1
|
Ndabakuranye JP, Raschke J, Avagiannis P, Ahnood A. A Compact Fluorescence System for Tumor Detection: Performance and Integration Potential. BIOSENSORS 2025; 15:95. [PMID: 39996997 PMCID: PMC11853339 DOI: 10.3390/bios15020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
Fluorescence-guided surgery (FGS) is an innovative technique for accurately localizing tumors during surgery, particularly valuable in brain tumor detection. FGS uses advanced spectral and imaging tools to provide precise, quantitative fluorescence measurements that enhance surgical accuracy. However, the current challenge with these advanced tools lies in their lack of miniaturization, which limits their practicality in complex surgical environments. In this study, we present a miniaturized fluorescence detection system, developed using state-of-the-art CMOS color sensors, to overcome this challenge and improve brain tumor localization. Our 3.1 × 3 mm multispectral sensor platform measures fluorescence intensity ratios at 635 nm and 514 nm, producing a high-resolution fluorescence distribution map for a 16 mm × 16 mm area. This device shows a high correlation (R2 > 0.98) with standard benchtop spectrometers, confirming its accuracy for real-time, on-chip fluorescence detection. With its compact size, our system has strong potential for integration with existing handheld surgical tools, aiming to improve outcomes in tumor resection and enhance intraoperative tumor visualization.
Collapse
Affiliation(s)
| | | | | | - Arman Ahnood
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
2
|
Suzuki S, Nagumo Y, Kojo K, Ikeda A, Isoda B, Yamaguchi A, Tanuma K, Nitta S, Shiga M, Kawahara T, Kandori S, Hoshi A, Negoro H, Mathis BJ, Nishiyama H. Variations in the diagnostic performance of transurethral resection of bladder tumor with photodynamic diagnosis according to surgical experience: A retrospective, single-center study. Photodiagnosis Photodyn Ther 2025; 51:104429. [PMID: 39638220 DOI: 10.1016/j.pdpdt.2024.104429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND To investigate variations in diagnostic performance of photodynamic diagnosis (PDD) according to surgical experience. METHODS Data were extracted from patients having pT1 or lower primary tumors that underwent PDD-assisted transurethral resection of bladder tumors (TURBT) with orally 5-amibolevulinic acid at our institute. Surgical experience was categorized by urological experience (first-year and second-year) and PDD experience (<10, 10-19, and ≥20 cases). Sensitivity, specificity, and accuracy rates were calculated based on PDD or white light (WL) findings and pathologic diagnosis. The bladder neck, trigone, and prostatic urethra were defined as areas with a high probability of tangential effect. RESULTS A total of 108 patients and 343 specimens were extracted. The second-year surgeons had significantly higher accuracy rates than first-year surgeons (81.5 % vs. 69.0 %, p = 0.013), while PDD experience did not significantly affect accuracy rates (76.5, 75.5, and 69.0 %). In addition, the accuracy rate was also significantly lower in tangential effect areas (59.6 % vs. 80.8 %). Multivariate analysis identified urological experience as a significant factor improving accuracy rate (odds ratio [OR] 2.14) while tangential effects substantially reduced accuracy rate (OR 0.37). Notably, combining both PDD and WL resulted in a sensitivity exceeding 94 %, even in first-year urology residents and tangential effect areas. CONCLUSIONS Urological experience had a greater impact on diagnostic performance of PDD compared to PDD experience. The combination of PDD and WL findings may improve sensitivity and reduce the possibility of missed diagnoses for less experienced urology residents.
Collapse
Affiliation(s)
- Shuhei Suzuki
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Yoshiyuki Nagumo
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Kosuke Kojo
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Atsushi Ikeda
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Bunpei Isoda
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Akane Yamaguchi
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Kozaburo Tanuma
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Satoshi Nitta
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Masanobu Shiga
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Takashi Kawahara
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Shuya Kandori
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Akio Hoshi
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Hiromitsu Negoro
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Bryan J Mathis
- Department of Cardiovascular Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Hiroyuki Nishiyama
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
3
|
Suero Molina E, Azemi G, Özdemir Z, Russo C, Krähling H, Valls Chavarria A, Liu S, Stummer W, Di Ieva A. Predicting intraoperative 5-ALA-induced tumor fluorescence via MRI and deep learning in gliomas with radiographic lower-grade characteristics. J Neurooncol 2025; 171:589-598. [PMID: 39560696 PMCID: PMC11729117 DOI: 10.1007/s11060-024-04875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
PURPOSE Lower-grade gliomas typically exhibit 5-aminolevulinic acid (5-ALA)-induced fluorescence in only 20-30% of cases, a rate that can be increased by doubling the administered dose of 5-ALA. Fluorescence can depict anaplastic foci, which can be precisely sampled to avoid undergrading. We aimed to analyze whether a deep learning model could predict intraoperative fluorescence based on preoperative magnetic resonance imaging (MRI). METHODS We evaluated a cohort of 163 glioma patients categorized intraoperatively as fluorescent (n = 83) or non-fluorescent (n = 80). The preoperative MR images of gliomas lacking high-grade characteristics (e.g., necrosis or irregular ring contrast-enhancement) consisted of T1, T1-post gadolinium, and FLAIR sequences. The preprocessed MRIs were fed into an encoder-decoder convolutional neural network (U-Net), pre-trained for tumor segmentation using those three MRI sequences. We used the outputs of the bottleneck layer of the U-Net in the Variational Autoencoder (VAE) as features for classification. We identified and utilized the most effective features in a Random Forest classifier using the principal component analysis (PCA) and the partial least square discriminant analysis (PLS-DA) algorithms. We evaluated the performance of the classifier using a tenfold cross-validation procedure. RESULTS Our proposed approach's performance was assessed using mean balanced accuracy, mean sensitivity, and mean specificity. The optimal results were obtained by employing top-performing features selected by PCA, resulting in a mean balanced accuracy of 80% and mean sensitivity and specificity of 84% and 76%, respectively. CONCLUSIONS Our findings highlight the potential of a U-Net model, coupled with a Random Forest classifier, for pre-operative prediction of intraoperative fluorescence. We achieved high accuracy using the features extracted by the U-Net model pre-trained for brain tumor segmentation. While the model can still be improved, it has the potential for evaluating when to administer 5-ALA to gliomas lacking typical high-grade radiographic features.
Collapse
Affiliation(s)
- Eric Suero Molina
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.
- Macquarie Neurosurgery & Spine, Macquarie University Hospital, Sydney, Australia.
| | - Ghasem Azemi
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Zeynep Özdemir
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Carlo Russo
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Hermann Krähling
- Clinic for Radiology, University Hospital Münster, Münster, Germany
| | - Alexandra Valls Chavarria
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Sidong Liu
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
- Macquarie Neurosurgery & Spine, Macquarie University Hospital, Sydney, Australia
| |
Collapse
|
4
|
Körner LI, Reichert D, Andreana M, Unterhuber A, Erkkilae MT, Makolli J, Kiesel B, Mischkulnig M, Rötzer-Pejrimovsky T, Wöhrer A, Berger MS, Leitgeb R, Widhalm G. Analysis of the Porphyrin Peak Shift and Fluorescence Lifetime in Gliomas with Different Tumor Grades, Intratumoral Regions, and Visible Fluorescence Status. Diagnostics (Basel) 2024; 14:2651. [PMID: 39682559 DOI: 10.3390/diagnostics14232651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Background: 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence shows high sensitivity in detecting the tumor core of high-grade gliomas (HGG) but poor sensitivity for tissue of low-grade gliomas (LGG) and the margins of HGG. The characteristic emission peak for PpIX is known to be located at 635 nm. Recently, a second emission peak was described at 620 nm wavelength in LGG and the tumor infiltration zone of HGG. Methods: During surgery, samples from the tumor core and tumor infiltration zone of 43 WHO grade 2-4 gliomas were collected after preoperative 5-ALA administration, and their PpIX emission spectra, as well as fluorescence lifetimes, were determined by ex vivo analysis. Subsequently, the relative PpIX peak contribution (RPPC) was retrieved by calculating the integral of the two bands corresponding to the two emission peaks of PpIX (615-625 nm, 625-635 nm) and correlated with fluorescence lifetimes. Results: The mean RPPC decreased in samples with descending order of WHO grades, non-fluorescing samples, and infiltrative tumor regions, indicating a shift toward the 620 nm peak in porphyrin fluorescence. The porphyrin peak shift across all specimens correlated with lower fluorescence lifetimes (R: 0.854, R-squared: 0.729). Conclusions: The observed peak shift has important implications for fluorescence lifetime analyses since the lifetimes of other porphyrins contribute to the overall decay dynamics. Based on these initial data using fluorescence lifetime, this knowledge is of major importance, especially for detecting tissue from LGG that lack visible fluorescence, to further optimize the visualization of these tumor tissue using this promising imaging modality.
Collapse
Affiliation(s)
- Lisa Irina Körner
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, 1090 Vienna, Austria
| | - Marco Andreana
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Mikael T Erkkilae
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Jessica Makolli
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Mario Mischkulnig
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Rötzer-Pejrimovsky
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Adelheid Wöhrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Gao YT, Liu JH, He K, Guo SL. Advances in two-photon absorption photodynamic therapy of glioma based on porphyrin-based metal-organicframework composites. Photodiagnosis Photodyn Ther 2024; 49:104281. [PMID: 39009207 DOI: 10.1016/j.pdpdt.2024.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Gliomas of the brain are characterised by high aggressiveness, high postoperative recurrence rate, high morbidity and mortality, posing a great challenge to clinical treatment. Traditional treatments include surgery, radiotherapy and chemotherapy; they also have significant associated side effects, leading to difficulties in tumour resection and recurrence. Photodynamic therapy has been shown to be a promising new strategy to help treat malignant tumours of the brain. It irradiates the tumour site at a specific wavelength to activate a photosensitiser, which selectively accumulates at the tumour site, triggering a photochemical reaction that destroys the tumour cells. It has the advantages of being minimally invasive, highly targeted and with few adverse reactions, and is expected to be well used in anti-tumour therapy. However, the therapeutic effect of traditional PDT is limited by the weak tissue penetration ability of photosensitiser, hypoxia and immunosuppression in the tumour microenvironment. This paper reviews the current research status on the therapeutic principle of photodynamic therapy in glioma and the mechanism of tumour cell injury, and also analyses the advantages and disadvantages of the current application in glioma treatment, and clarifies the analysis of ideas to improve the tissue penetration ability of photosensitizers. It aims to provide a feasible direction for the improvement of photodynamic therapy for glioma and a reference for the clinical treatment of deep brain tumours.
Collapse
Affiliation(s)
- Yong-Tao Gao
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng City, Henan Province, PR China, 475000.
| | - Jun-Hui Liu
- School of Physics and Electronics, Henan University, Kaifeng City, Henan Province, PR China, 475004
| | - Kang He
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng City, Henan Province, PR China, 475000
| | - Shuang-Lei Guo
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng City, Henan Province, PR China, 475000
| |
Collapse
|
6
|
Sprenger F, da Silva Junior EB, Ramina R, Cavalcanti MS, Martins SB, Cerqueira MA, Falcão AX, Corrêa de Almeida Teixeira B. Ki67 Index Correlates with Tumoral Volumetry and 5-ALA Residual Fluorescence in Glioblastoma. World Neurosurg 2024; 189:e230-e237. [PMID: 38857868 DOI: 10.1016/j.wneu.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Malignant gliomas are the most prevalent primary malignant cerebral tumors. Preoperative imaging plays an important role, and the prognosis is closely related to surgical resection and histomolecular aspects. Our goal was to correlate Ki67 indexes with tumoral volumetry in semiautomatic segmentation on preoperative magnetic resonance images and residual fluorescence in a 5-ALA-assisted resection cohort. METHODS We included 86 IDH-wildtype glioblastoma patients with complete preoperative imaging submitted to 5-ALA assisted resections. Clinical, surgical, and histomolecular findings were also obtained. Preoperative magnetic resonance studies were preprocessed and segmented semiautomatically on Visualization and Analysis for whole tumor (WT) on 3D FLAIR, enhancing tumor (ET), and necrotic core on 3D postgadolinium T1. We performed a linear regression analysis for Ki67 and a multivariate analysis for surgical outcomes. RESULTS Higher Ki-67 indexes correlated positively with higher WT (P = 0.048) and ET (P = 0.002). Lower Ki67 correlated with 5-ALA free margins (P = 0.045). WT and ET volumes correlated with the extent of resection (EOR; P = 0.002 and 0.002, respectively). Eloquence did not impact EOR (P = 0.14). CONCLUSIONS There is a correlation between Ki67, the metabolically active tumoral volumes (WT and ET), and 5-ALA residual fluorescence. Methodological inconsistencies are probably responsible for contradictory literature findings, and further prospective studies are needed to validate and reproduce these findings.
Collapse
Affiliation(s)
- Flávia Sprenger
- Department of Radiology, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | | | - Ricardo Ramina
- Head of Neurosurgery, Instituto de Neurologia de Curitiba, Curitiba, Paraná, Brazil
| | | | | | | | | | - Bernardo Corrêa de Almeida Teixeira
- Department of Radiology, Hospital de Clínicas da Universidade Federal do Paraná, Instituto de Neurologia de Curitiba, Curitiba, Paraná, Brazil
| |
Collapse
|
7
|
Picart T, Gautheron A, Caredda C, Ray C, Mahieu-Williame L, Montcel B, Guyotat J. Fluorescence-Guided Surgical Techniques in Adult Diffuse Low-Grade Gliomas: State-of-the-Art and Emerging Techniques: A Systematic Review. Cancers (Basel) 2024; 16:2698. [PMID: 39123426 PMCID: PMC11311317 DOI: 10.3390/cancers16152698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Diffuse low-grade gliomas are infiltrative tumors whose margins are not distinguishable from the adjacent healthy brain parenchyma. The aim was to precisely examine the results provided by the intraoperative use of macroscopic fluorescence in diffuse low-grade gliomas and to describe the new fluorescence-based techniques capable of guiding the resection of low-grade gliomas. Only about 20% and 50% of low-grade gliomas are macroscopically fluorescent after 5-amino-levulinic acid (5-ALA) or fluorescein sodium intake, respectively. However, 5-ALA is helpful for detecting anaplastic foci, and thus choosing the best biopsy targets in diffuse gliomas. Spectroscopic detection of 5-ALA-induced fluorescence can detect very low and non-macroscopically visible concentrations of protoporphyrin IX, a 5-ALA metabolite, and, consequently, has excellent performances for the detection of low-grade gliomas. Moreover, these tumors have a specific spectroscopic signature with two fluorescence emission peaks, which is useful for distinguishing them not only from healthy brain but also from high-grade gliomas. Confocal laser endomicroscopy can generate intraoperative optic biopsies, but its sensitivity remains limited. In the future, the coupled measurement of autofluorescence and induced fluorescence, and the introduction of fluorescence detection technologies providing a wider field of view could result in the development of operator-friendly tools implementable in the operative routine.
Collapse
Affiliation(s)
- Thiebaud Picart
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France
- Cancer Research Centre of Lyon (CRCL) Inserm 1052, CNRS 5286, 28 Rue Laennec, 69008 Lyon, France
| | - Arthur Gautheron
- Laboratoire Hubert Curien UMR 5516, Institut d’Optique Graduate School, CNRS, Université Jean Monnet Saint-Etienne, 42023 Saint-Etienne, France;
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Charly Caredda
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Cédric Ray
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Laurent Mahieu-Williame
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Bruno Montcel
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Jacques Guyotat
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| |
Collapse
|
8
|
Black D, Byrne D, Walke A, Liu S, Di Ieva A, Kaneko S, Stummer W, Salcudean T, Suero Molina E. Towards machine learning-based quantitative hyperspectral image guidance for brain tumor resection. COMMUNICATIONS MEDICINE 2024; 4:131. [PMID: 38965358 PMCID: PMC11224305 DOI: 10.1038/s43856-024-00562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Complete resection of malignant gliomas is hampered by the difficulty in distinguishing tumor cells at the infiltration zone. Fluorescence guidance with 5-ALA assists in reaching this goal. Using hyperspectral imaging, previous work characterized five fluorophores' emission spectra in most human brain tumors. METHODS In this paper, the effectiveness of these five spectra was explored for different tumor and tissue classification tasks in 184 patients (891 hyperspectral measurements) harboring low- (n = 30) and high-grade gliomas (n = 115), non-glial primary brain tumors (n = 19), radiation necrosis (n = 2), miscellaneous (n = 10) and metastases (n = 8). Four machine-learning models were trained to classify tumor type, grade, glioma margins, and IDH mutation. RESULTS Using random forests and multilayer perceptrons, the classifiers achieve average test accuracies of 84-87%, 96.1%, 86%, and 91% respectively. All five fluorophore abundances vary between tumor margin types and tumor grades (p < 0.01). For tissue type, at least four of the five fluorophore abundances are significantly different (p < 0.01) between all classes. CONCLUSIONS These results demonstrate the fluorophores' differing abundances in different tissue classes and the value of the five fluorophores as potential optical biomarkers, opening new opportunities for intraoperative classification systems in fluorescence-guided neurosurgery.
Collapse
Affiliation(s)
- David Black
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Declan Byrne
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Anna Walke
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Sidong Liu
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sadahiro Kaneko
- Department of Neurosurgery, Hokkaido Medical Center, National Hospital Organization, Sapporo, Japan
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Tim Salcudean
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital Münster, Münster, Germany.
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
9
|
da Silva EB, Ramina R, Novak Filho JL, Jung GS, Bornancin GX, Neto MC. Pharmaceutical equivalent 5-aminolevulinic acid fluorescence guided resection of central nervous system tumors: feasibility, safeness and cost-benefit considerations. J Neurooncol 2024; 168:555-562. [PMID: 38709355 DOI: 10.1007/s11060-024-04698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE 5-aminolevulinic acid (5-ALA) fluorescence-guided resection (FGR) has been an essential tool in the 'standard of care' of malignant gliomas. Over the last two decades, its indications have been extended to other neoplasms, such as metastases and meningiomas. However, its availability and cost-benefit still pose a challenge for widespread use. The present article reports a retrospective series of 707 cases of central nervous system (CNS) tumors submitted to FGR with pharmacological equivalent 5-ALA and discusses financial implications, feasibility and safeness. METHODS From December 2015 to February 2024, a retrospective single institution series of 707 cases of 5-ALA FGR were analyzed. Age, gender, 5-ALA dosage, intraoperative fluorescence finding, diagnosis and adverse effects were recorded. Financial impact in the surgical treatment cost were also reported. RESULTS there was an additional cost estimated in $300 dollars for each case, increasing from 2,37 to 3,28% of the total hospitalization cost. There were 19 (2,69%) cases of asymptomatic photosensitive reaction and 2 (0,28%) cases of photosensitive reaction requiring symptomatic treatment. 1 (0,14%) patient had a cutaneous rash sustained for up to 10 days. No other complications related to the method were evident. In 3 (0,42%) cases of patients with intracranial hypertension, there was vomiting after administration. CONCLUSION FGR with pharmacological equivalent 5-ALA can be considered safe and efficient and incorporates a small increase in hospital expenses. It constitutes a reliable solution in avoiding prohibitive costs worldwide, especially in countries where commercial 5-ALA is unavailable.
Collapse
Affiliation(s)
- Erasmo Barros da Silva
- Division of Neurooncology, Department of Neurosurgery, Instituto de Neurologia de Curitiba, Rua Jeremias Maciel Perretto, 300 - Campo Comprido, 81210-310, Curitiba, PR, Brazil.
| | - Ricardo Ramina
- Division of Neurooncology, Department of Neurosurgery, Instituto de Neurologia de Curitiba, Rua Jeremias Maciel Perretto, 300 - Campo Comprido, 81210-310, Curitiba, PR, Brazil
| | - Jorge Luis Novak Filho
- Division of Neurooncology, Department of Neurosurgery, Instituto de Neurologia de Curitiba, Rua Jeremias Maciel Perretto, 300 - Campo Comprido, 81210-310, Curitiba, PR, Brazil
| | - Gustavo Simiano Jung
- Division of Neurooncology, Department of Neurosurgery, Instituto de Neurologia de Curitiba, Rua Jeremias Maciel Perretto, 300 - Campo Comprido, 81210-310, Curitiba, PR, Brazil
| | - Giulia Xavier Bornancin
- Division of Neurooncology, Department of Neurosurgery, Instituto de Neurologia de Curitiba, Rua Jeremias Maciel Perretto, 300 - Campo Comprido, 81210-310, Curitiba, PR, Brazil
| | - Maurício Coelho Neto
- Division of Neurooncology, Department of Neurosurgery, Instituto de Neurologia de Curitiba, Rua Jeremias Maciel Perretto, 300 - Campo Comprido, 81210-310, Curitiba, PR, Brazil
| |
Collapse
|
10
|
Garufi G, Conti A, Chaurasia B, Cardali SM. Exoscopic versus Microscopic Surgery in 5-ALA-Guided Resection of High-Grade Gliomas. J Clin Med 2024; 13:3493. [PMID: 38930021 PMCID: PMC11205195 DOI: 10.3390/jcm13123493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Glioma surgery has been remarkably enhanced in the past 2 decades, with improved safety and limited but improved life expectations. The fluorescence-guided resection of high-grade gliomas (HGGs) plays a central role in this sense, allowing a greater extent of resection (EOR). The introduction of exoscopic-guided surgery may be considered in implementing fluorescence techniques over traditional microscopes. We present the application and the advantages of exoscopic-guided surgery compared to microscopic surgery in tumor resection guided by 5-ALA fluorescence in patients with HGGs. Methods: Ten consecutive patients underwent surgery for HGG resection. The surgery was performed via an exoscopic-guided procedure (Olympus ORBEYE) and after the oral administration of Gliolan 5 h before the procedure. During surgery, the procedure shifted to using a microscopic (Kinevo 900, Zeiss) view. The intensity of the fluorescence under the two different procedures was subjectively measured in different picture samples during the surgery on a 1 to 5 (from minimum to maximum) scale. The brightness of the surgical field and the detailing of the anatomy were also analyzed comparatively. Results: Among the ten patients, the histopathological diagnosis was an high-grade glioma in all cases. In nine cases, it was possible to achieve gross total resection. There was no perioperative mortality. The median fluorescence intensity, on a scale of 1-5, was 4.5 in the exoscope group and 3.5 in the microscope group (p < 0.01). Conclusions: The exoscopic-guided surgery adds advantages to traditional fluorescence-guided surgery with 5-aminolevulinic acid. Beyond the important advantage of low cost and the possibility to perform collaborative surgeries, it adds a plain and continuous visualization of the tumor and offers advantages in the surgical field of fluorescence-guided glioma surgery compared to the microscopic-guided one.
Collapse
Affiliation(s)
- Giada Garufi
- Department of Neurosurgery, Azienda Ospedaliera Papardo, University of Messina, 98158 Messina, Italy;
| | - Alfredo Conti
- Department of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Alma Mater Studiorum Università di Bologna, Via Altura 3, 40123 Bologna, Italy
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| | - Salvatore Massimiliano Cardali
- Department of Neurosurgery, Azienda Ospedaliera Papardo, University of Messina, 98158 Messina, Italy;
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
11
|
Gautheron A, Bernstock JD, Picart T, Guyotat J, Valdés PA, Montcel B. 5-ALA induced PpIX fluorescence spectroscopy in neurosurgery: a review. Front Neurosci 2024; 18:1310282. [PMID: 38348134 PMCID: PMC10859467 DOI: 10.3389/fnins.2024.1310282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
The review begins with an overview of the fundamental principles/physics underlying light, fluorescence, and other light-matter interactions in biological tissues. It then focuses on 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence spectroscopy methods used in neurosurgery (e.g., intensity, time-resolved) and in so doing, describe their specific features (e.g., hardware requirements, main processing methods) as well as their strengths and limitations. Finally, we review current clinical applications and future directions of 5-ALA-induced protoporphyrin IX (PpIX) fluorescence spectroscopy in neurosurgery.
Collapse
Affiliation(s)
- A. Gautheron
- Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516, Saint-Étienne, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
| | - J. D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - T. Picart
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
- Université Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - J. Guyotat
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - P. A. Valdés
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - B. Montcel
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
| |
Collapse
|
12
|
Gautheron A, Sdika M, Hebert M, Montcel B. An Explicit Estimated Baseline Model for Robust Estimation of Fluorophores Using Multiple-Wavelength Excitation Fluorescence Spectroscopy. IEEE Trans Biomed Eng 2024; 71:295-306. [PMID: 37535482 DOI: 10.1109/tbme.2023.3299689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Spectroscopy is a popular technique for identifying and quantifying fluorophores in fluorescent materials. However, quantifying the fluorophore of interest can be challenging when the material also contains other fluorophores (baseline), particularly if the emission spectrum of the baseline is not well-defined and overlaps with that of the fluorophore of interest. In this work, we propose a method that is free from any prior assumptions about the baseline by utilizing fluorescence signals at multiple excitation wavelengths. Despite the nonlinearity of the model, a closed-form expression of the least squares estimator is also derived. To evaluate our method, we consider the practical case of estimating the contributions of two forms of protoporphyrin IX (PpIX) in a fluorescence signal. This fluorophore of interest is commonly utilized in neuro-oncology operating rooms to distinguish the boundary between healthy and tumor tissue in a type of brain tumor known as glioma. Using a digital phantom calibrated with clinical and experimental data, we demonstrate that our method is more robust than current state-of-the-art methods for classifying pathological status, particularly when applied to images of simulated clinical gliomas. To account for the high variability in the baseline, we are examining various scenarios and their corresponding outcomes. In particular, it maintains the ability to distinguish between healthy and tumor tissue with an accuracy of up to 87%, while the ability of existing methods drops near 0%.
Collapse
|
13
|
Özdemir Z, Suero Molina E, Hellwig SJ, Stepp H, Stummer W. Second-Generation Wide-Field Visualization Devices for 5-ALA-Induced Fluorescence and Concepts for Validation in Neurosurgery-A Systematic Review. NEUROSURGERY PRACTICE 2023; 4:e00059. [PMID: 39959385 PMCID: PMC11809958 DOI: 10.1227/neuprac.0000000000000059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/27/2023] [Indexed: 02/18/2025]
Abstract
BACKGROUND AND OBJECTIVES Fluorescence-guided resection (FGR) of malignant gliomas with five-aminolevulinic acid (5-ALA) is an established method using surgical microscopes equipped with filter systems for observing fluorescence. Over the past decade, new technologies have been introduced for the same purpose, with available publications evaluating their clinical efficacy based on varying criteria. This study aims to review technologies and concepts of validation in the context of 5-ALA-mediated FGR. METHODS A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement was performed to identify devices capable of detecting 5-ALA-induced fluorescence. Articles found eligible for this review were analyzed, focusing on the methods of validation used for novel devices. A qualitative analysis is presented. RESULTS Using predefined eligibility criteria, 22 studies were analyzed. Publications on the following visualization devices were reviewed: FL400 (Leica Microsystems), Aeos (Aesculap), BLUE400 and BLUE400 AR Filter System (Carl Zeiss Meditec AG), Endoscope with D-Light C (Karl Storz), Fiberscope N-4L (Machida), ORBEYE 4K 3D Digital Video Microscope (Olympus), and several customized surgical loupe systems. In many cases, validation seemed unstandardized, with inherent biases and limited reproducibility. CONCLUSION This review illustrates the significance of device validation within the framework of FGR. It emphasizes the criticality of validating devices in accordance with established standard, i.e. the BLUE400 filter system, which was employed in the approval studies of 5-ALA. Furthermore, standardized concepts of validation are required to assess whether new devices are, in fact, a reliable or superior alternative in the field of FGR. Published guidelines should be considered when performing future studies.
Collapse
Affiliation(s)
- Zeynep Özdemir
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Sönke J. Hellwig
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Herbert Stepp
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Munich, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
14
|
Suero Molina E, Black D, Walke A, Azemi G, D’Alessandro F, König S, Stummer W. Unraveling the blue shift in porphyrin fluorescence in glioma: The 620 nm peak and its potential significance in tumor biology. Front Neurosci 2023; 17:1261679. [PMID: 38027504 PMCID: PMC10657867 DOI: 10.3389/fnins.2023.1261679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
In glioma surgery, the low-density infiltration zone of tumors is difficult to detect by any means. While, for instance, 5-aminolevulinic acid (5-ALA)-induced fluorescence is a well-established surgical procedure for maximizing resection of malignant gliomas, a cell density in tumor tissue of 20-30% is needed to observe visual fluorescence. Hyperspectral imaging is a powerful technique for the optical characterization of brain tissue, which accommodates the complex spectral properties of gliomas. Thereby, knowledge about the signal source is essential to generate specific separation (unmixing) procedures for the different spectral characteristics of analytes and estimate compound abundances. It was stated that protoporphyrin IX (PpIX) fluorescence consists mainly of emission peaks at 634 nm (PpIX634) and 620 nm (PpIX620). However, other members of the substance group of porphyrins fluoresce similarly to PpIX due to their common tetrapyrrole core structure. While the PpIX634 signal has reliably been assigned to PpIX, it has not yet been analyzed if PpIX620 might result from a different porphyrin rather than being a second photo state of PpIX. We thus reviewed more than 200,000 spectra from various tumors measured in almost 600 biopsies of 130 patients. Insufficient consideration of autofluorescence led to artificial inflation of the PpIX620 peak in the past. Recently, five basis spectra (PpIX634, PpIX620, flavin, lipofuscin, and NADH) were described and incorporated into the analysis algorithm, which allowed more accurate unmixing of spectral abundances. We used the improved algorithm to investigate the PpIX620 signal more precisely and investigated coproporphyrin III (CpIII) fluorescence phantoms for spectral unmixing. Our findings show that the PpIX634 peak was the primary source of the 5-ALA-induced fluorescence. CpIII had a similar spectral characteristic to PpIX620. The supplementation of 5-ALA may trigger the increased production of porphyrins other than PpIX within the heme biosynthesis pathway, including that of CpIII. It is essential to correctly separate autofluorescence from the main PpIX634 peak to analyze the fluorescence signal. This article highlights the need for a comprehensive understanding of the spectral complexity in gliomas and suggests less significance of the 620 nm fluorescence peak for PpIX analysis and visualization.
Collapse
Affiliation(s)
- Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - David Black
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Anna Walke
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Ghasem Azemi
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Fabio D’Alessandro
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
15
|
Czarnywojtek A, Borowska M, Dyrka K, Van Gool S, Sawicka-Gutaj N, Moskal J, Kościński J, Graczyk P, Hałas T, Lewandowska AM, Czepczyński R, Ruchała M. Glioblastoma Multiforme: The Latest Diagnostics and Treatment Techniques. Pharmacology 2023; 108:423-431. [PMID: 37459849 DOI: 10.1159/000531319] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/05/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a WHO grade 4 glioma and the most common malignant primary brain tumour. Recently, there has been outstanding progress in the treatment of GBM. In addition to the newest form of GBM removal using fluorescence, three-dimensional (3D) imaging, tomoradiotherapy, moderate electro-hyperthermia, and adjuvant temozolomide (post-operative chemotherapy), new developments have been made in the fields of immunology, molecular biology, and virotherapy. An unusual and modern treatment has been created, especially for stage 4 GBM, using the latest therapeutic techniques, including immunotherapy and virotherapy. Modern oncological medicine is producing extraordinary and progressive therapeutic methods. Oncological therapy includes individual analysis of the properties of a tumour and targeted therapy using small-molecule inhibitors. Individualised medicine covers the entire patient (tumour and host) in the context of immunotherapy. An example is individualised multimodal immunotherapy (IMI), which relies on individual immunological tumour-host interactions. In addition, IMI is based on the concept of oncolytic virus-induced immunogenic tumour cell death. SUMMARY In this review, we outline current knowledge of the various available treatment options used in the therapy of GBM including both traditional therapeutic strategy and modern therapies, such as tomotherapy, electro-hyperthermia, and oncolytic virotherapy, which are promising treatment strategies with the potential to improve prognosis in patients with GBM. KEY MESSAGES This newest therapy, immunotherapy combined with virotherapy (oncolytic viruses and cancer vaccines), is displaying encouraging signs for combating GBM. Additionally, the latest 3D imaging is compared to conventional two-dimensional imaging.
Collapse
Affiliation(s)
- Agata Czarnywojtek
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Borowska
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kamil Dyrka
- Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Jakub Moskal
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Jeremi Kościński
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Patryk Graczyk
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Hałas
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Rafał Czepczyński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
16
|
Fürtjes G, Reinecke D, von Spreckelsen N, Meißner AK, Rueß D, Timmer M, Freudiger C, Ion-Margineanu A, Khalid F, Watrinet K, Mawrin C, Chmyrov A, Goldbrunner R, Bruns O, Neuschmelting V. Intraoperative microscopic autofluorescence detection and characterization in brain tumors using stimulated Raman histology and two-photon fluorescence. Front Oncol 2023; 13:1146031. [PMID: 37234975 PMCID: PMC10207900 DOI: 10.3389/fonc.2023.1146031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction The intrinsic autofluorescence of biological tissues interferes with the detection of fluorophores administered for fluorescence guidance, an emerging auxiliary technique in oncological surgery. Yet, autofluorescence of the human brain and its neoplasia is sparsely examined. This study aims to assess autofluorescence of the brain and its neoplasia on a microscopic level by stimulated Raman histology (SRH) combined with two-photon fluorescence. Methods With this experimentally established label-free microscopy technique unprocessed tissue can be imaged and analyzed within minutes and the process is easily incorporated in the surgical workflow. In a prospective observational study, we analyzed 397 SRH and corresponding autofluorescence images of 162 samples from 81 consecutive patients that underwent brain tumor surgery. Small tissue samples were squashed on a slide for imaging. SRH and fluorescence images were acquired with a dual wavelength laser (790 nm and 1020 nm) for excitation. In these images tumor and non-tumor regions were identified by a convolutional neural network that reliably differentiates between tumor, healthy brain tissue and low quality SRH images. The identified areas were used to define regions.of- interests (ROIs) and the mean fluorescence intensity was measured. Results In healthy brain tissue, we found an increased mean autofluorescence signal in the gray (11.86, SD 2.61, n=29) compared to the white matter (5.99, SD 5.14, n=11, p<0.01) and in the cerebrum (11.83, SD 3.29, n=33) versus the cerebellum (2.82, SD 0.93, n=7, p<0.001), respectively. The signal of carcinoma metastases, meningiomas, gliomas and pituitary adenomas was significantly lower (each p<0.05) compared to the autofluorescence in the cerebrum and dura, and significantly higher (each p<0.05) compared to the cerebellum. Melanoma metastases were found to have a higher fluorescent signal (p<0.01) compared to cerebrum and cerebellum. Discussion In conclusion we found that autofluorescence in the brain varies depending on the tissue type and localization and differs significantly among various brain tumors. This needs to be considered for interpreting photon signal during fluorescence-guided brain tumor surgery.
Collapse
Affiliation(s)
- Gina Fürtjes
- Department of General Neurosurgery, Center of Neurosurgery, University Hospital Cologne, Cologne, Germany
- Helmholtz Zentrum München, Neuherberg, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - David Reinecke
- Department of General Neurosurgery, Center of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Niklas von Spreckelsen
- Department of General Neurosurgery, Center of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Anna-Katharina Meißner
- Department of General Neurosurgery, Center of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Daniel Rueß
- Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Marco Timmer
- Department of General Neurosurgery, Center of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | | | | | | | | | - Christian Mawrin
- University Hospital Magdeburg, Institute of Neuropathology, Magdeburg, Germany
| | - Andriy Chmyrov
- Helmholtz Zentrum München, Neuherberg, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Roland Goldbrunner
- Department of General Neurosurgery, Center of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Oliver Bruns
- Helmholtz Zentrum München, Neuherberg, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Volker Neuschmelting
- Department of General Neurosurgery, Center of Neurosurgery, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
17
|
Howley R, Chandratre S, Chen B. 5-Aminolevulinic Acid as a Theranostic Agent for Tumor Fluorescence Imaging and Photodynamic Therapy. Bioengineering (Basel) 2023; 10:bioengineering10040496. [PMID: 37106683 PMCID: PMC10136048 DOI: 10.3390/bioengineering10040496] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
5-Aminolevulinic acid (ALA) is a naturally occurring amino acid synthesized in all nucleated mammalian cells. As a porphyrin precursor, ALA is metabolized in the heme biosynthetic pathway to produce protoporphyrin IX (PpIX), a fluorophore and photosensitizing agent. ALA administered exogenously bypasses the rate-limit step in the pathway, resulting in PpIX accumulation in tumor tissues. Such tumor-selective PpIX disposition following ALA administration has been exploited for tumor fluorescence diagnosis and photodynamic therapy (PDT) with much success. Five ALA-based drugs have now received worldwide approval and are being used for managing very common human (pre)cancerous diseases such as actinic keratosis and basal cell carcinoma or guiding the surgery of bladder cancer and high-grade gliomas, making it the most successful drug discovery and development endeavor in PDT and photodiagnosis. The potential of ALA-induced PpIX as a fluorescent theranostic agent is, however, yet to be fully fulfilled. In this review, we would like to describe the heme biosynthesis pathway in which PpIX is produced from ALA and its derivatives, summarize current clinical applications of ALA-based drugs, and discuss strategies for enhancing ALA-induced PpIX fluorescence and PDT response. Our goal is two-fold: to highlight the successes of ALA-based drugs in clinical practice, and to stimulate the multidisciplinary collaboration that has brought the current success and will continue to usher in more landmark advances.
Collapse
Affiliation(s)
- Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
| | - Sharayu Chandratre
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Marois M, Olson JD, Wirth DJ, Elliott JT, Fan X, Davis SC, Paulsen KD, Roberts DW. A birefringent spectral demultiplexer enables fast hyper-spectral imaging of protoporphyrin IX during neurosurgery. Commun Biol 2023; 6:341. [PMID: 36991092 PMCID: PMC10060426 DOI: 10.1038/s42003-023-04701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Hyperspectral imaging and spectral analysis quantifies fluorophore concentration during fluorescence-guided surgery1-6. However, acquisition of the multiple wavelengths required to implement these methods can be time-consuming and hinder surgical workflow. To this end, a snapshot hyperspectral imaging system capable of acquiring 64 channels of spectral data simultaneously was developed for rapid hyperspectral imaging during neurosurgery. The system uses a birefringent spectral demultiplexer to split incoming light and redirect wavelengths to different sections of a large format microscope sensor. Its configuration achieves high optical throughput, accepts unpolarized input light and exceeds channel count of prior image-replicating imaging spectrometers by 4-fold. Tissue-simulating phantoms consisting of serial dilutions of the fluorescent agent characterize system linearity and sensitivity, and comparisons to performance of a liquid crystal tunable filter based hyperspectral imaging device are favorable. The new instrument showed comparable, if not improved, sensitivity at low fluorophore concentrations; yet, acquired wide-field images at more than 70-fold increase in frame rate. Image data acquired in the operating room during human brain tumor resection confirm these findings. The new device is an important advance in achieving real-time quantitative imaging of fluorophore concentration for guiding surgery.
Collapse
Affiliation(s)
- Mikael Marois
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jonathan D Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Dennis J Wirth
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Jonathan T Elliott
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Dartmouth-Health, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Xiaoyao Fan
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Scott C Davis
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| | - David W Roberts
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Dartmouth-Health, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
19
|
Walke A, Black D, Valdes PA, Stummer W, König S, Suero-Molina E. Challenges in, and recommendations for, hyperspectral imaging in ex vivo malignant glioma biopsy measurements. Sci Rep 2023; 13:3829. [PMID: 36882505 PMCID: PMC9992662 DOI: 10.1038/s41598-023-30680-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
The visualization of protoporphyrin IX (PPIX) fluorescence with the help of surgical microscopes during 5-aminolevulinic acid-mediated fluorescence-guided resection (FGR) of gliomas is still limited at the tumor margins. Hyperspectral imaging (HI) detects PPIX more sensitively but is not yet ready for intraoperative use. We illustrate the current status with three experiments and summarize our own experience using HI: (1) assessment of HI analysis algorithm using pig brain tissue, (2) a partially retrospective evaluation of our experience from HI projects, and (3) device comparison of surgical microscopy and HI. In (1), we address the problem that current algorithms for evaluating HI data are based on calibration with liquid phantoms, which have limitations. Their pH is low compared to glioma tissue; they provide only one PPIX photo state and only PPIX as fluorophore. Testing the HI algorithm with brain homogenates, we found proper correction for optical properties but not pH. Considerably more PPIX was measured at pH 9 than at pH 5. In (2), we indicate pitfalls and guide HI application. In (3), we found HI superior to the microscope for biopsy diagnosis (AUC = 0.845 ± 0.024 (cut-off 0.75 µg PPIX/ml) vs. 0.710 ± 0.035). HI thus offers potential for improved FGR.
Collapse
Affiliation(s)
- Anna Walke
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.,Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - David Black
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
| | - Pablo A Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Eric Suero-Molina
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
| |
Collapse
|
20
|
Giantini-Larsen AM, Kharas N, Pisapia D, Schwartz TH. Histology of high-grade glioma samples resected using 5-ALA fluorescent headlight and loupe combination. Acta Neurochir (Wien) 2023; 165:567-575. [PMID: 36656388 DOI: 10.1007/s00701-023-05496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
PURPOSE 5-Aminolevulinic acid (5-ALA) fluorescence-guided resection of high-grade gliomas (HGG) increases the extent of resection (EOR) and progression-free survival. The headlamp/loupe combination has been introduced as a method of performing fluorescent-guided surgery. This study aims to understand the correlation between fluorescent intensity and histology and between residual fluorescence and radiographic EOR utilizing the headlamp/loupe device. METHODS Intraoperative samples resected using the headlamp/loupe device from 14 patients were labeled as PINK, VAGUE, or NEGATIVE depending on the degree of fluorescence. Histological assessment of microvascular proliferation, necrosis, and cell density was performed, and samples were classified as histologically consistent with glioblastoma (GBM), high-grade infiltrating glioma (HGIG), IG, or non-diagnostic (NDX). The presence of intraoperative residual fluorescence was compared to EOR on post-operative MRI. RESULTS There was a significant difference in cell density comparing PINK, VAGUE, and NEGATIVE specimens (ANOVA, p < 0.00001). The PPV of PINK for GBM or HGIG was 88.4% (38/43). The NPV of NEGATIVE for IG or NDX was 74.4% (29/39). The relationship between the degree of fluorescence determination and histological results was significant (X2 (6 degrees of freedom, N = 101) = 42.57, p < 0.00001). The PPV of intraoperative GTR for post-operative GTR on MRI was 100%, while the NPV of intraoperative STR for post-operative STR on MRI was 60%. CONCLUSION The headlamp/loupe device provides information about histology, cell density, and necrosis with similar PPV for tumor to the operative microscope. Safe complete resection of florescence has a PPV of 100% for radiographic GTR and should be the goal of surgery.
Collapse
Affiliation(s)
- Alexandra M Giantini-Larsen
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA
| | - Natasha Kharas
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA
| | - David Pisapia
- Department of Pathology, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA. .,Department of Neurosurgery, New York-Presbyterian Hospital, 525 East 68th Street, Box #99, New York, NY, 10065, USA.
| |
Collapse
|
21
|
Tirgar F, Azizi Z, Hosseindoost S, Hadjighassem M. Preclinical gene therapy in glioblastoma multiforme: Using olfactory ensheathing cells containing a suicide gene. Life Sci 2022; 311:121132. [DOI: 10.1016/j.lfs.2022.121132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
|
22
|
Bartusik-Aebisher D, Żołyniak A, Barnaś E, Machorowska-Pieniążek A, Oleś P, Kawczyk-Krupka A, Aebisher D. The Use of Photodynamic Therapy in the Treatment of Brain Tumors-A Review of the Literature. Molecules 2022; 27:molecules27206847. [PMID: 36296440 PMCID: PMC9607067 DOI: 10.3390/molecules27206847] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
The treatment of neoplastic disease of the brain is still a challenge for modern medicine. Therefore, advanced methodologies are needed that can rationally and successfully contribute to the early diagnosis of primary and metastatic tumors growing within the brain. Photodynamic therapy (PDT) seems to be a valuable method of treatment for precancerous and cancerous lesions including brain tumors. The main advantage of PDT is its high efficiency, minimal invasiveness and no serious side effects, compared with chemotherapy and radiotherapy. This review was conducted through a comprehensive search of articles, scientific information databases and the websites of organizations dealing with cancer treatment. Key points from clinical trials conducted by other researchers are also discussed. The common databases such as PubMed, Google Scholar, EBSCO, Scopus, and Elsevier were used. Articles in the English language of reliable credibility were mainly analyzed. The type of publications considered included clinical and preclinical studies, systematic reviews, and case reports. Based on these collected materials, we see that scientists have already demonstrated the potential of PDT application in the field of brain tumors. Therefore, in this review, the treatment of neoplasm of the Central Nervous System (CNS) and the most common tumor, glioblastoma multiforme (GBM), have been explored. In addition, an overview of the general principles of PDT, as well as the mechanism of action of the therapy as a therapeutic platform for brain tumors, is described. The research was carried out in June 2022.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, Rzeszów University, 35-959 Rzeszów, Poland
- Correspondence: (D.B.-A.); (A.Ż.); (A.K.-K.)
| | - Aleksandra Żołyniak
- Students Biochemistry Science Club, Medical College of The University of Rzeszów, Rzeszów University, Kopisto 2a, 35-959 Rzeszów, Poland
- Correspondence: (D.B.-A.); (A.Ż.); (A.K.-K.)
| | - Edyta Barnaś
- Institute of Health Sciences, Medical College of The University of Rzeszów, Rzeszów University, Kopisto 2a, 35-959 Rzeszów, Poland
| | - Agnieszka Machorowska-Pieniążek
- Department of Orthodontics, Division of Medical Sciences in Zabrze, Medical University of Silesia, 15 Poniatowskiego Street, 40-055 Katowice, Poland
| | - Piotr Oleś
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
- Correspondence: (D.B.-A.); (A.Ż.); (A.K.-K.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, Rzeszów University, 35-959 Rzeszów, Poland
| |
Collapse
|
23
|
Suero Molina E, Black D, Kaneko S, Müther M, Stummer W. Double dose of 5-aminolevulinic acid and its effect on protoporphyrin IX accumulation in low-grade glioma. J Neurosurg 2022; 137:943-952. [PMID: 35213830 DOI: 10.3171/2021.12.jns211724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/20/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Administration of 5-aminolevulinic acid (5-ALA) does not regularly elicit fluorescence in low-grade glioma (LGG) at currently established doses and timing of administration. One explanation may be differences in blood-brain barrier (BBB) integrity compared to high-grade glioma. The authors hypothesized that for a BBB semipermeable to 5-ALA there might be a relationship between plasma 5-ALA concentration and its movement into the brain. A higher dose would elicit more 5-ALA conversion into protoporphyrin IX (PPIX). The authors present a case series of patients harboring LGG who received higher doses of 5-ALA. METHODS Patients undergoing surgery for indeterminate glioma later diagnosed as LGG were included in this study. 5-ALA was administered at a standard dose of 20 mg/kg body weight (bw) 4 hours prior to induction of anesthesia. A subgroup of patients received a higher dose of 40 mg/kg bw. Fluorescence was evaluated visually and PPIX concentration (cPPIX) was determined ex vivo by hyperspectral measurements in freshly extracted tissue. All adverse events were recorded. RESULTS A total of 23 patients harboring diffuse low-grade astrocytomas (n = 19) and oligodendrogliomas (n = 4) were analyzed. Thirteen patients received 20 mg/kg bw, and 10 patients received 40 mg/kg bw of 5-ALA. In the 20 mg/kg group, 30.8% (4 of 13) of tumors harbored areas of visible fluorescence, compared to 60% of cases (n = 6 of 10) with 40 mg/kg bw. The threshold to visibility was 1 μg/ml in both groups. Measured over all biopsies, the mean cPPIX was significantly higher in the double-dose group (1.8 vs 0.45 μg/ml; p < 0.001). In non-visibly fluorescent tissue the mean cPPIX was 0.146 μg/ml in the 20 mg/kg and 0.347 μg/ml in the 40 mg/kg group, indicating an increase of 138% (p < 0.001). CONCLUSIONS These observations demonstrate different regions with different levels of PPIX accumulation in LGG. With higher 5-ALA doses cPPIX increases, leading to more regions surpassing the visibility threshold of 1 μg/ml. These observations can be explained by the fact that the BBB in LGG is semipermeable to 5-ALA. Higher 5-ALA doses result in more PPIX conversion, an observation with implications for future dosing in LGG.
Collapse
Affiliation(s)
| | - David Black
- 2Carl Zeiss Meditec AG, Oberkochen, Germany
- 3Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Sadahiro Kaneko
- 1Department of Neurosurgery, University Hospital of Münster
- 4Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Michael Müther
- 1Department of Neurosurgery, University Hospital of Münster
| | - Walter Stummer
- 1Department of Neurosurgery, University Hospital of Münster
| |
Collapse
|
24
|
5-Aminolevulinic acid fluorescence in brain non-neoplastic lesions: a systematic review and case series. Neurosurg Rev 2022; 45:3139-3148. [PMID: 35972631 DOI: 10.1007/s10143-022-01843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) is used to assist brain tumor resection, especially for high-grade gliomas but also for low-grade gliomas, metastasis, and meningiomas. With the increasing use of this technique, even to assist biopsies, high-grade glioma-mimicking lesions had misled diagnosis by showing 5-ALA fluorescence in non-neoplastic lesions such as radiation necrosis and inflammatory or infectious disease. Since only isolated reports have been published, we systematically review papers reporting non-neoplastic lesion cases with 5-ALA according with the PRISMA guidelines, present our series, and discuss its pathophysiology. In total, 245 articles were identified and 12 were extracted according to our inclusion criteria. Analyzing 27 patients, high-grade glioma was postulated as preoperative diagnosis in 48% of the cases. Microsurgical resection was performed in 19 cases (70%), while 8 patients were submitted to biopsy (30%). We found 4 positive cases in demyelinating disease (50%), 4 in brain abscess (80%), 1 in neurocysticercosis (33%), 1 in neurotoxoplasmosis, infarction, and hematoma (100%), 4 in inflammatory disease (80%), and 3 in cortical dysplasia (100%). New indications are being considered especially in benign lesion biopsies with assistance of 5-ALA. Using fluorescence as an aid in biopsies may improve procedure time, number of samples, and necessity of intraoperative pathology. Further studies should include this technology to encourage more beneficial uses.
Collapse
|
25
|
Suero Molina E, Hellwig SJ, Walke A, Jeibmann A, Stepp H, Stummer W. Development and validation of a triple-LED surgical loupe device for fluorescence-guided resections with 5-ALA. J Neurosurg 2022; 137:582-590. [PMID: 34972076 DOI: 10.3171/2021.10.jns211911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/14/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Fluorescence-guided resections performed using 5-aminolevulinic acid (5-ALA) have been studied extensively using the BLUE400 system. The authors introduce a triple-light-emitting diode (LED) headlight/loupe device for visualizing fluorescence, and compare this to the BLUE400 gold standard in order to assure similar and not more or less sensitive protoporphyrin-IX visualization. METHODS The authors defined the spectral requirements for a triple-LED headlight/loupe device for reproducing the xenon-based BLUE400 module. The system consisted of a white LED (normal surgery), a 409-nm LED for excitation, a 450-nm LED for background illumination, and appropriate observation filters. The prototype's excitation and emission spectra, illumination and detection intensities, and spot homogeneity were determined. The authors further performed a prospectively randomized and blinded study for fluorescence assessments of fresh, marginal, fluorescing and nonfluorescing tumor samples comparing the LED/loupe device with BLUE400 in patients with malignant glioma treated with 20 mg/kg body weight 5-ALA. Tumor samples were immediately assessed in turn, both with a Kinevo and with a novel triple-LED/loupe device by different surgeons. RESULTS Seven triple-LED/loupe devices were analyzed. Illumination intensities in the 409- and 450-nm range were comparable to BLUE400, with high spot homogeneity. Fluorescence intensities measured distally to microscope oculars/loupes were 9.9-fold higher with the loupe device. For validation 26 patients with malignant gliomas with 240 biopsies were analyzed. With BLUE400 results as the reference, sensitivity for reproducing fluorescence findings was 100%, specificity was 95%, positive predictive value was 98%, negative predictive value was 100%, and accuracy was 95%. This study reached its primary aim, with agreement in 226 of 240 (94.2%, 95% CI 0.904-0.968). CONCLUSIONS The authors observed only minor differences regarding spectra and illumination intensities during evaluation. Fluorescence intensities available to surgeons were 9.9-fold higher with the loupe device. Importantly, the independent perception of fluorescence achieved using the new system and BLUE400 was statistically equivalent. The authors believe the triple-LED/loupe device to be a useful and safe option for surgeons who prefer loupes to the microscope for resections in appropriate patients.
Collapse
Affiliation(s)
| | | | - Anna Walke
- 1Department of Neurosurgery, University Hospital of Münster
- 2Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster
| | - Astrid Jeibmann
- 3Institute of Neuropathology, University Hospital of Münster; and
| | - Herbert Stepp
- 4Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Germany
| | - Walter Stummer
- 1Department of Neurosurgery, University Hospital of Münster
| |
Collapse
|
26
|
Lehtonen SJR, Vrzakova H, Paterno JJ, Puustinen S, Bednarik R, Hauta-Kasari M, Haneishi H, Immonen A, Jääskeläinen JE, Kämäräinen OP, Elomaa AP. Detection improvement of gliomas in hyperspectral imaging of protoporphyrin IX fluorescence - in vitro comparison of visual identification and machine thresholds. Cancer Treat Res Commun 2022; 32:100615. [PMID: 35905671 DOI: 10.1016/j.ctarc.2022.100615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND 5-aminolevulinic acid (5-ALA) - precursor of protoporphyrin IX (PpIX) - is utilized in fluorescence guided surgery (FGS) of high-grade gliomas. PpIX is used to identify traces of glioma during resection. Visual inspection of the fluorescence seems inaccurate in comparison to optic techniques such as hyperspectral imaging (HSI). AIM To characterize the limits of PpIX fluorescence detection of (i) visual evaluation and (ii) HSI analysis and to (iii) develop a classification system for visible and non-visible PpIX fluorescence. METHODS Samples with increasing concentrations (C) of PpIX and non-fluorescent controls were evaluated using a surgical microscope under blue light illumination. Similar samples were imaged with a HSI system tuned to PpIX fluorescence peak wavelength (635 nm) and control (RGB) channels. Samples' intensities were defined, leading to 96 analysed pixels after batching. RESULTS Three expert neurosurgeons assessed the PpIX samples (n = 16) and controls (n = 8) with unanimous decisions (ICC = 0.704), resulting in 63% recognition rate, 48% sensitivity, 92% specificity, 92% positive predictive value (PPV) and 47% negative predictive value (NPV). HSI image analysis, comparing mean relative values, resulted in 96%, 100%, 86%, 94%, 100%, respectively. Minimum PpIX concentration detection for experts was 0.6-1.8 μmol/l and HSI's 0.03-0.15 μmol/l. CONCLUSIONS PpIX concentrations of low-grade gliomas, and those reported on glioblastoma infiltration zones, are below experts' detection threshold. HSI analysis exceeds the performance of expert's visual inspection nearly by 20-fold. Hybrid FGS-HSI systems should be investigated in parallel to long-term outcomes. Described methods are applicable as a standard for calibration, testing and development of subvisual FGS techniques.
Collapse
Affiliation(s)
- Samu J R Lehtonen
- Neurosurgery Clinical Research Unit, Institute of Clinical Sciences, School of Medicine, Faculty of Health Sciences, UEF University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland; Microneurosurgery Photonics Research Group of The Microsurgery Center of Eastern Finland, Neurosurgery of Neurocenter, KUH Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland.
| | - Hana Vrzakova
- Microneurosurgery Photonics Research Group of The Microsurgery Center of Eastern Finland, Neurosurgery of Neurocenter, KUH Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland; School of Computing, UEF University of Eastern Finland, Länsikatu 15, 80110 Joensuu, Finland; Institute of Photonics, UEF University of Eastern Finland, Länsikatu 15, 80110 Joensuu, Finland
| | - Jussi J Paterno
- Ophthalmology Clinical Research Unit, Institute of Clinical Sciences, School of Medicine, Faculty of Health Sciences, UEF University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
| | - Sami Puustinen
- Neurosurgery Clinical Research Unit, Institute of Clinical Sciences, School of Medicine, Faculty of Health Sciences, UEF University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland; Microneurosurgery Photonics Research Group of The Microsurgery Center of Eastern Finland, Neurosurgery of Neurocenter, KUH Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | - Roman Bednarik
- School of Computing, UEF University of Eastern Finland, Länsikatu 15, 80110 Joensuu, Finland; Institute of Photonics, UEF University of Eastern Finland, Länsikatu 15, 80110 Joensuu, Finland
| | - Markku Hauta-Kasari
- School of Computing, UEF University of Eastern Finland, Länsikatu 15, 80110 Joensuu, Finland; Institute of Photonics, UEF University of Eastern Finland, Länsikatu 15, 80110 Joensuu, Finland
| | - Hideaki Haneishi
- Center for Frontier Medical Engineering (CFME), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Arto Immonen
- Neurosurgery Clinical Research Unit, Institute of Clinical Sciences, School of Medicine, Faculty of Health Sciences, UEF University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland; Microneurosurgery Photonics Research Group of The Microsurgery Center of Eastern Finland, Neurosurgery of Neurocenter, KUH Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland; Eastern Finland Neuro-Oncology Group, Neurosurgery of Neurocenter, KUH Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | - Juha E Jääskeläinen
- Neurosurgery Clinical Research Unit, Institute of Clinical Sciences, School of Medicine, Faculty of Health Sciences, UEF University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland; Microneurosurgery Photonics Research Group of The Microsurgery Center of Eastern Finland, Neurosurgery of Neurocenter, KUH Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland; Eastern Finland Neuro-Oncology Group, Neurosurgery of Neurocenter, KUH Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | - Olli-Pekka Kämäräinen
- Neurosurgery Clinical Research Unit, Institute of Clinical Sciences, School of Medicine, Faculty of Health Sciences, UEF University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland; Microneurosurgery Photonics Research Group of The Microsurgery Center of Eastern Finland, Neurosurgery of Neurocenter, KUH Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland; Eastern Finland Neuro-Oncology Group, Neurosurgery of Neurocenter, KUH Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | - Antti-Pekka Elomaa
- Neurosurgery Clinical Research Unit, Institute of Clinical Sciences, School of Medicine, Faculty of Health Sciences, UEF University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland; Microneurosurgery Photonics Research Group of The Microsurgery Center of Eastern Finland, Neurosurgery of Neurocenter, KUH Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland; Eastern Finland Neuro-Oncology Group, Neurosurgery of Neurocenter, KUH Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| |
Collapse
|
27
|
Freymüller C, Ströbl S, Aumiller M, Eisel M, Sroka R, Rühm A. Development of a microstructured tissue phantom with adaptable optical properties for use with microscopes and fluorescence lifetime imaging systems. Lasers Surg Med 2022; 54:1010-1026. [PMID: 35753039 DOI: 10.1002/lsm.23556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVES For the development and validation of diagnostic procedures based on microscopic methods, knowledge about the imaging depth and achievable resolution in tissue is crucial. This poses the challenge to develop a microscopic artificial phantom focused on the microscopic instead of the macroscopic optical tissue characteristics. METHODS As existing artificial tissue phantoms designed for image forming systems are primarily targeted at wide field applications, they are unsuited for reaching the formulated objective. Therefore, a microscopy- and microendoscopy-suited artificial tissue phantom was developed and characterized. It is based on a microstructured glass surface coated with fluorescent beads at known depths covered by a scattering agent with modifiable optical properties. The phantom was examined with different kinds of microscopy systems in order to characterize its quality and stability and to demonstrate its usefulness for instrument comparison, for example, regarding structural as well as fluorescence lifetime analysis. RESULTS The analysis of the manufactured microstructured glass surfaces showed high regularity in their physical dimensions in accordance with the specifications. Measurements of the optical parameters of the scattering medium were consistent with simulations. The fluorescent beads coating proved to be stable for a respectable period of time (about a week). The developed artificial tissue phantom was successfully used to detect differences in image quality between a research microscope and an endoscopy based system. Plausible causes for the observed differences could be derived based on the well known microstructure of the phantom. CONCLUSIONS The artificial tissue phantom is well suited for the intended use with microscopic and microendoscopic systems. Due to its configurable design, it can be adapted to a wide range of applications. It is especially targeted at the characterization and calibration of clinical imaging systems that often lack extensive positioning capabilities such as an intrinsic z-stage.
Collapse
Affiliation(s)
- Christian Freymüller
- Laser-Forschungslabor, LIFE Center, Department of Urology, University Hospital, LMU Munich, Munich, Germany.,Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Stephan Ströbl
- Laser-Forschungslabor, LIFE Center, Department of Urology, University Hospital, LMU Munich, Munich, Germany.,Department of Urology, University Hospital, LMU Munich, Munich, Germany.,Research Center for Microtechnology, FH Vorarlberg, Dornbirn, Vorarlberg, Austria
| | - Maximilian Aumiller
- Laser-Forschungslabor, LIFE Center, Department of Urology, University Hospital, LMU Munich, Munich, Germany.,Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Eisel
- Laser-Forschungslabor, LIFE Center, Department of Urology, University Hospital, LMU Munich, Munich, Germany.,Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, Department of Urology, University Hospital, LMU Munich, Munich, Germany.,Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Adrian Rühm
- Laser-Forschungslabor, LIFE Center, Department of Urology, University Hospital, LMU Munich, Munich, Germany.,Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
28
|
Muto J, Mine Y, Nishiyama Y, Murayama K, Yamada S, Kojima D, Hayakawa M, Adachi K, Hasegawa M, Lee JYK, Hirose Y. Intraoperative Real-Time Near-Infrared Image-Guided Surgery to Identify Intracranial Meningiomas via Microscope. Front Neurosci 2022; 16:837349. [PMID: 35600609 PMCID: PMC9114498 DOI: 10.3389/fnins.2022.837349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
Meningiomas are a common pathology in the central nervous system requiring complete surgical resection. However, in cases of recurrence and post-irradiation, accurate identification of tumor remnants and a dural tail under bright light remains challenging. We aimed to perform real-time intraoperative visualization of the meningioma and dural tail using a delayed-window indocyanine green (ICG) technique with microscopy. Fifteen patients with intracranial meningioma received 0.5 mg/kg ICG a few hours before observation during the surgery. We used near-infrared (NIR) fluorescence to identify the tumor location. NIR fluorescence could visualize meningiomas in 12 out of 15 cases. Near-infrared visualization during the surgery ranged from 1 to 4 h after the administration of ICG. The mean signal-to-background ratio (SBR) of the intracranial meningioma in delayed-window ICG (DWIG) was 3.3 ± 2.6. The ratio of gadolinium-enhanced T1 tumor signal to the brain (T1BR) (2.5 ± 0.9) was significantly correlated with the tumor SBR (p = 0.016). Ktrans, indicating blood–brain barrier permeability, was significantly correlated with tumor SBR (p < 0.0001) and T1BR (p = 0.013) on dynamic contrast-enhanced magnetic resonance imaging (MRI). DWIG demonstrated a sensitivity of 94%, specificity of 38%, positive predictive value (PPV) of 76%, and negative predictive value (NPV) of 75% for meningiomas. This is the first pilot study in which DWIG fluorescence-guided surgery was used to visualize meningioma and dural tail intraoperatively with microscopy. DWIG is comparable with second-window ICG in terms of mean SBR. Gadolinium-enhanced T1 tumor signal may predict NIR fluorescence of the intracranial meningioma. Blood–brain barrier permeability as shown by Ktrans on dynamic contrast-enhanced MRI can contribute to gadolinium enhancement on MRI and to ICG retention and tumor fluorescence by NIR.
Collapse
Affiliation(s)
- Jun Muto
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
- *Correspondence: Jun Muto,
| | - Yutaka Mine
- Department of Neurosurgery, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Yuya Nishiyama
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | | | - Seiji Yamada
- Department of Pathology, Fujita Health University, Toyoake, Japan
| | - Daijiro Kojima
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | - Motoharu Hayakawa
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | - Kazuhide Adachi
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| | | | - John Y. K. Lee
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Health University, Toyoake, Japan
| |
Collapse
|
29
|
Does pigmentation, hemosiderin and blood affect visible 5-ALA fluorescence in cerebral melanoma metastasis? Photodiagnosis Photodyn Ther 2022; 39:102864. [DOI: 10.1016/j.pdpdt.2022.102864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022]
|
30
|
Mazurek M, Szczepanek D, Orzyłowska A, Rola R. Analysis of Factors Affecting 5-ALA Fluorescence Intensity in Visualizing Glial Tumor Cells-Literature Review. Int J Mol Sci 2022; 23:ijms23020926. [PMID: 35055109 PMCID: PMC8779265 DOI: 10.3390/ijms23020926] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Glial tumors are one of the most common lesions of the central nervous system. Despite the implementation of appropriate treatment, the prognosis is not successful. As shown in the literature, maximal tumor resection is a key element in improving therapeutic outcome. One of the methods to achieve it is the use of fluorescent intraoperative navigation with 5-aminolevulinic acid. Unfortunately, often the level of fluorescence emitted is not satisfactory, resulting in difficulties in the course of surgery. This article summarizes currently available knowledge regarding differences in the level of emitted fluorescence. It may depend on both the histological type and the genetic profile of the tumor, which is reflected in the activity and expression of enzymes involved in the intracellular metabolism of fluorescent dyes, such as PBGD, FECH, UROS, and ALAS. The transport of 5-aminolevulinic acid and its metabolites across the blood–brain barrier and cell membranes mediated by transporters, such as ABCB6 and ABCG2, is also important. Accompanying therapies, such as antiepileptic drugs or steroids, also have an impact on light emission by tumor cells. Accurate determination of the factors influencing the fluorescence of 5-aminolevulinic acid-treated cells may contribute to the improvement of fluorescence navigation in patients with highly malignant gliomas.
Collapse
|
31
|
Tucker M, Lacayo M, Joseph S, Ross W, Chongsathidkiet P, Fecci P, Codd PJ. Creation of Non-Contact Device for Use in Metastatic Melanoma Margin Identification in ex vivo Mouse Brain. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 11945:1194507. [PMID: 35619993 PMCID: PMC9131976 DOI: 10.1117/12.2608975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Because contemporary intraoperative tumor detection modalities, such as intraoperative MRI, are not ubiquitously available and can disrupt surgical workflow, there is an imperative for an accessible diagnostic device that can meet the surgeon's needs in identifying tissue types. The objective of this paper is to determine the efficacy of a novel non-contact tumor detection device for metastatic melanoma boundary identification in a tissue-mimicking phantom, evaluate the identification of metastatic melanoma boundaries in ex vivo mouse brain tissue, and find the error associated with identifying this boundary. To validate the spatial and fluorescence resolution of the device, tissue-mimicking phantoms were created with modifiable optical properties. Phantom tissue provided ground truth measurements for fluorophore concentration differences with respect to spatial dimensions. Modeling metastatic disease, ex vivo melanoma brain metastases were evaluated to detect differences in fluorescence between healthy and neoplastic tissue. This analysis includes determining required-to-observe fluorescence differences in tissue. H&E staining confirmed tumor presence in mouse tissue samples. The device detected a difference in normalized average fluorescence intensity in all three phantoms. There were differences in fluorescence with the presence and absence of melanin. The estimated tumor boundary of all tissue phantoms was within 0.30 mm of the ground truth tumor boundary for all boundaries. Likewise, when applied to the melanoma-bearing brains from ex vivo mice, a difference in normalized fluorescence intensity was successfully detected. The potential prediction window for the tumor boundary location is less than 1.5 mm for all ex vivo mouse brain tumors boundaries. We present a non-contact, laser-induced fluorescence device that can identify tumor boundaries based on changes in laser-induced fluorescence emission intensity. The device can identify phantom ground truth tumor boundaries within 0.30 mm using instantaneous rate of change of normalized fluorescence emission intensity and can detect endogenous fluorescence differences in melanoma brain metastases in ex vivo mouse tissue.
Collapse
Affiliation(s)
- Matthew Tucker
- Duke University, Department of Mechanical Engineering and Materials Science, Durham, NC, USA
| | - Matthew Lacayo
- Duke University School of Medicine, Department of Neurosurgery, Durham, NC, USA
| | | | - Weston Ross
- Duke University, Department of Mechanical Engineering and Materials Science, Durham, NC, USA
- Duke University School of Medicine, Department of Neurosurgery, Durham, NC, USA
| | | | - Peter Fecci
- Duke University School of Medicine, Department of Neurosurgery, Durham, NC, USA
| | - Patrick J Codd
- Duke University, Department of Mechanical Engineering and Materials Science, Durham, NC, USA
- Duke University School of Medicine, Department of Neurosurgery, Durham, NC, USA
| |
Collapse
|
32
|
Giantini Larsen AM, Parker WE, Cho SS, Goldberg JL, Carnevale JA, Michael AP, Teng CW, De Ravin E, Brennan CW, Lee JYK, Schwartz TH. The Evolution of 5-Aminolevulinic Acid Fluorescence Visualization: Time for a Headlamp/Loupe Combination. World Neurosurg 2021; 159:136-143. [PMID: 34971836 DOI: 10.1016/j.wneu.2021.12.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The use of 5-ALA for intraoperative protoporphyrin IX (PpIX) fluorescent imaging in the resection of malignant gliomas has been demonstrated to improve tumor visualization, increase extent of resection, and extend progression-free survival. The current technique for visualization of 5-ALA consists of excitation and emission filters built into the operating microscope. However, there are notable limitations to this process, including low quantum yield, expense, and masking of surrounding anatomy. METHODS We present three cases in which three separate methods were employed for visualizing fluorescence. The devices reported are 1) a low-cost blue light flashlight and 2) a low-cost headlamp, and 3) the first reported case of the new Design for Vision® REVEAL™ FGS (Fluorescence Guided Surgery) 5-ALA fluorescent headlight and loupes. The aim of the study is to provide confirmation that tumor fluorescence can be observed using commercially-available products other than the microscope. RESULTS We demonstrate through three intraoperative cases that a variety of devices can produce visible fluorescence of the high-grade tumor and allow for simultaneous real-time visualization of the adjacent brain parenchyma and vasculature. The REVEAL™ FGS system appears to offer increased fluorescence emission compared to all other methods, including the microscope. CONCLUSIONS Our study demonstrates the feasibility of using blue/ultraviolet light supplied by a commercially available, inexpensive flashlight or headlamp to visualize 5-ALA fluorescence in high-grade gliomas. We also provide the first documentation of intraoperative use of the new Design for Vision® REVEAL™ FGS 5-ALA fluorescent headlight and loupes and report on the experience. Lack of an operative microscope capable of fluorescent illumination should not be a limiting factor in performing fluorescent-guided glioma resection.
Collapse
Affiliation(s)
- Alexandra M Giantini Larsen
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA; Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Whitney E Parker
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA; Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steve S Cho
- Department of Neurological Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA; Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph A Carnevale
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA; Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex P Michael
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA
| | - Clare W Teng
- Department of Neurological Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emma De Ravin
- Department of Neurological Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cameron W Brennan
- Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Y K Lee
- Department of Neurological Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
33
|
Xue Z, Kong L, Hao S, Wang Y, Jia G, Wu Z, Jia W, Zhang J, Zhang L. Combined Application of Sodium Fluorescein and Neuronavigation Techniques in the Resection of Brain Gliomas. Front Neurol 2021; 12:747072. [PMID: 34938258 PMCID: PMC8685407 DOI: 10.3389/fneur.2021.747072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives: To explore the effectiveness and safety of the combined application of sodium fluorescein and neuronavigation techniques in the resection of brain gliomas in different locations and patients of different ages. Methods: Fifty clinical cases of brain gliomas treated at the Department of Neurosurgery of Beijing Tiantan Hospital were collected from March 2014 to March 2019. These cases were divided into a supratentorial group (24 cases) and a brainstem group (26 cases) based on location and an adult group (28 cases) and a pediatric group (22 cases) based on age. Fluorescein-guided surgery was performed: the adult group received 5 mg/kg sodium fluorescein before opening the dura, while the pediatric group received 2.5 mg/kg during resection. Tumor visualization was evaluated by the enhancement of yellow fluorescein and considered “satisfactory” if the illumination demarcated the tumor boundary. Additionally, the consistency between fluorescein and neuronavigation was analyzed. The Karnofsky performance score (KPS) of all patients was recorded and assessed at admission, discharge, and the 6-month follow-up. Results: In the 28 adult cases, 4 were unsatisfactory, while in the 22 pediatric cases, 2 were unsatisfactory; in 7 cases, there was an inconsistency between yellow fluorescein enhancement and neuronavigation, 6 were in the supratentorial group, and 1 was in the brainstem group. Statistical analysis showed no significant differences in the satisfactory rate between the adult and pediatric groups (P = 0.575), whereas there were significant differences inconsistency between the supratentorial group and brainstem group (P = 0.031). The mean KPS at admission was between 70 and 100, which was not significantly different from that at discharge (P = 0.839), but the KPS at the 6-month follow-up was significantly higher than that at admission (P = 0.041). Conclusions: The consistency between sodium fluorescein and the neuronavigation system was higher in the brainstem group than in the supratentorial group; a half dose of sodium fluorescein (2.5 mg/kg) was sufficient for pediatric patients. The combined utilization of sodium fluorescein and neuronavigation techniques may confer glioma patients the opportunity to obtain better clinical outcomes after surgery.
Collapse
Affiliation(s)
- Zhan Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lu Kong
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guijun Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Suero Molina E, Kaneko S, Black D, Stummer W. 5-Aminolevulinic Acid-Induced Porphyrin Contents in Various Brain Tumors: Implications Regarding Imaging Device Design and Their Validation. Neurosurgery 2021; 89:1132-1140. [PMID: 34670277 DOI: 10.1093/neuros/nyab361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/04/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Fluorescence-guided resections using 5-aminolevulinic acid (5-ALA)-induced tumor porphyrins have been established as an adjunct for malignant glioma surgery based on a phase III study using specifically adapted microscopes for visualizing fluorescing protoporphyrin IX (PPIX). New hardware technologies are being introduced, which claim the same performance as the original technology for visualizing fluorescence. This assumes that qualitative fluorescence detection is equivalent to the established standard, an assumption that needs to be critically assessed. OBJECTIVE To determine PPIX concentrations (cPPIX) in tissue that can be detected visually using the established BLUE400 filter system (Carl Zeiss Meditec, Oberkochen, Germany) as a basis for defining the performance of this system. METHODS Utilizing a hyperspectral imaging system, tumor samples from patients harboring different tumor tissues, with or without visible fluorescence, were analyzed. Absolute values of cPPIX were calculated after calibrating the system with fluorescence phantoms with known cPPIX. RESULTS A total of 524 tumor samples from 162 patients were analyzed. Visual fluorescence under the BLUE400 filter was documented by experienced neurosurgeons. A 0.9 μg/ml threshold of cPPIX was defined as the minimal concentration required to detect and discriminate visual fluorescence. CONCLUSION This is the first report providing data on the threshold of cPPIX, which is visually detected using the current generation of microscopes, thus defining the specificity and sensitivity of this technology as initially tested in a randomized trial. Novel technologies should show similar characteristics in order to be used safely and effectively. If more sensitive, such technologies require further assessments of tumor selectivity.
Collapse
Affiliation(s)
- Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Sadahiro Kaneko
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany.,Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - David Black
- Carl Zeiss Meditec AG, Oberkochen, Germany.,University of British Columbia, Vancouver, Canada
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
35
|
Hunt B, Streeter SS, Ruiz AJ, Chapman MS, Pogue BW. Ultracompact fluorescence smartphone attachment using built-in optics for protoporphyrin-IX quantification in skin. BIOMEDICAL OPTICS EXPRESS 2021; 12:6995-7008. [PMID: 34858694 PMCID: PMC8606126 DOI: 10.1364/boe.439342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 05/02/2023]
Abstract
Smartphone-based fluorescence imaging systems have the potential to provide convenient quantitative image guidance at the point of care. However, common approaches have required the addition of complex optical attachments, which reduce translation potential. In this study, a simple clip-on attachment appropriate for fluorescence imaging of protoporphyrin-IX (PpIX) in skin was designed using the built-in light source and ultrawide camera sensor of a smartphone. Software control for image acquisition and quantitative analysis was developed using the 10-bit video capability of the phone. Optical performance was characterized using PpIX in liquid tissue phantoms and endogenously produced PpIX in mice and human skin. The proposed system achieves a very compact form factor (<30 cm3) and can be readily fabricated using widely available low-cost materials. The limit of detection of PpIX in optical phantoms was <10 nM, with good signal linearity from 10 to 1000 nM (R2 >0.99). Both murine and human skin imaging verified that in vivo PpIX fluorescence was detected within 1 hour of applying aminolevulinic acid (ALA) gel. This ultracompact handheld system for quantification of PpIX in skin is well-suited for dermatology clinical workflows. Due to its simplicity and form factor, the proposed system can be readily adapted for use with other smartphone devices and fluorescence imaging applications. Hardware design and software for the system is made freely available on GitHub (https://github.com/optmed/CompactFluorescenceCam).
Collapse
Affiliation(s)
- Brady Hunt
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Samuel S. Streeter
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Alberto J. Ruiz
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - M. Shane Chapman
- Geisel School of Medicine, Department of Dermatology, Hanover, New Hampshire 03755, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
36
|
Wadiura LI, Reichert D, Sperl V, Lang A, Kiesel B, Erkkilae M, Wöhrer A, Furtner J, Roetzer T, Leitgeb R, Mischkulnig M, Widhalm G. Influence of dexamethasone on visible 5-ALA fluorescence and quantitative protoporphyrin IX accumulation measured by fluorescence lifetime imaging in glioblastomas: is pretreatment obligatory before fluorescence-guided surgery? J Neurosurg 2021:1-9. [PMID: 34678775 DOI: 10.3171/2021.6.jns21940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/07/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) is nowadays widely applied for improved resection of glioblastomas (GBMs). Initially, pretreatment with dexamethasone was considered to be essential for optimal fluorescence effect. However, recent studies reported comparably high rates of visible fluorescence in GBMs despite absence of dexamethasone pretreatment. Recently, the authors proposed fluorescence lifetime imaging (FLIM) for the quantitative analysis of 5-ALA-induced protoporphyrin IX (PpIX) accumulation. The aim of this study was thus to investigate the influence of dexamethasone on visible fluorescence and quantitative PpIX accumulation. METHODS The authors prospectively analyzed the presence of visible fluorescence during surgery in a cohort of patients with GBMs. In this study, patients received dexamethasone preoperatively only if clinically indicated. One representative tumor sample was collected from each GBM, and PpIX accumulation was analyzed ex vivo by FLIM. The visible fluorescence status and mean FLIM values were correlated with preoperative intake of dexamethasone. RESULTS In total, two subgroups with (n = 27) and without (n = 20) pretreatment with dexamethasone were analyzed. All patients showed visible fluorescence independent from preoperative dexamethasone intake. Furthermore, the authors did not find a statistically significant difference in the mean FLIM values between patients with and without dexamethasone pretreatment (p = 0.097). CONCLUSIONS In this first study to date, the authors found no significant influence of dexamethasone pretreatment on either visible 5-ALA fluorescence during GBM surgery or PpIX accumulation based on FLIM. According to these preliminary data, the authors recommend administering dexamethasone prior to fluorescence-guided surgery of GBMs only when clinically indicated.
Collapse
Affiliation(s)
- Lisa I Wadiura
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - David Reichert
- 2Center for Medical Physics and Biomedical Engineering.,3Christian Doppler Laboratory OPTRAMED
| | - Veronika Sperl
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Alexandra Lang
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Barbara Kiesel
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | | | - Adelheid Wöhrer
- 4Department of Neurology-Division for Neuropathology and Neurochemistry.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Julia Furtner
- 5Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology; and.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Thomas Roetzer
- 4Department of Neurology-Division for Neuropathology and Neurochemistry.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Rainer Leitgeb
- 2Center for Medical Physics and Biomedical Engineering.,3Christian Doppler Laboratory OPTRAMED
| | - Mario Mischkulnig
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Georg Widhalm
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| |
Collapse
|
37
|
Schupper AJ, Baron RB, Cheung W, Rodriguez J, Kalkanis SN, Chohan MO, Andersen BJ, Chamoun R, Nahed BV, Zacharia BE, Kennedy J, Moulding HD, Zucker L, Chicoine MR, Olson JJ, Jensen RL, Sherman JH, Zhang X, Price G, Fowkes M, Germano IM, Carter BS, Hadjipanayis CG, Yong RL. 5-Aminolevulinic acid for enhanced surgical visualization of high-grade gliomas: a prospective, multicenter study. J Neurosurg 2021:1-10. [PMID: 34624862 DOI: 10.3171/2021.5.jns21310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Greater extent of resection (EOR) is associated with longer overall survival in patients with high-grade gliomas (HGGs). 5-Aminolevulinic acid (5-ALA) can increase EOR by improving intraoperative visualization of contrast-enhancing tumor during fluorescence-guided surgery (FGS). When administered orally, 5-ALA is converted by glioma cells into protoporphyrin IX (PPIX), which fluoresces under blue 400-nm light. 5-ALA has been available for use in Europe since 2010, but only recently gained FDA approval as an intraoperative imaging agent for HGG tissue. In this first-ever, to the authors' knowledge, multicenter 5-ALA FGS study conducted in the United States, the primary objectives were the following: 1) assess the diagnostic accuracy of 5-ALA-induced PPIX fluorescence for HGG histopathology across diverse centers and surgeons; and 2) assess the safety profile of 5-ALA FGS, with particular attention to neurological morbidity. METHODS This single-arm, multicenter, prospective study included adults aged 18-80 years with Karnofsky Performance Status (KPS) score > 60 and an MRI diagnosis of suspected new or recurrent resectable HGG. Intraoperatively, 3-5 samples per tumor were taken and their fluorescence status was recorded by the surgeon. Specimens were submitted for histopathological analysis. Patients were followed for 6 weeks postoperatively for adverse events, changes in the neurological exam, and KPS score. Multivariate analyses were performed of the outcomes of KPS decline, EOR, and residual enhancing tumor volume to identify predictive patient and intraoperative variables. RESULTS Sixty-nine patients underwent 5-ALA FGS, providing 275 tumor samples for analysis. PPIX fluorescence had a sensitivity of 96.5%, specificity of 29.4%, positive predictive value (PPV) for HGG histopathology of 95.4%, and diagnostic accuracy of 92.4%. Drug-related adverse events occurred at a rate of 22%. Serious adverse events due to intraoperative neurological injury, which may have resulted from FGS, occurred at a rate of 4.3%. There were 2 deaths unrelated to FGS. Compared to preoperative KPS scores, postoperative KPS scores were significantly lower at 48 hours and 2 weeks but were not different at 6 weeks postoperatively. Complete resection of enhancing tumor occurred in 51.9% of patients. Smaller preoperative tumor volume and use of intraoperative MRI predicted lower residual tumor volume. CONCLUSIONS PPIX fluorescence, as judged by the surgeon, has a high sensitivity and PPV for HGG. 5-ALA was well tolerated in terms of drug-related adverse events, and its application by trained surgeons in FGS for HGGs was not associated with any excess neurological morbidity.
Collapse
Affiliation(s)
- Alexander J Schupper
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Rebecca B Baron
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - William Cheung
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Jessica Rodriguez
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Steven N Kalkanis
- 2Department of Neurological Surgery, Henry Ford Medical Center, Detroit, Michigan
| | - Muhammad O Chohan
- 3Department of Neurological Surgery, University of New Mexico Hospital, Albuquerque, New Mexico
| | - Bruce J Andersen
- 4Department of Neurological Surgery, St. Alphonsus Regional Medical Center, Boise, Idaho
| | - Roukoz Chamoun
- 5Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Brian V Nahed
- 6Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Brad E Zacharia
- 7Department of Neurological Surgery, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | | | - Hugh D Moulding
- 9Department of Neurological Surgery, St. Luke's University Health Network, Bethlehem, Pennsylvania
| | - Lloyd Zucker
- 10Department of Neurological Surgery, Delray Medical Center, Delray Beach, Florida
| | - Michael R Chicoine
- 11Department of Neurological Surgery, Barnes-Jewish Hospital, St. Louis, Missouri
| | - Jeffrey J Olson
- 12Department of Neurological Surgery, Emory University Hospital, Atlanta, Georgia
| | - Randy L Jensen
- 13Department of Neurological Surgery, Huntsman Cancer Institute, Salt Lake City, Utah; and
| | - Jonathan H Sherman
- 14Department of Neurological Surgery, George Washington University Hospital, Washington, DC
| | - Xiangnan Zhang
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Gabrielle Price
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Mary Fowkes
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Isabelle M Germano
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Bob S Carter
- 6Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Raymund L Yong
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| |
Collapse
|
38
|
Characterization of autofluorescence and quantitative protoporphyrin IX biomarkers for optical spectroscopy-guided glioma surgery. Sci Rep 2021; 11:20009. [PMID: 34625597 PMCID: PMC8501114 DOI: 10.1038/s41598-021-99228-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/14/2021] [Indexed: 01/04/2023] Open
Abstract
5-Aminolevulinic acid (5-ALA)-mediated fluorescence does not effectively depict low grade gliomas (LGG) or the infiltrative tumor portion of high-grade gliomas (HGG). While spectroscopy improves sensitivity and precision, this is currently limited by autofluorescence and a second protoporphyrin IX (PpIX) fluorescence state at 620 nm. We investigated the autofluorescence to better characterize the present spectra and thus increase PpIX quantification precision and sensitivity. This study included 128 patients undergoing surgery for malignant glioma. 5-ALA (Gliolan) was administered before anesthesia, and fluorescence was measured using a hyperspectral device. It was found that all 2692 measured spectra consisted of contributions from 620 to 634 nm PpIX, NADH, lipofuscin, and flavins. The basis spectra were characterized and their use in spectral unmixing led to 82.4% lower fitting error for weakly fluorescing areas (p < 0.001), and 92.3% fewer false positive tumor identifications in control measurements (p = 0.0065) compared to previous works. They also decreased the PpIX620 contribution, thus halving the mean Ratio620/634 (p < 0.001). The ratio was approximately 0 for HGGs and increasing for LGGs, as demonstrated previously. Additionally, the Ratio620/634, the MIB-1/Ki-67 proliferation index, and the PpIX peak blue-shift were found to be significantly related to WHO grade, fluorescence visibility, and PpIX contribution (p < 0.001), and the value of these three as quantitative biomarkers is discussed.
Collapse
|
39
|
Neurosurgical Advances for Malignant Gliomas: Intersection of Biology and Technology. ACTA ACUST UNITED AC 2021; 27:364-370. [PMID: 34570450 DOI: 10.1097/ppo.0000000000000548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT The intersection of biology and technology has led to many advancements for the field of neurosurgery. Molecular developments have led to the identification of specific mutations, allowing for more accurate discussions in regard to prognosis and treatment effect. Even amid the progress from basic science benchwork, malignant gliomas continue to have a bleak natural history in lieu of the resistance to chemotherapy and the diffuse nature of the disease, leaving room for further research to discover more effective treatment modalities. Novel imaging methods, including the emerging field of radiogenomics, involve the merging of molecular and radiographic data, enabling earlier, detailed molecular diagnoses and improved surveillance of this pathology. Furthermore, surgical advancements have led to safer and more extensive resections. This review aims to delineate the various advancements in the many facets that are used daily in the care of our glioma population, specifically pertaining to its biology, imaging modalities, and perioperative adjuncts used in the operating room.
Collapse
|
40
|
Palmieri G, Cofano F, Salvati LF, Monticelli M, Zeppa P, Perna GD, Melcarne A, Altieri R, La Rocca G, Sabatino G, Barbagallo GM, Tartara F, Zenga F, Garbossa D. Fluorescence-Guided Surgery for High-Grade Gliomas: State of the Art and New Perspectives. Technol Cancer Res Treat 2021; 20:15330338211021605. [PMID: 34212784 PMCID: PMC8255554 DOI: 10.1177/15330338211021605] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-grade gliomas are aggressive tumors that require multimodal management and gross total resection is considered to be the first crucial step of treatment. Because of their infiltrative nature, intraoperative differentiation of neoplastic tissue from normal parenchyma can be challenging. For these reasons, in the recent years, neurosurgeons have increasingly performed this surgery under the guidance of tissue fluorescence. Sodium fluoresceine and 5-aminolevulinic acid represent the 2 main compounds that allow real-time identification of residual malignant tissue and have been associated with improved gross total resection and radiological outcomes. Though presenting different profiles of sensitivity and specificity and further investigations concerning cost-effectiveness are need, Sodium fluoresceine, 5-aminolevulinic acid and new phluorophores, such as Indocyanine green, represent some of the most important tools in the neurosurgeon’s hands to achieve gross total resection.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Fabio Cofano
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy.,Neurosurgery/Spine Surgery, Humanitas Gradenigo Hospital, Turin, Italy
| | - Luca Francesco Salvati
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Matteo Monticelli
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Pietro Zeppa
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Giuseppe Di Perna
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Antonio Melcarne
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Roberto Altieri
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Italy
| | - Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Irccs, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Irccs, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giuseppe Maria Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Italy
| | - Fulvio Tartara
- Unit of Neurosurgery, Istituto Clinico Città Studi, Milan, Italy
| | - Francesco Zenga
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Diego Garbossa
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| |
Collapse
|
41
|
Lu H, Grygoryev K, Bermingham N, Jansen M, O’Sullivan M, Nunan G, Buckley K, Manley K, Burke R, Andersson-Engels S. Combined autofluorescence and diffuse reflectance for brain tumour surgical guidance: initial ex vivo study results. BIOMEDICAL OPTICS EXPRESS 2021; 12:2432-2446. [PMID: 33996239 PMCID: PMC8086447 DOI: 10.1364/boe.420292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
This ex vivo study was conducted to assess the potential of using a fibre optic probe system based on autofluorescence and diffuse reflectance for tissue differentiation in the brain. A total of 180 optical measurements were acquired from 28 brain specimens (five patients) with eight excitation and emission wavelengths spanning from 300 to 700 nm. Partial least square-linear discriminant analysis (PLS-LDA) was used for tissue discrimination. Leave-one-out cross validation (LOOCV) was then used to evaluate the performance of the classification model. Grey matter was differentiated from tumour tissue with sensitivity of 89.3% and specificity of 92.5%. The variable importance in projection (VIP) derived from the PLS regression was applied to wavelengths selection, and identified the biochemical sources of the detected signals. The initial results of the study were promising and point the way towards a cost-effective, miniaturized hand-held probe for real time and label-free surgical guidance.
Collapse
Affiliation(s)
- Huihui Lu
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, Cork, Ireland
| | - Konstantin Grygoryev
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, Cork, Ireland
| | - Niamh Bermingham
- Department of Neuropathology, Cork University Hospital, Cork, Ireland
| | - Michael Jansen
- Department of Neuropathology, Cork University Hospital, Cork, Ireland
| | | | - Gerard Nunan
- Stryker, Instruments Innovation Centre, IDA Business and Technology Park, Cork, Ireland
| | - Kevin Buckley
- Stryker, Instruments Innovation Centre, IDA Business and Technology Park, Cork, Ireland
| | - Kevin Manley
- Stryker, Instruments Innovation Centre, IDA Business and Technology Park, Cork, Ireland
| | - Ray Burke
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, Cork, Ireland
| | - Stefan Andersson-Engels
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, Cork, Ireland
- Department of Physics, University College Cork, Cork, Ireland
| |
Collapse
|
42
|
Yahanda AT, Dunn GP, Chicoine MR. Photosensitivity Reaction From Operating Room Lights After Oral Administration of 5-Aminolevulinic Acid for Fluorescence-Guided Resection of a Malignant Glioma. Cureus 2021; 13:e13442. [PMID: 33758722 PMCID: PMC7978397 DOI: 10.7759/cureus.13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Orally administered 5-aminolevulinic acid (5-ALA), which was approved in the United States in 2017, is preferentially metabolized by malignant glioma cells into protoporphyrin IX and enhances tumor visualization when using a blue light filter on an operating microscope. Photosensitivity after 5-ALA administration is a known side effect, but a photosensitivity reaction from operating room lights has not yet been documented. We report the case of a 56-year-old man with a history of previous resection of a grade II astrocytoma who presented with imaging concerning for tumor recurrence and possible malignant transformation. Repeat surgical resection utilized 5-ALA. Soon after the surgery, he developed reddening of his skin, particularly over the right side of his head and neck, with blistering and peeling in a distribution that was particularly exposed to operating room lights during surgery. No other areas of his skin experienced the same redness, blistering, or peeling. Topical lotions were applied and the skin changes resolved spontaneously over weeks. Significant photosensitivity after administration of oral 5-ALA is a rare complication, but neurosurgeons who perform fluorescence-guided tumor resection should remain cognizant of its potential association with exposure to intense light, including in the operating room. Phototoxicity typically is self-limited, but awareness is important to minimize its occurrence.
Collapse
Affiliation(s)
- Alexander T Yahanda
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, USA
| | - Michael R Chicoine
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
43
|
Schipmann S, Müther M, Stögbauer L, Zimmer S, Brokinkel B, Holling M, Grauer O, Suero Molina E, Warneke N, Stummer W. Combination of ALA-induced fluorescence-guided resection and intraoperative open photodynamic therapy for recurrent glioblastoma: case series on a promising dual strategy for local tumor control. J Neurosurg 2021; 134:426-436. [PMID: 31978877 DOI: 10.3171/2019.11.jns192443] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/25/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE High-grade glioma (HGG) prognosis remains dismal, with inevitable, mostly local recurrence. Regimens for improving local tumor control are therefore needed. Photodynamic therapy (PDT) using porfimer sodium has been investigated but was abandoned due to side effects and lack of survival benefits. Intracellular porphyrins induced by 5-aminolevulinic acid (5-ALA) are approved for fluorescence-guided resections (FGRs), but are also photosensitizers. Activated by light, they generate reactive oxygen species with resultant cytotoxicity. The authors present a combined approach of 5-ALA FGR and PDT. METHODS After 5-ALA FGR in recurrent HGG, laser diffusors were strategically positioned inside the resection cavity. PDT was applied for 60 minutes (635 nm, 200 mW/cm diffusor, for 1 hour) under continuous irrigation for maintaining optical clarity and ventilation with 100% oxygen. MRI was performed at 24 hours, 14 days, and every 3 months after surgery, including diffusion tensor imaging and apparent diffusion coefficient maps. RESULTS Twenty patients were treated. One surgical site infection after treatment was noted at 6 months as the only adverse event. MRI revealed cytotoxic edema along resection margins in 16 (80%) of 20 cases, mostly annular around the cavity, corresponding to prior laser diffusor locations (mean volume 3.3 cm3). Edema appeared selective for infiltrated tissue or nonresected enhancing tumor. At the 14-day follow-up, enhancement developed in former regions of edema, in some cases vanishing after 4-5 months. Median progression-free survival (PFS) was 6 months (95% CI 4.8-7.2 months). CONCLUSIONS Combined 5-ALA FGR and PDT provides an innovative and safe method of local tumor control resulting in promising PFS. Further prospective studies are warranted to evaluate long-term therapeutic effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Oliver Grauer
- 3Department of Neurology, University Hospital Münster, Germany
| | | | | | | |
Collapse
|
44
|
Ma L, Fei B. Comprehensive review of surgical microscopes: technology development and medical applications. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200292VRR. [PMID: 33398948 PMCID: PMC7780882 DOI: 10.1117/1.jbo.26.1.010901] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Surgical microscopes provide adjustable magnification, bright illumination, and clear visualization of the surgical field and have been increasingly used in operating rooms. State-of-the-art surgical microscopes are integrated with various imaging modalities, such as optical coherence tomography (OCT), fluorescence imaging, and augmented reality (AR) for image-guided surgery. AIM This comprehensive review is based on the literature of over 500 papers that cover the technology development and applications of surgical microscopy over the past century. The aim of this review is threefold: (i) providing a comprehensive technical overview of surgical microscopes, (ii) providing critical references for microscope selection and system development, and (iii) providing an overview of various medical applications. APPROACH More than 500 references were collected and reviewed. A timeline of important milestones during the evolution of surgical microscope is provided in this study. An in-depth technical overview of the optical system, mechanical system, illumination, visualization, and integration with advanced imaging modalities is provided. Various medical applications of surgical microscopes in neurosurgery and spine surgery, ophthalmic surgery, ear-nose-throat (ENT) surgery, endodontics, and plastic and reconstructive surgery are described. RESULTS Surgical microscopy has been significantly advanced in the technical aspects of high-end optics, bright and shadow-free illumination, stable and flexible mechanical design, and versatile visualization. New imaging modalities, such as hyperspectral imaging, OCT, fluorescence imaging, photoacoustic microscopy, and laser speckle contrast imaging, are being integrated with surgical microscopes. Advanced visualization and AR are being added to surgical microscopes as new features that are changing clinical practices in the operating room. CONCLUSIONS The combination of new imaging technologies and surgical microscopy will enable surgeons to perform challenging procedures and improve surgical outcomes. With advanced visualization and improved ergonomics, the surgical microscope has become a powerful tool in neurosurgery, spinal, ENT, ophthalmic, plastic and reconstructive surgeries.
Collapse
Affiliation(s)
- Ling Ma
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
| | - Baowei Fei
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
- University of Texas Southwestern Medical Center, Department of Radiology, Dallas, Texas, United States
| |
Collapse
|
45
|
Mazurek M, Kulesza B, Stoma F, Osuchowski J, Mańdziuk S, Rola R. Characteristics of Fluorescent Intraoperative Dyes Helpful in Gross Total Resection of High-Grade Gliomas-A Systematic Review. Diagnostics (Basel) 2020; 10:E1100. [PMID: 33339439 PMCID: PMC7766001 DOI: 10.3390/diagnostics10121100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background: A very important aspect in the treatment of high-grade glioma is gross total resection to reduce the risk of tumor recurrence. One of the methods to facilitate this task is intraoperative fluorescence navigation. The aim of the study was to compare the dyes used in this technique fluorescent intraoperative navigation in terms of the mechanism of action and influence on the treatment of patients. Methods: The review was carried out on the basis of articles found in PubMed, Google Scholar, and BMC search engines, as well as those identified by searched bibliographies and suggested by experts during the preparation of the article. The database analysis was performed for the following phrases: "glioma", "glioblastoma", "ALA", "5ALA", "5-ALA", "aminolevulinic acid", "levulinic acid", "fluorescein", "ICG", "indocyanine green", and "fluorescence navigation". Results: After analyzing 913 citations identified on the basis of the search criteria, we included 36 studies in the review. On the basis of the analyzed articles, we found that 5-aminolevulinic acid and fluorescein are highly effective in improving the percentage of gross total resection achieved in high-grade glioma surgery. At the same time, the limitations resulting from the use of these methods are marked-higher costs of the procedure and the need to have neurosurgical microscope in combination with a special light filter in the case of 5-aminolevulinic acid (5-ALA), and low specificity for neoplastic cells and the dependence on the degree of damage to the blood-brain barrier in the intensity of fluorescence in the case of fluorescein. The use of indocyanine green in the visualization of glioma cells is relatively unknown, but some researchers have suggested its utility and the benefits of using it simultaneously with other dyes. Conclusion: The use of intraoperative fluorescence navigation with the use of 5-aminolevulinic acid and fluorescein allows the range of high-grade glioma resection to be increased.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Bartłomiej Kulesza
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Filip Stoma
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Jacek Osuchowski
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| |
Collapse
|
46
|
Konovalov NA, Timonin SY, Zelenkov PV, Goryainov SA, Asyutin DS, Zakirov BA, Kaprovoy SV. [Visual fluorescence combined with laser spectroscopy in surgery for intramedullary spinal cord tumors]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:5-14. [PMID: 33306295 DOI: 10.17116/neiro2020840615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Surgical treatment of intramedullary spinal cord tumors is aimed at total resection of tumor with maximum preservation of neurological and functional status. In some cases, intramedullary tumors have unclear dissection plane or gliosis zone. This area is not a tumor and does not require resection. However, it is difficult to distinguish visually intact spinal cord tissue and tumor at the last surgical stages. Thus, we evaluated the effectiveness of fluorescence combined with laser spectroscopy in surgical treatment of intramedullary spinal cord tumors. OBJECTIVE To determine the effectiveness of visual fluorescence combined with laser spectroscopy in surgery for intramedullary spinal cord tumors. MATERIAL AND METHODS There were 850 patients with intramedullary spinal cord tumors for the period 2001-2019. In 35 cases, intraoperative fluoroscopy with laser spectroscopy were used. All patients underwent a comprehensive pre- and postoperative clinical and instrumental examination (general and neurological status, McCormick grade, spinal cord MRI). Carl Zeiss OPMI Pentero microscope with a fluorescent module was used for intraoperative fluorescence diagnosis. A domestic preparation 5-ALA «ALASENS» (State Research Center NIOPIK, Moscow, Russia) was used for induction of visible fluorescence. Laser spectroscopy was carried out using a LESA-01-BIOSPEK spectrum analyzer. Morphological analysis of intramedullary spinal cord tumors was performed in the neuromorphology laboratory of the Burdenko Neurosurgery Center. RESULTS Intramedullary anaplastic ependymoma and astrocytoma, as well as conventional ependymoma were characterized by the highest index of 5-ALA accumulation. Intramedullary hemangioblastoma and cavernoma do not accumulate 5-aminolevulinic acid due to morphological structure of these tumors. In particular, there are no cells capable of capturing and processing 5-ALA in these tumors. Sensitivity of visual fluorescence combined with laser spectroscopy varies from 0% to 100% depending on the histological type of tumor: hemangiogblastoma and cavernoma - 0%, low-grade astrocytoma - 70%, high-grade astrocytoma - 80%, ependymoma - 92%, anaplastic ependymoma 100%. Dissection plane is absent in anaplastic ependymoma, high-grade astrocytoma. We often observed gliosis during resection of ependymoma. This tissue is not a part of tumor. Intraoperative metabolic navigation with neurophysiological monitoring are advisable for total tumor resection in case of unclear dissection plane and peritumoral gliosis. CONCLUSION Visual fluorescence combined with laser spectroscopy is a perspective method for intraoperative imaging of tumor remnants and total resection of intramedullary spinal cord tumors with minimum risk of neurological impairment.
Collapse
Affiliation(s)
| | | | | | | | - D S Asyutin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - B A Zakirov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | |
Collapse
|
47
|
Abstract
Fluorescence-guided surgery provides surgeons with improved visualization of tumor tissue in the operating room to allow for maximal safe resection of brain tumors. Multiple fluorescent agents have been studied for fluorescence-guided surgery. Both nontargeted and targeted fluorescent agents are currently being used for glioblastoma multiforme visualization and resection. Fluorescence detection in the visible light or near infrared spectrum is possible. Visualization device advancements have permitted greater detection of fluorescence down to the cellular level, which may provide even greater ability for the neurosurgeon to resect tumors.
Collapse
Affiliation(s)
- Alexander J Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Constantinos Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA; Department of Neurosurgery, Mount Sinai Beth Israel, New York, NY, USA.
| |
Collapse
|
48
|
Marhold F, Mercea PA, Scheichel F, Berghoff AS, Heicappell P, Kiesel B, Mischkulnig M, Borkovec M, Wolfsberger S, Woehrer A, Preusser M, Knosp E, Ungersboeck K, Widhalm G. Detailed analysis of 5-aminolevulinic acid induced fluorescence in different brain metastases at two specialized neurosurgical centers: experience in 157 cases. J Neurosurg 2020; 133:1032-1043. [PMID: 31561223 DOI: 10.3171/2019.6.jns1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/13/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Incomplete neurosurgical resection of brain metastases (BM) due to insufficient intraoperative visualization of tumor tissue is a major clinical challenge and might result in local recurrence. Recently, visible 5-aminolevulinic acid (5-ALA) induced fluorescence was first reported in patients with BM. The aim of this study was thus to investigate, for the first time systematically, the value of 5-ALA fluorescence for intraoperative visualization of BM in a large patient cohort. METHODS Adult patients (≥ 18 years) with resection of suspected BM after preoperative 5-ALA administration were prospectively recruited at two specialized neurosurgical centers. During surgery, the fluorescence status (visible or no fluorescence); fluorescence quality (strong, vague, or none); and fluorescence homogeneity (homogeneous or heterogeneous) of each BM was investigated. Additionally, these specific fluorescence characteristics of BM were correlated with the primary tumor type and the histopathological subtype. Tumor diagnosis was established according to the current WHO 2016 criteria. RESULTS Altogether, 157 BM were surgically treated in 154 patients. Visible fluorescence was observed in 104 BM (66%), whereas fluorescence was absent in the remaining 53 cases (34%). In detail, 53 tumors (34%) showed strong fluorescence, 51 tumors (32%) showed vague fluorescence, and 53 tumors (34%) had no fluorescence. The majority of BM (84% of cases) demonstrated a heterogeneous fluorescence pattern. According to primary tumor, visible fluorescence was less frequent in BM of melanomas compared to all other tumors (p = 0.037). According to histopathological subtype, visible fluorescence was more common in BM of ductal breast cancer than all other subtypes (p = 0.008). It is of note that visible fluorescence was observed in the surrounding brain tissue after the resection of BM in 74 (67%) of 111 investigated cases as well. CONCLUSIONS In this largest series to date, visible 5-ALA fluorescence was detected in two-thirds of BM. However, the characteristic heterogeneous fluorescence pattern and frequent lack of strong fluorescence limits the use of 5-ALA in BM and thus this technique needs further improvements.
Collapse
Affiliation(s)
- Franz Marhold
- 1Department of Neurosurgery, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
| | - Petra A Mercea
- 2Department of Neurosurgery, Medical University of Vienna, Austria
| | - Florian Scheichel
- 1Department of Neurosurgery, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
| | - Anna S Berghoff
- 3Clinical Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
- 6Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University of Vienna, Austria
| | - Patricia Heicappell
- 3Clinical Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
- 6Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University of Vienna, Austria
| | - Barbara Kiesel
- 2Department of Neurosurgery, Medical University of Vienna, Austria
- 6Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University of Vienna, Austria
| | | | - Martin Borkovec
- 4Department of Statistics, Ludwig-Maximilians-Universität Munich, Germany
| | - Stefan Wolfsberger
- 2Department of Neurosurgery, Medical University of Vienna, Austria
- 6Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University of Vienna, Austria
| | - Adelheid Woehrer
- 5Institute of Neurology, Medical University of Vienna, Austria; and
- 6Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University of Vienna, Austria
| | - Matthias Preusser
- 3Clinical Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
- 6Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University of Vienna, Austria
| | - Engelbert Knosp
- 2Department of Neurosurgery, Medical University of Vienna, Austria
- 6Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University of Vienna, Austria
| | - Karl Ungersboeck
- 1Department of Neurosurgery, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
| | - Georg Widhalm
- 2Department of Neurosurgery, Medical University of Vienna, Austria
- 6Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University of Vienna, Austria
| |
Collapse
|
49
|
Abstract
In neurosurgery, the extent of resection plays a critical role, especially in the management of malignant gliomas. These tumors are characterized through a diffuse infiltration into the surrounding brain parenchyma. Delineation between tumor and normal brain parenchyma can therefore often be challenging. During the recent years, several techniques, aiming at better intraoperative tumor visualization, have been developed and implemented in the field of brain tumor surgery. In this chapter, we discuss current strategies for intraoperative imaging in brain tumor surgery, comprising conventional techniques such as neuronavigation, techniques using fluorescence-guided surgery, and further highly precise developments such as targeted fluorescence spectroscopy or Raman spectroscopy.
Collapse
Affiliation(s)
- Stephanie Schipmann-Miletić
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| |
Collapse
|
50
|
Pu JK, Kwong DL. Central Nervous System Neoplasms in Hong Kong: An Inscription of Local Studies. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394715666190126153006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
A registry of brain and central nervous system (CNS) tumor patients in Hong Kong
comprising of data from both public and private neurosurgical practices (with approximately 98%
patients of Chinese origin), suggested geographical or racial variations in disease incidence. The
data confers the finding of a comparatively lower incidence rate of meningioma and malignant
gliomas as in other parts of Southeast Asia.
:
With data suggesting epidemiological difference, the treatment response, particularly in highgrade
glioma, was studied. Patients suffering from glioblastoma (GBM) in Hong Kong received
the standard of care, which involves safe, maximal resection followed by the Stupp regime.
5-aminolevulinic acid (5-ALA)-based fluorescence-guided surgery was found to be feasible and
safe to adopt in the treatment of local WHO Grade III & IV gliomas patients. Survival benefit was
seen in a group of patients using extended adjuvant temozolomide (TMZ) treatment for newly
diagnosed GBM as compared to those treated with the standard 6 cycles. Salvage therapies with
either single agent bevacizumab or bevacizumab plus irinotecan appeared to be effective treatment
options in Hong Kong patients with recurrent malignant glioma, with a good associated 6-
month progression-free survival (PFS) rate which was comparable to previously published overseas
data in this disease type in the same overall population.
Collapse
Affiliation(s)
- Jenny K.S. Pu
- Department of Neurosurgery, Queen Mary Hospital, Hong Kong, China
| | - Dora L.W. Kwong
- Department of Clinical Oncology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| |
Collapse
|