Bioengineering, University of Colorado Denver |Anschutz Medical Campus, Denver, CO, United States
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
| |
Collapse
|
6
|
Chang JJ, Kepplinger D, Metter EJ, Kim Y, Trankiem CT, Felbaum DR, Mai JC, Mason RB, Armonda RA, Aulisi EF. Time Thresholds for Using Pressure Reactivity Index in Neuroprognostication for Patients With Severe Traumatic Brain Injury. Neurosurgery 2024; 95:297-304. [PMID: 38376157 DOI: 10.1227/neu.0000000000002876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/20/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Severe traumatic brain injury (sTBI) represents a diffuse, heterogeneous disease where therapeutic targets for optimizing clinical outcome remain unclear. Mean pressure reactivity index (PRx) values have demonstrated associations with clinical outcome in sTBI. However, the retrospective derivation of a mean value diminishes its bedside significance. We evaluated PRx temporal profiles for patients with sTBI and identified time thresholds suggesting optimal neuroprognostication. METHODS Patients with sTBI and continuous bolt intracranial pressure monitoring were identified. Outcomes were dichotomized by disposition status ("good outcome" was denoted by home and acute rehabilitation). PRx values were obtained every minute by taking moving correlation coefficients of intracranial pressures and mean arterial pressures. Average PRx trajectories for good and poor outcome groups were calculated by extending the last daily averaged PRx value to day 18. Each patient also had smoothed PRx trajectories that were used to generate "candidate features." These "candidate features" included daily average PRx's, cumulative first-order changes in PRx and cumulative second-order changes in PRx. Changes in sensitivity over time for predicting poor outcome was then evaluated by generating penalized logistic regression models that were derived from the "candidate features" and maximized specificity. RESULTS Among 33 patients with sTBI, 18 patients achieved good outcome and 15 patients had poor outcome. Average PRx trajectories for the good and poor outcome groups started on day 6 and consistently diverged at day 9. When targeting a specificity >83.3%, an 85% maximum sensitivity for determining poor outcome was achieved at hospital day 6. Subsequent days of PRx monitoring showed diminishing sensitivities. CONCLUSION Our findings suggest that in a population of sTBI, PRx sensitivities for predicting poor outcome was maximized at hospital day 6. Additional study is warranted to validate this model in larger populations.
Collapse
Affiliation(s)
- Jason J Chang
- Department of Critical Care Medicine, MedStar Washington Hospital Center, Washington , District of Columbia , USA
- Department of Neurology, Georgetown University Medical Center, Washington , District of Columbia , USA
| | - David Kepplinger
- Department of Statistics, George Mason University, Fairfax , Virginia , USA
| | - E Jeffrey Metter
- Department of Neurology, University of Tennessee Health Science Center, Memphis , Tennessee , USA
| | - Yongwoo Kim
- Department of Neurology, Georgetown University Medical Center, Washington , District of Columbia , USA
- Department of Neurology, MedStar Washington Hospital Center, Washington , District of Columbia , USA
| | - Christine T Trankiem
- Department of Critical Care Medicine, MedStar Washington Hospital Center, Washington , District of Columbia , USA
- Department of Trauma and Acute Care Surgery, MedStar Washington Hospital Center, Washington , District of Columbia , USA
| | - Daniel R Felbaum
- Department of Neurosurgery, Georgetown University and MedStar Washington Hospital Center, Washington , District of Columbia , USA
| | - Jeffrey C Mai
- Department of Neurosurgery, Georgetown University and MedStar Washington Hospital Center, Washington , District of Columbia , USA
| | - Robert B Mason
- Department of Neurosurgery, Georgetown University and MedStar Washington Hospital Center, Washington , District of Columbia , USA
| | - Rocco A Armonda
- Department of Neurosurgery, Georgetown University and MedStar Washington Hospital Center, Washington , District of Columbia , USA
| | - Edward F Aulisi
- Department of Neurosurgery, Georgetown University and MedStar Washington Hospital Center, Washington , District of Columbia , USA
| |
Collapse
|
7
|
Prasad A, Gilmore EJ, Kim JA, Begunova L, Olexa M, Beekman R, Falcone GJ, Matouk C, Ortega-Gutierrez S, Temkin NR, Barber J, Diaz-Arrastia R, de Havenon A, Petersen NH. Impact of Therapeutic Interventions on Cerebral Autoregulatory Function Following Severe Traumatic Brain Injury: A Secondary Analysis of the BOOST-II Study. Neurocrit Care 2024; 41:91-99. [PMID: 38158481 PMCID: PMC11285118 DOI: 10.1007/s12028-023-01896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase II randomized controlled trial used a tier-based management protocol based on brain tissue oxygen (PbtO2) and intracranial pressure (ICP) monitoring to reduce brain tissue hypoxia after severe traumatic brain injury. We performed a secondary analysis to explore the relationship between brain tissue hypoxia, blood pressure (BP), and interventions to improve cerebral perfusion pressure (CPP). We hypothesized that BP management below the lower limit of autoregulation would lead to cerebral hypoperfusion and brain tissue hypoxia that could be improved with hemodynamic augmentation. METHODS Of the 119 patients enrolled in the Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase II trial, 55 patients had simultaneous recordings of arterial BP, ICP, and PbtO2. Autoregulatory function was measured by interrogating changes in ICP and PbtO2 in response to fluctuations in CPP using time-correlation analysis. The resulting autoregulatory indices (pressure reactivity index and oxygen reactivity index) were used to identify the "optimal" CPP and limits of autoregulation for each patient. Autoregulatory function and percent time with CPP outside personalized limits of autoregulation were calculated before, during, and after all interventions directed to optimize CPP. RESULTS Individualized limits of autoregulation were computed in 55 patients (mean age 38 years, mean monitoring time 92 h). We identified 35 episodes of brain tissue hypoxia (PbtO2 < 20 mm Hg) treated with CPP augmentation. Following each intervention, mean CPP increased from 73 ± 14 mm Hg to 79 ± 17 mm Hg (p = 0.15), and mean PbtO2 improved from 18.4 ± 5.6 mm Hg to 21.9 ± 5.6 mm Hg (p = 0.01), whereas autoregulatory function trended toward improvement (oxygen reactivity index 0.42 vs. 0.37, p = 0.14; pressure reactivity index 0.25 vs. 0.21, p = 0.2). Although optimal CPP and limits remained relatively unchanged, there was a significant decrease in the percent time with CPP below the lower limit of autoregulation in the 60 min after compared with before an intervention (11% vs. 23%, p = 0.05). CONCLUSIONS Our analysis suggests that brain tissue hypoxia is associated with cerebral hypoperfusion characterized by increased time with CPP below the lower limit of autoregulation. Interventions to increase CPP appear to improve autoregulation. Further studies are needed to validate the importance of autoregulation as a modifiable variable with the potential to improve outcomes.
Collapse
Affiliation(s)
- Ayush Prasad
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Emily J Gilmore
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Jennifer A Kim
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Liza Begunova
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Madelynne Olexa
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Rachel Beekman
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Guido J Falcone
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Charles Matouk
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | | | - Nancy R Temkin
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jason Barber
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Adam de Havenon
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Nils H Petersen
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA.
| |
Collapse
|
8
|
Bonfanti M, Lorini FL, Zangari R, Bonanomi E, Farina A, Pezzetti G, Gerevini S, Aresi S, Dell'Avanzo G, Micheli F, Lanterna LA, Biroli F, Gritti P. Intracranial Pressure Thresholds for Cerebral Autoregulation Impairment: Age-Stratified Analysis of Ultra-Low-Frequency Pressure Reactivity Index (UL-PRx) in Traumatic Brain Injury. Neurocrit Care 2024:10.1007/s12028-024-02056-5. [PMID: 39009939 DOI: 10.1007/s12028-024-02056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND The study investigated the effectiveness of low-frequency sampling in detecting alterations in cerebrovascular reactivity (CVR) associated with changes in intracranial pressure (ICP) in patients with traumatic brain injury (TBI) across different age groups. The primary objective was to investigate an ICP threshold that indicates a decrease in CVR as evidenced by a significant increase in the ultra-low-frequency pressure reactivity index (UL-PRx). Additionally, the study aimed to develop an age-based categorization method for patients with TBI to investigate the differences between these ICP thresholds in different age groups. METHODS In this retrospective analysis, data from 263 patients with TBI were prospectively collected. ICP and mean arterial pressure were extracted from the hospital database at 5-min intervals. Demographic details, clinical presentation, computed tomography scans, neurosurgical interventions, and 12-months outcome were recorded. ICP versus UL-PRx values were categorized into ICP bins and graphically represented with boxplots for each age group, illustrating how as ICP values rise, there is a bin (age-tailored ICP [AT-ICP]) beyond which UL-PRx shows a sudden increase, indicating CVR loss. Homogeneous age groups were established to obtain a consistent AT-ICP threshold. The discriminatory ability of the AT-ICP thresholds was compared with the guideline-recommended thresholds by calculating the area under the Receiver Operating Characteristic curve of the ICP-derived indices (dose above threshold, and the hourly dosage above threshold). RESULTS Age groups 0-5, 6-20, 21-60, 61-70, and 71-85 years were the best age subdivisions, corresponding to AT-ICP thresholds of 20, 30, 35, 25, and 30 mmHg, respectively. The AT-ICP thresholds exhibited better discriminative ability compared with the guideline-recommended thresholds. CONCLUSIONS The AT-ICP thresholds offer a novel approach for estimating CVR impairment and the developed method represents an alternative solution to address the age stratification issue in patients with TBI.
Collapse
Affiliation(s)
- Marco Bonfanti
- FROM Research Foundation- ETS, Papa Giovanni XXIII Hospital, Piazza OSM 1, 24129, Bergamo, Italy.
| | - Ferdinando Luca Lorini
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Rosalia Zangari
- FROM Research Foundation- ETS, Papa Giovanni XXIII Hospital, Piazza OSM 1, 24129, Bergamo, Italy
| | - Ezio Bonanomi
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Alessia Farina
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Giulio Pezzetti
- Department of Neuroradiology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Simonetta Gerevini
- Department of Neuroradiology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Silvia Aresi
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Giacomo Dell'Avanzo
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Fabio Micheli
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | - Francesco Biroli
- FROM Research Foundation- ETS, Papa Giovanni XXIII Hospital, Piazza OSM 1, 24129, Bergamo, Italy
| | - Paolo Gritti
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| |
Collapse
|
9
|
Motroni V, Cucciolini G, Beqiri E, Smith CA, Placek M, Chu KH, Czosnyka M, Smielewski P. Reliability and variability of pressure reactivity index (prx) during oscillatory pattern in arterial blood pressure and intracranial pressure in traumatic brain injured patients. BRAIN & SPINE 2024; 4:102850. [PMID: 39005582 PMCID: PMC11246011 DOI: 10.1016/j.bas.2024.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 05/06/2024] [Accepted: 06/09/2024] [Indexed: 07/16/2024]
Abstract
Introduction Pressure reactivity index (PRx) is used for continuous monitoring of cerebrovascular reactivity in traumatic brain injury (TBI). However, PRx has a noisy character. Oscillations in arterial blood pressure (ABP) introduced by cyclic positive end-expiratory pressure adjustment, can make PRx more reliable. However, if oscillations are introduced by the cycling process of an anti-decubitus-mattress the effect on PRx is confounding, as they affect directly also intracranial pressure (ICP). In our routine monitoring in TBI patients we noticed periods of highly regular, slow, spontaneous oscillations in ABP and ICP signals. Research question We set out to explore the nature of these oscillations and establish if PRx remains reliable during the oscillations. Materials and methods 10 TBI patients' recordings with oscillations in ICP and ABP were analysed. We computed PRx, PRx variability (hourly-average of standard-deviation, SD), phase-shift and coherence between ABP and ICP in the slow frequency range. Metrics were compared between oscillation and peri-oscillation periods. Results During oscillations (frequency 0.006 ± 0.002Hz), a significantly lower variability of PRx (SD 0.185vs0.242) and higher coherence ABP-ICP (0.618 ± 0.09 vs 0.534 ± 0.09) were observed. No external oscillations sources could be identified. 34 out of 48 events showed signs of 'active' transmission associated with negative PRx, indicating a potential positive impact on PRx reliability. Discussion and conclusions Spontaneous oscillations observed in ABP and ICP signals were found to enhance rather than confound PRx reliability. Further research is warranted to elucidate the nature of these oscillations and develop strategies to leverage them for enhancing PRx reliability in TBI monitoring.
Collapse
Affiliation(s)
- Virginia Motroni
- Department of Clinical Neurosciences, Division of Neurosurgery, Brain Physics Laboratory, University of Cambridge, UK
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Italy
| | - Giada Cucciolini
- Department of Clinical Neurosciences, Division of Neurosurgery, Brain Physics Laboratory, University of Cambridge, UK
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Italy
| | - Erta Beqiri
- Department of Clinical Neurosciences, Division of Neurosurgery, Brain Physics Laboratory, University of Cambridge, UK
| | - Claudia Ann Smith
- Department of Clinical Neurosciences, Division of Neurosurgery, Brain Physics Laboratory, University of Cambridge, UK
| | - Michael Placek
- Department of Clinical Neurosciences, Division of Neurosurgery, Brain Physics Laboratory, University of Cambridge, UK
| | - Ka Hing Chu
- Department of Clinical Neurosciences, Division of Neurosurgery, Brain Physics Laboratory, University of Cambridge, UK
| | - Marek Czosnyka
- Department of Clinical Neurosciences, Division of Neurosurgery, Brain Physics Laboratory, University of Cambridge, UK
| | - Peter Smielewski
- Department of Clinical Neurosciences, Division of Neurosurgery, Brain Physics Laboratory, University of Cambridge, UK
| |
Collapse
|
10
|
Beqiri E, Placek MM, Chu KH, Donnelly J, Cucciolini G, Motroni V, Smith CA, Czosnyka M, Hutchinson P, Smielewski P. Exploration of uncertainty of PRx time trends. BRAIN & SPINE 2024; 4:102795. [PMID: 38601774 PMCID: PMC11004690 DOI: 10.1016/j.bas.2024.102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Introduction PRx can be used as surrogate measure of Cerebral Autoregulation (CA) in traumatic brain injury (TBI) patients. PRx can provide means for individualising cerebral perfusion pressure (CPP) targets, such as CPPopt. However, a recent Delphi consensus of clinicians concluded that consensus could not be reached on the accuracy, reliability, and validation of any current CA assessment method. Research question We aimed to quantify the short-term uncertainty of PRx time-trends and to relate this to other physiological measurements. Material and methods Intracranial pressure (ICP), arterial blood pressure (ABP), end-tidal CO2 (EtCO2) high-resolution recordings of 911 TBI patients were processed with ICM + software. Hourly values of metrics that describe the variability within modalities derived from ABP, ICP and EtCO2, were calculated for the first 24h of neuromonitoring. Generalized additive models were used to describe the time trend of the variability in PRx. Linear correlations were studied for describing the relationship between PRx variability and the other physiological modalities. Results The time profile of variability of PRx decreases over the first 12h and was higher for average PRx ∼0. Increased variability of PRx was not linearly linked with average ABP, ICP, or CPP. For coherence between slow waves of ABP and ICP >0.7, the variability in PRx decreased (R = -0.47, p < 0.001). Discussion and conclusion PRx is a highly variable parameter. PRx short-term dispersion was not related to average ICP, ABP or CPP. The determinants of uncertainty of PRx should be investigated to improve reliability of individualised CA assessment in TBI patients.
Collapse
Affiliation(s)
- Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Michal M. Placek
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
- Neurosurgery Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ka Hing Chu
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Joseph Donnelly
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
- Department of Medicine, University of Auckland, New Zealand
| | - Giada Cucciolini
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
- Neurosurgery Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medicine, University of Auckland, New Zealand
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Italy
| | - Virginia Motroni
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Claudia A. Smith
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Peter Hutchinson
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
- Neurosurgery Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| |
Collapse
|
11
|
Stroh JN, Foreman B, Bennett TD, Briggs JK, Park S, Albers DJ. Intracranial pressure-flow relationships in traumatic brain injury patients expose gaps in the tenets of models and pressure-oriented management. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.24301445. [PMID: 38293069 PMCID: PMC10827274 DOI: 10.1101/2024.01.17.24301445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background The protocols and therapeutic guidance established for treating traumatic brain injuries (TBI) in neurointensive care focus on managing cerebral blood flow (CBF) and brain tissue oxygenation based on pressure signals. The decision support process relies on assumed relationships between cerebral perfusion pressure (CPP) and blood flow, pressure-flow relationships (PFRs), and shares this framework of assumptions with mathematical intracranial hemodynamic models. These foundational assumptions are difficult to verify, and their violation can impact clinical decision-making and model validity. Method A hypothesis- and model-driven method for verifying and understanding the foundational intracranial hemodynamic PFRs is developed and applied to a novel multi-modality monitoring dataset. Results Model analysis of joint observations of CPP and CBF validates the standard PFR when autoregulatory processes are impaired as well as unmodelable cases dominated by autoregulation. However, it also identifies a dynamical regime -or behavior pattern- where the PFR assumptions are wrong in a precise, data-inferable way due to negative CPP-CBF coordination over long timescales. This regime is of both clinical and research interest: its dynamics are modelable under modified assumptions while its causal direction and mechanistic pathway remain unclear. Conclusions Motivated by the understanding of mathematical physiology, the validity of the standard PFR can be assessed a) directly by analyzing pressure reactivity and mean flow indices (PRx and Mx) or b) indirectly through the relationship between CBF and other clinical observables. This approach could potentially help personalize TBI care by considering intracranial pressure and CPP in relation to other data, particularly CBF. The analysis suggests a threshold using clinical indices of autoregulation jointly generalizes independently set indicators to assess CA functionality. These results support the use of increasingly data-rich environments to develop more robust hybrid physiological-machine learning models.
Collapse
Affiliation(s)
- JN Stroh
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Bioengineering, University of Colorado Denver |Anschutz Medical Campus, Denver, CO, USA
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
- Gardner Neuroscience Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Tellen D Bennett
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Pediatric Intensive Care, Children’s Hospital of Colorado, Aurora, CO, USA
| | - Jennifer K Briggs
- Department of Bioengineering, University of Colorado Denver |Anschutz Medical Campus, Denver, CO, USA
| | - Soojin Park
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Department of Neurology, New York Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - David J Albers
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Bioengineering, University of Colorado Denver |Anschutz Medical Campus, Denver, CO, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
Gomez A, Froese L, Bergmann TJG, Sainbhi AS, Vakitbilir N, Islam A, Stein KY, Marquez I, Ibrahim Y, Zeiler FA. Non-Invasive Estimation of Intracranial Pressure-Derived Cerebrovascular Reactivity Using Near-Infrared Spectroscopy Sensor Technology in Acute Neural Injury: A Time-Series Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:499. [PMID: 38257592 PMCID: PMC10818714 DOI: 10.3390/s24020499] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The contemporary monitoring of cerebrovascular reactivity (CVR) relies on invasive intracranial pressure (ICP) monitoring which limits its application. Interest is shifting towards near-infrared spectroscopic regional cerebral oxygen saturation (rSO2)-based indices of CVR which are less invasive and have improved spatial resolution. This study aims to examine and model the relationship between ICP and rSO2-based indices of CVR. Through a retrospective cohort study of prospectively collected physiologic data in moderate to severe traumatic brain injury (TBI) patients, linear mixed effects modeling techniques, augmented with time-series analysis, were utilized to evaluate the ability of rSO2-based indices of CVR to model ICP-based indices. It was found that rSO2-based indices of CVR had a statistically significant linear relationship with ICP-based indices, even when the hierarchical and autocorrelative nature of the data was accounted for. This strengthens the body of literature indicating the validity of rSO2-based indices of CVR and potential greatly expands the scope of CVR monitoring.
Collapse
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.Y.S.); (Y.I.)
| | - Tobias J. G. Bergmann
- Department of Biosystems Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (T.J.G.B.); (I.M.)
| | - Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.Y.S.); (Y.I.)
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.Y.S.); (Y.I.)
| | - Abrar Islam
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.Y.S.); (Y.I.)
| | - Kevin Y. Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.Y.S.); (Y.I.)
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Izabella Marquez
- Department of Biosystems Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (T.J.G.B.); (I.M.)
| | - Younis Ibrahim
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.Y.S.); (Y.I.)
| | - Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.Y.S.); (Y.I.)
- Centre on Aging, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, Karolinksa Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
13
|
Tsigaras ZA, Weeden M, McNamara R, Jeffcote T, Udy AA. The pressure reactivity index as a measure of cerebral autoregulation and its application in traumatic brain injury management. CRIT CARE RESUSC 2023; 25:229-236. [PMID: 38234328 PMCID: PMC10790019 DOI: 10.1016/j.ccrj.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/19/2024]
Abstract
Severe traumatic brain injury (TBI) is a major cause of morbidity and mortality globally. The Brain Trauma Foundation guidelines advocate for the maintenance of a cerebral perfusion pressure (CPP) between 60 and 70 mmHg following severe TBI. However, such a uniform goal does not account for changes in cerebral autoregulation (CA). CA refers to the complex homeostatic mechanisms by which cerebral blood flow is maintained, despite variations in mean arterial pressure and intracranial pressure. Disruption to CA has become increasingly recognised as a key mediator of secondary brain injury following severe TBI. The pressure reactivity index is calculated as the degree of statistical correlation between the slow wave components of mean arterial pressure and intracranial pressure signals and is a validated dynamic marker of CA status following brain injury. The widespread acceptance of pressure reactivity index has precipitated the consideration of individualised CPP targets or an optimal cerebral perfusion pressure (CPPopt). CPPopt represents an alternative target for cerebral haemodynamic optimisation following severe TBI, and early observational data suggest improved neurological outcomes in patients whose CPP is more proximate to CPPopt. The recent publication of a prospective randomised feasibility study of CPPopt guided therapy in TBI, suggests clinicians caring for such patients should be increasingly familiar with these concepts. In this paper, we present a narrative review of the key landmarks in the development of CPPopt and offer a summary of the evidence for CPPopt-based therapy in comparison to current standards of care.
Collapse
Affiliation(s)
| | - Mark Weeden
- St George Hospital, Kogarah, NSW 2217, Australia
| | - Robert McNamara
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, WA 6001, Australia
- School of Medicine, Curtin University, Bentley, WA 6102, Australia
| | - Toby Jeffcote
- The Alfred Hospital, Melbourne, VIC 3004, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC 3003, Australia
| | - Andrew A. Udy
- The Alfred Hospital, Melbourne, VIC 3004, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC 3003, Australia
| |
Collapse
|
14
|
Cucciolini G, Motroni V, Czosnyka M. Intracranial pressure for clinicians: it is not just a number. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2023; 3:31. [PMID: 37670387 PMCID: PMC10481563 DOI: 10.1186/s44158-023-00115-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Invasive intracranial pressure (ICP) monitoring is a standard practice in severe brain injury cases, where it allows to derive cerebral perfusion pressure (CPP); ICP-tracing can also provide additional information about intracranial dynamics, forecast episodes of intracranial hypertension and set targets for a tailored therapy to prevent secondary brain injury. Nevertheless, controversies about the advantages of an ICP clinical management are still debated. FINDINGS This article reviews recent research on ICP to improve the understanding of the topic and uncover the hidden information in this signal that may be useful in clinical practice. Parameters derived from time-domain as well as frequency domain analysis include compensatory reserve, autoregulation estimation, pulse waveform analysis, and behavior of ICP in time. The possibility to predict the outcome and apply a tailored therapy using a personalised perfusion pressure target is also described. CONCLUSIONS ICP is a crucial signal to monitor in severely brain injured patients; a bedside computer can empower standard monitoring giving new metrics that may aid in clinical management, establish a personalized therapy, and help to predict the outcome. Continuous collaboration between engineers and clinicians and application of new technologies to healthcare, is vital to improve the accuracy of current metrics and progress towards better care with individualized dynamic targets.
Collapse
Affiliation(s)
- Giada Cucciolini
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.
- Department of Clinical Neurosciences, Division of Neurosurgery, Brain Physics Laboratory, University of Cambridge, Cambridge, UK.
| | - Virginia Motroni
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Department of Clinical Neurosciences, Division of Neurosurgery, Brain Physics Laboratory, University of Cambridge, Cambridge, UK
| | - Marek Czosnyka
- Department of Clinical Neurosciences, Division of Neurosurgery, Brain Physics Laboratory, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
15
|
Sanchez-Porras R, Ramírez-Cuapio FL, Hecht N, Seule M, Díaz-Peregrino R, Unterberg A, Woitzik J, Dreier JP, Sakowitz OW, Santos E. Cerebrovascular Pressure Reactivity According to Long-Pressure Reactivity Index During Spreading Depolarizations in Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2023; 39:135-144. [PMID: 36697998 PMCID: PMC10499750 DOI: 10.1007/s12028-022-01669-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Spreading depolarization (SD) has been linked to the impairment of neurovascular coupling. However, the association between SD occurrence and cerebrovascular pressure reactivity as a surrogate of cerebral autoregulation (CA) remains unclear. Therefore, we analyzed CA using the long-pressure reactivity index (L-PRx) during SDs in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS A retrospective study of patients with aSAH who were recruited at two centers, Heidelberg (HD) and Berlin (BE), was performed. Continuous monitoring of mean arterial pressure (MAP) and intracranial pressure (ICP) was recorded. ICP was measured using an intraparenchymal probe in HD patients and was measure in BE patients through external ventricular drainage. Electrocorticographic (ECoG) activity was continuously recorded between 3 and 13 days after hemorrhage. Autoregulation according to L-PRx was calculated as a moving linear Pearson's correlation of 20-min averages of MAP and ICP. For every identified SD, 60-min intervals of L-PRx were averaged, plotted, and analyzed depending on SD occurrence. Random L-PRx recording periods without SDs served as the control. RESULTS A total of 19 patients (HD n = 14, BE n = 5, mean age 50.4 years, 9 female patients) were monitored for a mean duration of 230.4 h (range 96-360, STD ± 69.6 h), during which ECoG recordings revealed a total number of 277 SDs. Of these, 184 represented a single SD, and 93 SDs presented in clusters. In HD patients, mean L-PRx values were 0.12 (95% confidence interval [CI] 0.11-0.13) during SDs and 0.07 (95% CI 0.06-0.08) during control periods (p < 0.001). Similarly, in BE patients, a higher L-PRx value of 0.11 (95% CI 0.11-0.12) was detected during SDs than that during control periods (0.08, 95% CI 0.07-0.09; p < 0.001). In a more detailed analysis, CA changes registered through an intraparenchymal probe (HD patients) revealed that clustered SD periods were characterized by signs of more severely impaired CA (L-PRx during SD in clusters: 0.23 [95% CI 0.20-0.25]; single SD: 0.09 [95% CI 0.08-0.10]; control periods: 0.07 [95% CI 0.06-0.08]; p < 0.001). This group also showed significant increases in ICP during SDs in clusters compared with single SD and control periods. CONCLUSIONS Neuromonitoring for simultaneous assessment of cerebrovascular pressure reactivity using 20-min averages of MAP and ICP measured by L-PRx during SD events is feasible. SD occurrence was associated with significant increases in L-PRx values indicative of CA disturbances. An impaired CA was found during SD in clusters when using an intraparenchymal probe. This preliminary study validates the use of cerebrovascular reactivity indices to evaluate CA disturbances during SDs. Our results warrant further investigation in larger prospective patient cohorts.
Collapse
Affiliation(s)
- Renan Sanchez-Porras
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Francisco L Ramírez-Cuapio
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Nils Hecht
- Department of Neurosurgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Seule
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Roberto Díaz-Peregrino
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Oliver W Sakowitz
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
- Neurosurgery Center Ludwigsburg-Heilbronn, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Edgar Santos
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, Germany.
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
16
|
Froese L, Sainbhi AS, Gomez A, Marquez I, Amenta F, Batson C, Stein KY, Zeiler FA. Discrete Fourier Transform Windowing Techniques for Cerebral Physiological Research in Neural Injury: A Practical Demonstration. Neurotrauma Rep 2023; 4:410-419. [PMID: 37360544 PMCID: PMC10288301 DOI: 10.1089/neur.2022.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
To optimally assess oscillatory phenomena within physiological variables, spectral domain transforms are used. A discrete Fourier transform (DFT) is one of the most common methods used to attain this spectral change. In traumatic brain injury (TBI), a DFT is used to derive more complicated methods of physiological assessment, particularly that of cerebrovascular reactivity (CVR). However, a practical application of a DFT will introduce various errors that need to be considered. This study will evaluate the pulse amplitude DFT derivation of intracranial pressure (AMP) to highlight how slight differences in DFT methodologies can impact calculations. Utilizing a high-frequency prospectively maintained data set of TBI patients with recorded arterial and intracranial blood pressure, various cerebral physiological aspects of interest were assessed using the DFT windowing methods of rectangular, Hanning, and Chebyshev. These included AMP, CVR indices (including the pressure reactivity and pulse amplitude index), and the optimal cerebral perfusion pressure (with all methods of CVR). The results of the different DFT-derived windowing methods were compared using the Wilcoxon signed-ranked test and histogram plots between individual patients and over the whole 100-patient cohort. The results for this analysis demonstrate that, overall and for grand average values, there were limited differences between the different DFT windowing techniques. However, there were individual patient outliers to whom the different methods resulted in noticeably different overall values. From this information, for derived indices utilizing a DFT in the assessment of AMP, there are limited differences within the resulting calculations for larger aggregates of data. However, when the amplitude of spectrally resolved response is important and needs to be robust in smaller moments in time, it is recommended to use a window that has amplitude accuracy (such as Chebyshev or flat-top).
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Izzy Marquez
- Undergraduate Engineering Program, Department of Biosystems Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fiorella Amenta
- Undergraduate Engineering Program, Department of Biosystems Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Chang JJ, Kepplinger D, Metter EJ, Felbaum DR, Mai JC, Armonda RA, Aulisi EF. Pressure reactivity index for early neuroprognostication in poor-grade subarachnoid hemorrhage. J Neurol Sci 2023; 450:120691. [PMID: 37267816 DOI: 10.1016/j.jns.2023.120691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Pressure reactivity index (PRx) utilizes moving correlation coefficients from intracranial pressure (ICP) and mean arterial pressures to evaluate cerebral autoregulation. We evaluated patients with poor-grade subarachnoid hemorrhage (SAH), identified their PRx trajectories over time, and identified threshold time points where PRx could be used for neuroprognostication. METHODS Patients with poor-grade SAH were identified and received continuous bolt ICP measurements. Dichotomized outcomes were based on ninety-day modified Rankin scores and disposition. Smoothed PRx trajectories for each patient were created to generate "candidate features" that looked at daily average PRx, cumulative first-order changes in PRx, and cumulative second-order changes in PRx. "Candidate features" were then used to perform penalized logistic regression analysis using poor outcome as the dependent variable. Penalized logistic regression models that maximized specificity for poor outcome were generated over several time periods and evaluated how sensitivities changed over time. RESULTS 16 patients with poor-grade SAH were evaluated. Average PRx trajectories for the good (PRx < 0.25) and poor outcome groups (PRx > 0.5) started diverging at post-ictus day 8. When targeting specificities ≥88% for poor outcome, sensitivities for poor outcome consistently increased to >70% starting at post-ictus days 12-14 with a maximum sensitivity of 75% occurring at day 18. CONCLUSIONS Our results suggest that by using PRx trends, early neuroprognostication in patients with SAH and poor clinical exams may start becoming apparent at post-ictus day 8 and reach adequate sensitivities by post-ictus days 12-14. Further study is required to validate this in larger poor-grade SAH populations.
Collapse
Affiliation(s)
- Jason J Chang
- Department of Critical Care Medicine, MedStar Washington Hospital Center, Washington, DC, USA; Department of Neurology, Georgetown University Medical Center, Washington, DC, USA.
| | - David Kepplinger
- Department of Statistics, George Mason University, Fairfax, VA, USA
| | - E Jeffrey Metter
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel R Felbaum
- Department of Neurosurgery, Georgetown University and MedStar Washington Hospital Center, Washington, DC, USA
| | - Jeffrey C Mai
- Department of Neurosurgery, Georgetown University and MedStar Washington Hospital Center, Washington, DC, USA
| | - Rocco A Armonda
- Department of Neurosurgery, Georgetown University and MedStar Washington Hospital Center, Washington, DC, USA
| | - Edward F Aulisi
- Department of Neurosurgery, Georgetown University and MedStar Washington Hospital Center, Washington, DC, USA
| |
Collapse
|
18
|
Trofimov AO, Agarkova DI, Trofimova KA, Lidji-Goryaev K, Bragin DE. Moderate Severity SARS-CoV-2 (COVID-19) Affects Ocular Vergence Indices: Eye Tracking-Based Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1425:325-330. [PMID: 37581806 PMCID: PMC11351317 DOI: 10.1007/978-3-031-31986-0_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
OBJECTIVE Since the start of the SARS-CoV-2 (COVID-19) pandemic, it has become clear that the brain is one of the main targets for acute and chronic damage. Although neurodegenerative changes have yet to be investigated, there is already a large body of data on damage to its fiber tracts. A mobile eye tracker is possibly one of the best tools to study such damage in a COVID hospital setting. At the same time, the available data indicate that eye tracking parameters, even in healthy volunteers, demonstrate a distinct gender-specific difference.The aim of the work is to evaluate functional and structural impairments of the fiber tracts and to find possible gender-specific dynamics of eye tracking indicators in the acute period of COVID-19 pneumonia (Delta variant) of moderate severity. MATERIALS AND METHODS A single-center non-randomized retrospective study included 84 patients in the acute period of moderate severity SARS-CoV-2 (COVID-19) pneumonia (Delta variant) (Group 1). The mean time from admission was 1.4 ± 1.2 days. M:41, F:43. According to thoracic CT, the lung involvement ranged from CT 1 to CT 2. SpO2 ranged from 95% to 99%. The mean age was 35.5 ± 14.8 years (from 18 to 60). The control group (Group 2) included 158 healthy volunteers without pathology of the vision organs and central nervous system.The eye vergence index (VRx) was determined using eye tracking as a motion correlation coefficient between the angular velocities of the left and right eyeballs and was a measure of the conjugation of horizontal and vertical eye movements.The mobile complex Eye Tracker Low-Speed 20 (BVG LLC, the Netherlands) was used. Eye tracking parameters were assessed by vertical and horizontal eye vergence (VVRx and HVRx).Statistical analysis was done using the methods of parametric and non-parametric statistics. RESULTS Moderate COVID-19 pneumonia resulted in a significant decrease in both VVRx and HVRx compared to controls (0.763 ± 0.127 and 0.856 ± 0.043; p < 0.000001; 0.729 ± 0.018 and 0.776 ± 0.023 p < 0.000001, respectively). VVRx values were significantly higher in men (0.775 ± 0.046 and 0.747 ± 0.091, p = 0.019, respectively), while ХVRx values were significantly higher in women (0.665 ± 0.018 and 0.728 ± 0.024, p < 0.0000001, respectively). CONCLUSIONS SARS-CoV-2 (COVID-19) of moderate severity is accompanied by a significant deterioration in eye tracking performance proving functional and structural impairments (p < 0.05). VVRx was significantly higher in men, and HVRx was substantially greater in women reflecting gender-specific differences.
Collapse
Affiliation(s)
- Alex O Trofimov
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Darya I Agarkova
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Kseniia A Trofimova
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Kyrill Lidji-Goryaev
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Denis E Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
19
|
Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Marquez I, Amenta F, Park K, Stein KY, Thelin EP, Zeiler FA. Cerebrovascular Reactivity Is Not Associated With Therapeutic Intensity in Adult Traumatic Brain Injury: A Validation Study. Neurotrauma Rep 2023; 4:307-317. [PMID: 37187506 PMCID: PMC10181802 DOI: 10.1089/neur.2023.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Within traumatic brain injury (TBI) care, there is growing interest in pathophysiological markers as surrogates of disease severity, which may be used to improve and individualize care. Of these, assessment of cerebrovascular reactivity (CVR) has been extensively studied given that it is a consistent, independent factor associated with mortality and functional outcome. However, to date, the literature supports little-to-no impact of current guideline-supported therapeutic interventions on continuously measured CVR. Previous work in this area has suffered from a lack of validation studies, given the rarity of time-matched high-frequency cerebral physiology with serially recorded therapeutic interventions; thus, we undertook a validation study. Utilizing the Winnipeg Acute TBI database, we evaluated the association between daily treatment intensity levels, as measured through the therapeutic intensity level (TIL) scoring system, and continuous multi-modal-derived CVR measures. CVR measures included the intracranial pressure (ICP)-derived pressure reactivity index, pulse amplitude index, and RAC index (a correlation between the pulse amplitude of ICP and cerebral perfusion pressure), as well as the cerebral autoregulation measure of near-infrared spectroscopy-based cerebral oximetry index. These measures were also derived over a key threshold for each day and were compared to the daily total TIL measure. In summary, we could not observe any overall relationship between TIL and these CVR measures. This validates previous findings and represents only the second such analysis to date. This helps to confirm that CVR appears to remain independent of current therapeutic interventions and is a potential unique physiological target for critical care. Further work into the high-frequency relationship between critical care and CVR is required.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Address correspondence to: Logan Froese, BSc (Eng), Biomedical Engineering, Faculty of Engineering, University of Manitoba, 75 Chancellor's Circle, Winnipeg, Manitoba R3T 5V6, Canada;
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Izzy Marquez
- Undergraduate Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fiorella Amenta
- Undergraduate Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kangyun Park
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eric P. Thelin
- Division of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Frederick A. Zeiler
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Sharma R, Tsikvadze M, Peel J, Howard L, Kapoor N, Freeman WD. Multimodal monitoring: practical recommendations (dos and don'ts) in challenging situations and uncertainty. Front Neurol 2023; 14:1135406. [PMID: 37206910 PMCID: PMC10188941 DOI: 10.3389/fneur.2023.1135406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/06/2023] [Indexed: 05/21/2023] Open
Abstract
With the advancements in modern medicine, new methods are being developed to monitor patients in the intensive care unit. Different modalities evaluate different aspects of the patient's physiology and clinical status. The complexity of these modalities often restricts their use to the realm of clinical research, thereby limiting their use in the real world. Understanding their salient features and their limitations can aid physicians in interpreting the concomitant information provided by multiple modalities to make informed decisions that may affect clinical care and outcomes. Here, we present a review of the commonly used methods in the neurological intensive care unit with practical recommendations for their use.
Collapse
Affiliation(s)
- Rohan Sharma
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, United States
- *Correspondence: Rohan Sharma
| | - Mariam Tsikvadze
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, United States
| | - Jeffrey Peel
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, United States
| | - Levi Howard
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, United States
| | - Nidhi Kapoor
- Department of Neurology, Baptist Medical Center, Jacksonville, FL, United States
| | - William D. Freeman
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, United States
| |
Collapse
|
21
|
Abstract
The pressure reactivity index (PRx) is a parameter for the assessment of cerebrovascular autoregulation, but its calculation is affected by artifacts in the source biosignals—intracranial pressure (ICP) and arterial blood pressure. We sought to describe the most common short-duration artifacts and their effect on the PRx. A retrospective analysis of 935 h of multimodal monitoring data was conducted, and five types of artifacts, characterized by their shape, duration, and amplitude, were identified: rectangular, fast impulse, isoline drift, saw tooth, and constant ICP value. Subsequently, all types of artifacts were mathematically modeled and inserted into undisturbed segments of biosignals. Fast impulse, the most common artifact, did not alter the PRx index significantly when inserted into one or both signals. Artifacts present in one signal exceeded the threshold PRx in less than 5% of samples, except for isoline drift. Compared to that, the shortest rectangular artifact inserted into both signals changed PRx to a value above the set threshold in 55.4% of cases. Our analysis shows that the effect of individual artifacts on the PRx index is variable, depending on their occurrence in one or both signals, duration, and shape. This different effect suggests that potentially not all artifacts need to be removed.
Collapse
|
22
|
Mataczynski C, Kazimierska A, Uryga A, Kasprowicz M. Intracranial Pressure Pulse Morphology-based Definition of Life-threatening Intracranial Hypertension Episodes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1742-1746. [PMID: 36085812 DOI: 10.1109/embc48229.2022.9871403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intracranial hypertension (IH) is associated with poor outcome in traumatic brain injury (TBI) patients and must be avoided to prevent secondary brain injury. In clinical practice the most common method of IH detection is the calculation of the mean value of intracranial pressure (ICP) and the therapeutic intervention is usually introduced when the mean exceeds a certain threshold. This threshold, however, is rather individual for each patient than universal for all. Impaired cerebrovascular reactivity and reduced intracranial compliance are associated with raised ICP. This work explores a new definition of life-threatening hypertension (LTH) which accounts for the state of cerebral compliance. In the proposed method, changes in compliance are analysed through identification of likely pathological and/or pathological shapes of ICP pulse waveforms using a neural network. In terms of predictive power for mortality in TBI, detection of both shape clasess of ICP pulse waveforms during raised ICP offers similar results to previously proposed LTH definition accounting for the state of cerebrovascular reactivity (77.8% vs 76.9% accuracy, respectively). On the other hand, the fully pathological shapes of ICP pulses are present during ICP rises almost only in recordings of patients who died: out of 216 analysed patients only 6% of surviving and as many as 42% of deceased patients developed this type of LTH event. The stricter definition of LTH events including only pathological shape of ICP pulses presents the highest accuracy among the analysed approaches for mortality prediction (87.9%). Clinical relevance-Reliable detection of potentially life-threatening episodes of ICP elevation offers the possibility of improving clinical management of TBI by identifying the patients at risk of unfavourable outcome.
Collapse
|
23
|
Advances in Neuroimaging and Monitoring to Defend Cerebral Perfusion in Noncardiac Surgery. Anesthesiology 2022; 136:1015-1038. [PMID: 35482943 DOI: 10.1097/aln.0000000000004205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Noncardiac surgery conveys a substantial risk of secondary organ dysfunction and injury. Neurocognitive dysfunction and covert stroke are emerging as major forms of perioperative organ dysfunction, but a better understanding of perioperative neurobiology is required to identify effective treatment strategies. The likelihood and severity of perioperative brain injury may be increased by intraoperative hemodynamic dysfunction, tissue hypoperfusion, and a failure to recognize complications early in their development. Advances in neuroimaging and monitoring techniques, including optical, sonographic, and magnetic resonance, have progressed beyond structural imaging and now enable noninvasive assessment of cerebral perfusion, vascular reserve, metabolism, and neurologic function at the bedside. Translation of these imaging methods into the perioperative setting has highlighted several potential avenues to optimize tissue perfusion and deliver neuroprotection. This review introduces the methods, metrics, and evidence underlying emerging optical and magnetic resonance neuroimaging methods and discusses their potential experimental and clinical utility in the setting of noncardiac surgery.
Collapse
|
24
|
Sainbhi AS, Gomez A, Froese L, Slack T, Batson C, Stein KY, Cordingley DM, Alizadeh A, Zeiler FA. Non-Invasive and Minimally-Invasive Cerebral Autoregulation Assessment: A Narrative Review of Techniques and Implications for Clinical Research. Front Neurol 2022; 13:872731. [PMID: 35557627 PMCID: PMC9087842 DOI: 10.3389/fneur.2022.872731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
The process of cerebral vessels regulating constant cerebral blood flow over a wide range of systemic arterial pressures is termed cerebral autoregulation (CA). Static and dynamic autoregulation are two types of CA measurement techniques, with the main difference between these measures relating to the time scale used. Static autoregulation looks at the long-term change in blood pressures, while dynamic autoregulation looks at the immediate change. Techniques that provide regularly updating measures are referred to as continuous, whereas intermittent techniques take a single at point in time. However, a technique being continuous or intermittent is not implied by if the technique measures autoregulation statically or dynamically. This narrative review outlines technical aspects of non-invasive and minimally-invasive modalities along with providing details on the non-invasive and minimally-invasive measurement techniques used for CA assessment. These non-invasive techniques include neuroimaging methods, transcranial Doppler, and near-infrared spectroscopy while the minimally-invasive techniques include positron emission tomography along with magnetic resonance imaging and radiography methods. Further, the advantages and limitations are discussed along with how these methods are used to assess CA. At the end, the clinical considerations regarding these various techniques are highlighted.
Collapse
Affiliation(s)
- Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Amanjyot Singh Sainbhi
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Trevor Slack
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y. Stein
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dean M. Cordingley
- Applied Health Sciences Program, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
- Pan Am Clinic Foundation, Winnipeg, MB, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Froese L, Gomez A, Sainbhi AS, Slack T, Zeiler FA. Practical Considerations for Continuous Time-Domain Cerebrovascular Reactivity Indices in Traumatic Brain Injury: Do Scaling Errors in Parent Signals Matter? Front Neurol 2022; 13:857617. [PMID: 35386410 PMCID: PMC8978556 DOI: 10.3389/fneur.2022.857617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Literature pertaining to traumatic brain injury care involves the mediation and control of secondary brain injury mechanisms, chief among these is cerebral autoregulation. Cerebral autoregulation is frequently assessed through surrogate measures of cerebrovascular reactivity. An important aspect to acknowledge when calculating cerebrovascular reactivity indices is the linearity within two-parent bio-signals or variables. We highlighted the concept of linearity in raw parent bio-signals used for the calculation of the cerebrovascular reactivity index and what potential implications linearity carries for index derivation. Key of which is that the initial differencing or location of the pressure probes does not influence linear methods of cerebral reactivity calculations so long as the slow-wave vasogenic changes are being recorded.
Collapse
Affiliation(s)
- Logan Froese
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Trevor Slack
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A. Zeiler
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Simpson DM, Payne SJ, Panerai RB. The INfoMATAS project: Methods for assessing cerebral autoregulation in stroke. J Cereb Blood Flow Metab 2022; 42:411-429. [PMID: 34279146 PMCID: PMC8851676 DOI: 10.1177/0271678x211029049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cerebral autoregulation refers to the physiological mechanism that aims to maintain blood flow to the brain approximately constant when blood pressure changes. Impairment of this protective mechanism has been linked to a number of serious clinical conditions, including carotid stenosis, head trauma, subarachnoid haemorrhage and stroke. While the concept and experimental evidence is well established, methods for the assessment of autoregulation in individual patients remains an open challenge, with no gold-standard having emerged. In the current review paper, we will outline some of the basic concepts of autoregulation, as a foundation for experimental protocols and signal analysis methods used to extract indexes of cerebral autoregulation. Measurement methods for blood flow and pressure are discussed, followed by an outline of signal pre-processing steps. An outline of the data analysis methods is then provided, linking the different approaches through their underlying principles and rationale. The methods cover correlation based approaches (e.g. Mx) through Transfer Function Analysis to non-linear, multivariate and time-variant approaches. Challenges in choosing which method may be 'best' and some directions for ongoing and future research conclude this work.
Collapse
Affiliation(s)
- David M Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | - Stephen J Payne
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, Leicester Royal Infirmary, Leicester, UK
| |
Collapse
|
27
|
Jiang Y, Xie QS, Wu XJ, Shi XL, Huang JX, Wang SH, Zhao YQ, Hu RR, Chen W, Huang CG, Yu MK, Hou LJ. Introduction of a novel, continuous, non-invasive estimation of intracranial pressure and cerebral perfusion pressure based on tympanic membrane temperature. World Neurosurg 2022; 161:e688-e697. [DOI: 10.1016/j.wneu.2022.02.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
|
28
|
Yang Y, Pan Y, Chen C, Zhao P, Hang C. Clinical Significance of Multiparameter Intracranial Pressure Monitoring in the Prognosis Prediction of Hypertensive Intracerebral Hemorrhage. J Clin Med 2022; 11:jcm11030671. [PMID: 35160123 PMCID: PMC8836722 DOI: 10.3390/jcm11030671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Objective: The present study aimed to investigate the clinical significance of multiparameter intracranial pressure (ICP) monitoring in the prediction of the prognosis of hypertensive intracerebral hemorrhage (HICH). Methods: A retrospective analysis was performed on the clinical data of 53 HICH patients. The patients underwent removal of intracranial hemorrhage and decompressive craniectomy after admission. A ventricular ICP monitoring probe was used to continuously and invasively monitor mean arterial pressure (MAP) and ICP after surgery. The NEUMATIC system was used to collect ICP data, including pressure reactivity index (PRx), ICP dose (DICP), amplitude and pressure regression (RAP), and cerebral perfusion pressure (CPP). The mean PRx, CPP, RAP, ICP, and DICP20 mmHg × h were calculated with 1 h as the time segment. According to the Glasgow outcome scale (GOS) scores after discharge, the patients were grouped into the poor prognosis group (GOS I–III) and the good prognosis group (GOS IV and V). The two groups were compared in terms of GOS scores in the treatment and prediction of prognosis of patients. Results: The good prognosis group showed significantly lower values of mean ICP, DICP20 mmHg × h, RAP, and PRx than the poor prognosis group, while CPP was significantly higher (p < 0.001). Conclusions: PRx, DICP, RAP, and CPP could reflect intracranial changes in patients and were significantly correlated with the prognosis of the patients. Mean ICP, PRx, DICP20 mmHg × h, and RAP were negatively correlated with prognosis, while CPP was positively correlated with prognosis.
Collapse
Affiliation(s)
- Yongbo Yang
- Department of Neurosurgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; (Y.Y.); (C.C.)
| | - Yuchun Pan
- Department of Neurosurgery, Nanjing Lishui People’s Hospital, Nanjing 211200, China;
| | - Chunlei Chen
- Department of Neurosurgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; (Y.Y.); (C.C.)
| | - Penglai Zhao
- Department of Neurosurgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; (Y.Y.); (C.C.)
- Correspondence: (P.Z.); (C.H.)
| | - Chunhua Hang
- Department of Neurosurgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; (Y.Y.); (C.C.)
- Correspondence: (P.Z.); (C.H.)
| |
Collapse
|
29
|
“Technical considerations on the use of Granger causality in neuromonitoring“. BRAIN MULTIPHYSICS 2022. [DOI: 10.1016/j.brain.2022.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Lidington D, Wan H, Bolz SS. Cerebral Autoregulation in Subarachnoid Hemorrhage. Front Neurol 2021; 12:688362. [PMID: 34367053 PMCID: PMC8342764 DOI: 10.3389/fneur.2021.688362] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating stroke subtype with a high rate of mortality and morbidity. The poor clinical outcome can be attributed to the biphasic course of the disease: even if the patient survives the initial bleeding emergency, delayed cerebral ischemia (DCI) frequently follows within 2 weeks time and levies additional serious brain injury. Current therapeutic interventions do not specifically target the microvascular dysfunction underlying the ischemic event and as a consequence, provide only modest improvement in clinical outcome. SAH perturbs an extensive number of microvascular processes, including the “automated” control of cerebral perfusion, termed “cerebral autoregulation.” Recent evidence suggests that disrupted cerebral autoregulation is an important aspect of SAH-induced brain injury. This review presents the key clinical aspects of cerebral autoregulation and its disruption in SAH: it provides a mechanistic overview of cerebral autoregulation, describes current clinical methods for measuring autoregulation in SAH patients and reviews current and emerging therapeutic options for SAH patients. Recent advancements should fuel optimism that microvascular dysfunction and cerebral autoregulation can be rectified in SAH patients.
Collapse
Affiliation(s)
- Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Hoyee Wan
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada.,Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Trans-Ocular Brain Impedance Indices Predict Pressure Reactivity Index Changes in a Porcine Model of Hypotension and Cerebral Autoregulation Perturbation. Neurocrit Care 2021; 36:139-147. [PMID: 34244920 DOI: 10.1007/s12028-021-01272-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cerebrovascular autoregulation (CA) is a protective mechanism that enables the cerebral vasculature to automodulate tone in response to changes in cerebral perfusion pressure to ensure constant levels of cerebral blood flow (CBF) and oxygen delivery. CA can be impaired after neurological injury and contributes to secondary brain injury. In this study, we report novel impedance indices using trans-ocular brain impedance (TOBI) during controlled systemic hemorrhage and hypotension to assess CA in comparison with pressure reactivity index (PRx). METHODS Yorkshire swine were instrumented to record intracranial pressure (ICP), mean arterial pressure (MAP), and CBF. TOBI was recorded using electrocardiographic electrodes placed on the closed eyelids. Impedance changes (dz) were recorded in response to introducing an alternating current (0.4 mA) through the electrodes. MAP, ICP, and CBF were also measured. Animals were subjected to a controlled hemorrhage to remove 30-40% of each animal's total blood volume over 25-35 min. Hemorrhage was titrated to reach an MAP of approximately 35 mm Hg and end-tidal carbon dioxide above 28 mm Hg. PRx was calculated as a moving Pearson correlation between MAP and ICP. TOBI indices were calculated as the amplitude of the respiratory-induced changes in dz. DZx was calculated as a moving Pearson correlation between dz and MAP. TOBI indices (dz and DZx) were compared with hemodynamic indicators and PRx. RESULTS dz was shown to be highly correlated with MAP, ICP, cerebral perfusion pressure, and CBF (r = - 0.823, - 0.723, - 0.813, and - 0.726), respectively (p < 0.0001). During hemorrhage, cerebral perfusion pressure and CBF had a mean percent decrease (standard deviation) from baseline of - 54.2% (12.5%) and - 28.3% (14.7%), respectively, whereas dz increased by 277% (268%). Receiver operator characteristics and precision-recall curves demonstrated high predictive performance of DZx when compared with PRx with an area under the curve above 0.82 and 0.89 for receiver operator characteristic and precision-recall curves, respectively, with high sensitivity and positive predictive power. CONCLUSIONS TOBI indices appear to track changes in PRx and hemodynamics that affect CA during hemorrhage-induced hypotension. TOBI may offer a suitable, less invasive surrogate to PRx for monitoring and assessing CA.
Collapse
|
32
|
Iaccarino C, Lippa L, Munari M, Castioni CA, Robba C, Caricato A, Pompucci A, Signoretti S, Zona G, Rasulo FA. Management of intracranial hypertension following traumatic brain injury: a best clinical practice adoption proposal for intracranial pressure monitoring and decompressive craniectomy. Joint statements by the Traumatic Brain Injury Section of the Italian Society of Neurosurgery (SINch) and the Neuroanesthesia and Neurocritical Care Study Group of the Italian Society of Anesthesia, Analgesia, Resuscitation and Intensive Care (SIAARTI). J Neurosurg Sci 2021; 65:219-238. [PMID: 34184860 DOI: 10.23736/s0390-5616.21.05383-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
No robust evidence is provided by literature regarding the management of intracranial hypertension following severe traumatic brain injury (TBI). This is mostly due to the lack of prospective randomized controlled trials (RCTs), the presence of studies containing extreme heterogeneously collected populations and controversial considerations about chosen outcome. A scientific society should provide guidelines for care management and scientific support for those areas for which evidence-based medicine has not been identified. However, RCTs in severe TBI have failed to establish intervention effectiveness, arising the need to make greater use of tools such as Consensus Conferences between experts, which have the advantage of providing recommendations based on experience, on the analysis of updated literature data and on the direct comparison of different logistic realities. The Italian scientific societies should provide guidelines following the national laws ruling the best medical practice. However, many limitations do not allow the collection of data supporting high levels of evidence for intracranial pressure (ICP) monitoring and decompressive craniectomy (DC) in patients with severe TBI. This intersociety document proposes best practice guidelines for this subsetting of patients to be adopted on a national Italian level, along with joint statements from "TBI Section" of the Italian Society of Neurosurgery (SINch) endorsed by the Neuroanesthesia and Neurocritical Care Study Group of the Italian Society of Anesthesia, Analgesia, Resuscitation and Intensive Care (SIAARTI). Presented here is a recap of recommendations on management of ICP and DC supported a high level of available evidence and rate of agreement expressed by the assemblies during the more recent consensus conferences, where members of both groups have had a role of active participants and supporters. The listed recommendations have been sent to a panel of experts consisting of the 107 members of the "TBI Section" of the SINch and the 111 members of the Neuroanesthesia and Neurocritical Care Study Group of the SIAARTI. The aim of the survey was to test a preliminary evaluation of the grade of predictable future adherence of the recommendations following this intersociety proposal. The following recommendations are suggested as representing best clinical practice, nevertheless, adoption of local multidisciplinary protocols regarding thresholds of ICP values, drug therapies, hemostasis management and perioperative care of decompressed patients is strongly recommended to improve treatment efficiency, to increase the quality of data collection and to provide more powerful evidence with future studies. Thus, for this future perspective a rapid overview of the role of the multimodal neuromonitoring in the optimal severe TBI management is also provided in this document. It is reasonable to assume that the recommendations reported in this paper will in future be updated by new observations arising from future trials. They are not binding, and this document should be offered as a guidance for clinical practice through an intersociety agreement, taking in consideration the low level of evidence.
Collapse
Affiliation(s)
- Corrado Iaccarino
- Division of Neurosurgery, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena University Hospital, Modena, Italy
| | - Laura Lippa
- Department of Neurosurgery, Ospedali Riuniti di Livorno, Livorno, Italy -
| | - Marina Munari
- Department of Anesthesia and Intensive Care, Padua University Hospital, Padua, Italy
| | - Carlo A Castioni
- Department of Anesthesia and Intensive Care, IRCCS Istituto delle Scienze Neurologiche Bellaria Hospital, Bologna, Italy
| | - Chiara Robba
- Department of Anesthesia and Intensive Care, IRCCS San Martino University Hospital, Genoa, Italy
| | - Anselmo Caricato
- Department of Anesthesia and Critical Care, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Angelo Pompucci
- Department of Neurosurgery, S. Maria Goretti Hospital, Latina, Italy
| | - Stefano Signoretti
- Division of Emergency-Urgency, Unit of Neurosurgery, S. Eugenio Hospital, Rome, Italy
| | - Gianluigi Zona
- Department of Neurosurgery, IRCCS San Martino University Hospital, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Frank A Rasulo
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Spedali Civili University Hospital, Brescia, Italy.,Department of Surgical and Medical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | |
Collapse
|
33
|
Saadoun S, Papadopoulos MC. Acute, Severe Traumatic Spinal Cord Injury: Monitoring from the Injury Site and Expansion Duraplasty. Neurosurg Clin N Am 2021; 32:365-376. [PMID: 34053724 DOI: 10.1016/j.nec.2021.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We discuss 2 evolving management options for acute spinal cord injury that hold promise to further improve outcome: pressure monitoring from the injured cord and expansion duraplasty. Probes surgically implanted at the injury site can transduce intraspinal pressure, spinal cord perfusion pressure, and cord metabolism. Intraspinal pressure is not adequately reduced by bony decompression alone because the swollen, injured cord is compressed against the dura. Expansion duraplasty may be necessary to effectively decompress the injured cord. A randomized controlled trial called DISCUS is investigating expansion duraplasty as a novel treatment for acute, severe traumatic cervical spinal cord injury.
Collapse
Affiliation(s)
- Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - Marios C Papadopoulos
- Department of Neurosurgery, Atkinson Morley Wing, St. George's Hospital NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| |
Collapse
|
34
|
Lalou AD, Czosnyka M, Placek MM, Smielewski P, Nabbanja E, Czosnyka Z. CSF Dynamics for Shunt Prognostication and Revision in Normal Pressure Hydrocephalus. J Clin Med 2021; 10:jcm10081711. [PMID: 33921142 PMCID: PMC8071572 DOI: 10.3390/jcm10081711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite the quantitative information derived from testing of the CSF circulation, there is still no consensus on what the best approach could be in defining criteria for shunting and predicting response to CSF diversion in normal pressure hydrocephalus (NPH). OBJECTIVE We aimed to review the lessons learned from assessment of CSF dynamics in our center and summarize our findings to date. We have focused on reporting the objective perspective of CSF dynamics testing, without further inferences to individual patient management. DISCUSSION No single parameter from the CSF infusion study has so far been able to serve as an unquestionable outcome predictor. Resistance to CSF outflow (Rout) is an important biological marker of CSF circulation. It should not, however, be used as a single predictor for improvement after shunting. Testing of CSF dynamics provides information on hydrodynamic properties of the cerebrospinal compartment: the system which is being modified by a shunt. Our experience of nearly 30 years of studying CSF dynamics in patients requiring shunting and/or shunt revision, combined with all the recent progress made in producing evidence on the clinical utility of CSF dynamics, has led to reconsidering the relationship between CSF circulation testing and clinical improvement. CONCLUSIONS Despite many open questions and limitations, testing of CSF dynamics provides unique perspectives for the clinician. We have found value in understanding shunt function and potentially shunt response through shunt testing in vivo. In the absence of infusion tests, further methods that provide a clear description of the pre and post-shunting CSF circulation, and potentially cerebral blood flow, should be developed and adapted to the bed-space.
Collapse
Affiliation(s)
- Afroditi Despina Lalou
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (M.C.); (M.M.P.); (P.S.); (E.N.); (Z.C.)
- Correspondence: ; Tel.: +44-774-3567-585
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (M.C.); (M.M.P.); (P.S.); (E.N.); (Z.C.)
- Institute of Electronic Systems, Faculty of Electronics and Information Sciences, Warsaw University of Technology, 00-661 Warsaw, Poland
| | - Michal M. Placek
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (M.C.); (M.M.P.); (P.S.); (E.N.); (Z.C.)
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (M.C.); (M.M.P.); (P.S.); (E.N.); (Z.C.)
| | - Eva Nabbanja
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (M.C.); (M.M.P.); (P.S.); (E.N.); (Z.C.)
| | - Zofia Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (M.C.); (M.M.P.); (P.S.); (E.N.); (Z.C.)
| |
Collapse
|
35
|
Cardiac Output and Cerebral Blood Flow: A Systematic Review of Cardio-Cerebral Coupling. J Neurosurg Anesthesiol 2021; 34:352-363. [PMID: 33782372 DOI: 10.1097/ana.0000000000000768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022]
Abstract
Control of cerebral blood flow (CBF) is crucial to the management of neurocritically ill patients. Small studies which have examined the role of cardiac output (CO) as a determinant of CBF have inconsistently demonstrated evidence of cardio-cerebral coupling. Putative physiological mechanisms underpinning such coupling include changes in arterial blood pressure pulsatility, which would produce vasodilation through increased oscillatory wall-shear-stress and baroreceptor mediated reflex sympatholysis, and changes in venous backpressure which may improve cerebral perfusion pressure. We sought to summarize and contextualize the literature on the relationship between CO and CBF and discuss the implications of cardio-cerebral coupling for neurocritical care. A systematic review of the literature yielded 41 studies; all were of low-quality and at high-risk of bias. Results were heterogenous, with evidence for both corroboration and confutation of a relationship between CO and CBF in both normal and abnormal cerebrovascular states. Common limitations of studies were lack of instantaneous CBF measures with reliance on transcranial Doppler-derived blood flow velocity as a surrogate, inability to control for fluctuations in established determinants of CBF (eg, PaCO2), and direct effects on CBF by the interventions used to alter CO. Currently, the literature is insufficiently robust to confirm an independent relationship between CO and CBF. Hypothetically, the presence of cardio-cerebral coupling would have important implications for clinical practice. Manipulation of CBF could occur without the risks associated with extremes of arterial pressure, potentially improving therapy for those with cerebral ischemia of various etiologies. However, current literature is insufficiently robust to confirm an independent relationship between CO and CBF, and further studies with improved methodology are required before therapeutic interventions can be based on cardio-cerebral coupling.
Collapse
|
36
|
Guilfoyle MR, Helmy A, Donnelly J, Stovell MG, Timofeev I, Pickard JD, Czosnyka M, Smielewski P, Menon DK, Carpenter KLH, Hutchinson PJ. Characterising the dynamics of cerebral metabolic dysfunction following traumatic brain injury: A microdialysis study in 619 patients. PLoS One 2021; 16:e0260291. [PMID: 34914701 PMCID: PMC8675704 DOI: 10.1371/journal.pone.0260291] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability, particularly amongst young people. Current intensive care management of TBI patients is targeted at maintaining normal brain physiology and preventing secondary injury. Microdialysis is an invasive monitor that permits real-time assessment of derangements in cerebral metabolism and responses to treatment. We examined the prognostic value of microdialysis parameters, and the inter-relationships with other neuromonitoring modalities to identify interventions that improve metabolism. This was an analysis of prospective data in 619 adult TBI patients requiring intensive care treatment and invasive neuromonitoring at a tertiary UK neurosciences unit. Patients had continuous measurement of intracranial pressure (ICP), arterial blood pressure (ABP), brain tissue oxygenation (PbtO2), and cerebral metabolism and were managed according to a standardized therapeutic protocol. Microdialysate was assayed hourly for metabolites including glucose, pyruvate, and lactate. Cerebral perfusion pressure (CPP) and cerebral autoregulation (PRx) were derived from the ICP and ABP. Outcome was assessed with the Glasgow Outcome Score (GOS) at 6 months. Relationships between monitoring variables was examined with generalized additive mixed models (GAMM). Lactate/Pyruvate Ratio (LPR) over the first 3 to 7 days following injury was elevated amongst patients with poor outcome and was an independent predictor of ordinal GOS (p<0.05). Significant non-linear associations were observed between LPR and cerebral glucose, CPP, and PRx (p<0.001 to p<0.05). GAMM models suggested improved cerebral metabolism (i.e. reduced LPR with CPP >70mmHg, PRx <0.1, PbtO2 >18mmHg, and brain glucose >1mM. Deranged cerebral metabolism is an important determinant of patient outcome following TBI. Variations in cerebral perfusion, oxygenation and glucose supply are associated with changes in cerebral LPR and suggest therapeutic interventions to improve cerebral metabolism. Future prospective studies are required to determine the efficacy of these strategies.
Collapse
Affiliation(s)
- Mathew R. Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Joseph Donnelly
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Matthew G. Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ivan Timofeev
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - John D. Pickard
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Keri L. H. Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
Teichmann D, Lynch JC, Heldt T. Distortion of the Intracranial Pressure Waveform by Extraventricular Drainage System. IEEE Trans Biomed Eng 2020; 68:1646-1657. [PMID: 33156777 DOI: 10.1109/tbme.2020.3036283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate whether intracranial pressure (ICP) waveform measurements obtained from extraventricular drainage (EVD) systems are suitable for the calculation of intracranial elastance (ICE) or cerebrovascular pressure autoregulation (PAR) indices. METHODS The transfer characteristic of an EVD system is investigated by its step and frequency responses with focus on the low frequency (LF) range from 0.02 to 0.065 Hz (important in PAR) and the location of the system's first resonance frequency (important for ICE). The effects of opening the distal end of the EVD for drainage of cerebrospinal fluid and the presence of trapped air bubbles are also investigated. RESULTS The EVD system exhibits a first resonant frequency below 4 Hz, resulting in significant distortion of the measured ICP waveform. The frequency response in the LF range only remains flat when the EVD is closed. Opening the drain results in drops in magnitude and phase along the entire frequency range above DC. Air bubbles close to the EVD catheter tip affect the LF range while an air bubble close to the pressure transducer further decreases the first resonant frequency. Tests with actual ICP waveforms confirmed EVD-induced waveform distortions that can lead to erroneous ICE estimation. CONCLUSION EVD-based ICP measurements distort the waveform morphology. PAR indices based on LF information are only valid if the EVD is closed. EVD-based ICE estimation is to be avoided. SIGNIFICANCE ICP waveform analyses to derive information about ICE and PAR should be critically questioned if only EVD derived ICP signals are at hand.
Collapse
|
38
|
Chen JW. Commentary: Predictive and Discriminative Power of Pressure Reactivity Indices in Traumatic Brain Injury. Neurosurgery 2020; 87:E496. [PMID: 32243541 DOI: 10.1093/neuros/nyaa083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/02/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jefferson W Chen
- Department of Neurological Surgery, University of California, Irvine, Orange, California
| |
Collapse
|
39
|
Riemann L, Beqiri E, Younsi A, Czosnyka M, Smielewski P. Predictive and Discriminative Power of Pressure Reactivity Indices in Traumatic Brain Injury. Neurosurgery 2020; 87:655-663. [PMID: 32171019 DOI: 10.1093/neuros/nyaa039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/28/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Dysfunctional cerebral blood flow autoregulation plays a crucial role in the secondary damage after traumatic brain injury. The pressure reactivity index (PRx) can be used to monitor dynamic cerebral blood flow autoregulation indirectly. OBJECTIVE To test different versions of the long pressure reactivity index (LPRx), which is based on minute-by-minute data and calculated over extended time windows, and to study their predictive ability and examine whether "long" and "short" pressure reactivity indices could improve predictive power. METHODS PRx and 3 versions of the LPRx calculated over 20-, 60-, and 240-min time windows were assessed in relation to outcome at 6 mo in 855 patients with traumatic brain injury. Predictive power and discriminative ability of indices were evaluated using area under the operator curves and determination of critical thresholds. PRx and LPR indices were combined to evaluate whether LPR indices could improve outcome prediction by adding information about static components of autoregulation. RESULTS Correlation of each LPRx with the PRx decreased with increased time windows. LPR indices performed successively worse in their predictive and discriminative ability from 20-min to 240-min time frames. PRx had a significantly higher predictive ability compared to each LPRx. Combining LPRx and PRx did not lead to an improvement of predictive power compared to the PRx alone. CONCLUSION The critical threshold and predictive value of the PRx for unfavorable outcome and mortality have been confirmed in one of the largest so far published patient cohorts. LPRx performed significantly worse, and its discriminative and predictive abilities decreased with an increasing calculation window.
Collapse
Affiliation(s)
- Lennart Riemann
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.,Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Department of Physiopathology and Transplantation, Milan University, Milan, Italy
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Dai H, Jia X, Pahren L, Lee J, Foreman B. Intracranial Pressure Monitoring Signals After Traumatic Brain Injury: A Narrative Overview and Conceptual Data Science Framework. Front Neurol 2020; 11:959. [PMID: 33013638 PMCID: PMC7496370 DOI: 10.3389/fneur.2020.00959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/24/2020] [Indexed: 12/29/2022] Open
Abstract
Continuous intracranial pressure (ICP) monitoring is a cornerstone of neurocritical care after severe brain injuries such as traumatic brain injury and acts as a biomarker of secondary brain injury. With the rapid development of artificial intelligent (AI) approaches to data analysis, the acquisition, storage, real-time analysis, and interpretation of physiological signal data can bring insights to the field of neurocritical care bioinformatics. We review the existing literature on the quantification and analysis of the ICP waveform and present an integrated framework to incorporate signal processing tools, advanced statistical methods, and machine learning techniques in order to comprehensively understand the ICP signal and its clinical importance. Our goals were to identify the strengths and pitfalls of existing methods for data cleaning, information extraction, and application. In particular, we describe the use of ICP signal analytics to detect intracranial hypertension and to predict both short-term intracranial hypertension and long-term clinical outcome. We provide a well-organized roadmap for future researchers based on existing literature and a computational approach to clinically-relevant biomedical signal data.
Collapse
Affiliation(s)
- Honghao Dai
- Department of Mechanical and Materials Engineering, College of Engineering and Applied Sciences, Cincinnati, OH, United States
- NSF I/UCRC Center for Intelligent Maintenance Systems, Cincinnati, OH, United States
| | - Xiaodong Jia
- Department of Mechanical and Materials Engineering, College of Engineering and Applied Sciences, Cincinnati, OH, United States
- NSF I/UCRC Center for Intelligent Maintenance Systems, Cincinnati, OH, United States
| | - Laura Pahren
- Department of Mechanical and Materials Engineering, College of Engineering and Applied Sciences, Cincinnati, OH, United States
- NSF I/UCRC Center for Intelligent Maintenance Systems, Cincinnati, OH, United States
| | - Jay Lee
- Department of Mechanical and Materials Engineering, College of Engineering and Applied Sciences, Cincinnati, OH, United States
- NSF I/UCRC Center for Intelligent Maintenance Systems, Cincinnati, OH, United States
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, United States
| |
Collapse
|
41
|
Trans-ocular brain impedance index for assessment of cerebral autoregulation in a porcine model of cerebral hemodynamic perturbation. J Clin Monit Comput 2020; 35:1007-1014. [PMID: 32666400 DOI: 10.1007/s10877-020-00556-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Cerebrovascular autoregulation (CA) is often impaired following traumatic brain injury. Established technologies and metrics used to assess CA are invasive and conducive for measurement, but not for continuous monitoring. We developed a trans-ocular brain impedance (TOBI) method that may provide non-invasive and continuous indices to assess CA. In this study, we monitored impedance metrics such as respiratory-induced impedance amplitude changes (dz) as well as a novel impedance index (DZx), which is a moving Pearson correlation between mean arterial pressure (MAP) and dz. Yorkshire swine were instrumented to continuously record ICP, MAP, and cerebral blood flow (CBF). TOBI was recorded by placement of standard ECG electrodes on closed eyelids and connected to a data acquisition system. MAP, ICP and CBF were manipulated utilizing an intravenous vasopressor challenge. TOBI indices (dz and DZx) were compared to the hemodynamic indicators as well as pressure reactivity index (PRx). During the vasopressor challenge, dz was highly correlated with ICP, CPP, and CBF (r = < - 0.49, p < 0.0001). ICP, CPP, and CBF had a mean percent increase (standard deviation) from baseline of 29(23.2)%, 70(25)%, and 37(72.6)% respectively while dz decreased by 31(15.6)%. Receiver operator curve test showed high predictive performance of DZx when compared to PRx with area under the curve above 0.86, with high sensitivity and specificity. Impedance indices appear to track changes in PRx and hemodynamics that affect cerebral autoregulation. TOBI may be a suitable less invasive surrogate to PRx and capable of tracking cerebral autoregulation.
Collapse
|
42
|
Perioperative Assessment of Cerebral Oxygen Metabolism in Infants With Functionally Univentricular Hearts Undergoing the Bidirectional Cavopulmonary Connection. Pediatr Crit Care Med 2019; 20:923-930. [PMID: 31232848 DOI: 10.1097/pcc.0000000000002016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The transition from single-ventricle lesions with surgically placed systemic-to-pulmonary artery shunt to the circulation following a bidirectional cavopulmonary connection results in higher pressure in the superior vena cava when compared with the preceding circulation. The aim of this study was to evaluate the impact of this transition on the perioperative cerebral oxygen metabolism. DESIGN Prospective observational cohort study. SETTING Pediatric critical care unit of a tertiary referral center. PATIENTS Sixteen infants after bidirectional cavopulmonary connection. INTERVENTION Cardiac surgery (bidirectional cavopulmonary connection). MEASUREMENTS AND MAIN RESULTS We measured regional cerebral oxygen saturation, amount of hemoglobin, blood flow velocity, and microperfusion immediately before, 12-24 hours, and 36-48 hours following bidirectional cavopulmonary connection. Based on these measurements, we calculated cerebral fractional tissue oxygen extraction and approximated cerebral metabolic rate of oxygen. Mean pressure in the superior vena cava increased significantly (8 vs 17 mm Hg; p < 0.001) following bidirectional cavopulmonary connection. Mean cerebral oxygen saturation increased from 49.0% (27.4-61.0) to 56.9% (39.5-64.0) (p = 0.008), whereas mean cerebral blood flow velocity decreased from 80.0 arbitrary units (61.9-93.0) to 67.3 arbitrary units (59.0-83.3) (p < 0.001). No change was found in the cerebral amount of hemoglobin and in the cerebral microperfusion. Mean cerebral fractional tissue oxygen extraction (0.48 [0.17-0.63] vs 0.30 [0.19-0.56]; p = 0.006) and approximated cerebral metabolic rate of oxygen (5.82 arbitrary units [2.70-8.78] vs 2.27 arbitrary units [1.19-7.35]; p < 0.001) decreased significantly. CONCLUSIONS Establishment of bidirectional cavopulmonary connection is associated with postoperative improvement in cerebral oxygen metabolism. Cerebral amount of hemoglobin did not increase, although creation of the bidirectional cavopulmonary connection results in significant elevation in superior vena cava pressure. Improvement in cerebral oxygen metabolism was due to lower cerebral blood flow velocity and stable microperfusion, which may indicate intact cerebral autoregulation.
Collapse
|
43
|
Why and how to assess cerebral autoregulation? Best Pract Res Clin Anaesthesiol 2019; 33:211-220. [DOI: 10.1016/j.bpa.2019.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
|
44
|
Liu X, Xiao R, Gadhoumi K, Tran N, Smielewski P, Czosnykan M, Hetts SW, Ko N, Hu X. Continuous monitoring of cerebrovascular reactivity through pulse transit time and intracranial pressure. Physiol Meas 2019; 40:01LT01. [PMID: 30577032 PMCID: PMC7197410 DOI: 10.1088/1361-6579/aafab1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Cerebrovascular reactivity (CR) is a mechanism that maintains stable blood flow supply to the brain. Pressure reactivity index (PRx), the correlation coefficient between slow waves of invasive arterial blood pressure (ABP) and intracranial pressure (ICP) has been validated for CR assessment. However, in clinical ward, not every subarachnoid hemorrhage (SAH) patient has invasive ABP monitoring. Pulse transit time (PTT), the propagation time of a pulse wave travelling from the heart to peripheral arteries, has been suggested as a surrogate measure of ABP. In this study, we proposed to use PTT instead of invasive ABP to monitor CR. APPROACH Forty-five SAH patients with simultaneous recordings of invasive ABP, ICP, oxygen saturation level (SpO2) and electrocardiograph (ECG) were included. PTT was calculated as the time from the ECG R-wave peak to the onset of SpO2. PTT based pressure reactivity index (tPRx) was calculated as the correlation coefficient between slow waves of PTT and ICP. Wavelet tPRx (wtRx) was calculated as the cosine of wavelet phase shift between PTT and ICP. Meanwhile, PRx and wPRx were also calculated using invasive ABP and ICP as input. MAIN RESULTS The result showed a negative relationship between PTT and ABP (r = -0.58, p < 0.001). tPRx negatively correlated with PRx (r = -0.51, p = 0.003). Wavelet method correlated well with correlation method demonstrated through positive relationship between wPRx and PRx (r = 0.82, p < 0.001) as well as wtPRx and tPRx (r = 0.84, p < 0.001). SIGNIFICANCE PTT demonstrates great potential as a useful tool for CR assessment when invasive ABP is unavailable. Key points • Pulse transit time (PTT), defined as the propagation time of a pulse wave travelling from the heart to the peripheral arteries, has been proposed as a surrogate measure of ABP. The relationship between PTT and ABP in SAH patients remains unknown. • Cerebrovascular reactivity (CR) assessment through PTT has advantages over invasive ABP, as it avoids bleeding and infection risk, and can be used outside of the ICU. • We introduced a new method to assess CR using PTT and ICP through correlation based method and wavelet based method. • We found that beat-to-beat PTT was negatively related with invasive ABP in SAH patients. A significant linear relationship exists between PTT-based CR parameter and a well validated method, PRx. PTT demonstrates great potential as a useful tool for CR assessment when invasive ABP is unavailable in SAH patients.
Collapse
Affiliation(s)
- Xiuyun Liu
- Department of Physiological Nursing, University of California, San Francisco, USA
| | - Ran Xiao
- Department of Physiological Nursing, University of California, San Francisco, USA
| | - Kais Gadhoumi
- Department of Physiological Nursing, University of California, San Francisco, USA
| | - Nate Tran
- Department of Physiological Nursing, University of California, San Francisco, USA
| | - Peter Smielewski
- Brain Physics Laboratory, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Marek Czosnykan
- Brain Physics Laboratory, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Steve W. Hetts
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Nerissa Ko
- Department of Neurology, University of California, San Francisco, USA
| | - Xiao Hu
- Department of Physiological Nursing, University of California, San Francisco, USA
- Department of Neurosurgery, School of Medicine, University of California, Los Angeles, USA
- Department of Neurological Surgery, University of California, San Francisco, USA
- Institute of Computational Health Sciences, University of California, San Francisco, USA
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW The acute care of a patient with severe neurological injury is organized around one relatively straightforward goal: avoid brain ischemia. A coherent strategy for fluid management in these patients has been particularly elusive, and a well considered fluid management strategy is essential for patients with critical neurological illness. RECENT FINDINGS In this review, several gaps in our collective knowledge are summarized, including a rigorous definition of volume status that can be practically measured; an understanding of how electrolyte derangements interact with therapy; a measurable endpoint against which we can titrate our patients' fluid balance; and agreement on the composition of fluid we should give in various clinical contexts. SUMMARY As the possibility grows closer that we can monitor the physiological parameters with direct relevance for neurological outcomes and the various complications associated with neurocritical illness, we may finally move away from static therapy recommendations, and toward individualized, precise therapy. Although we believe therapy should ultimately be individualized rather than standardized, it is clear that the monitoring tools and analytical methods used ought to be standardized to facilitate appropriately powered, prospective clinical outcome trials.
Collapse
|