1
|
Kaki S, DeRosa H, Timmerman B, Brummelte S, Hunter RG, Kentner AC. Developmental Manipulation-Induced Changes in Cognitive Functioning. Curr Top Behav Neurosci 2023; 63:241-289. [PMID: 36029460 PMCID: PMC9971379 DOI: 10.1007/7854_2022_389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Schizophrenia is a complex neurodevelopmental disorder with as-yet no identified cause. The use of animals has been critical to teasing apart the potential individual and intersecting roles of genetic and environmental risk factors in the development of schizophrenia. One way to recreate in animals the cognitive impairments seen in people with schizophrenia is to disrupt the prenatal or neonatal environment of laboratory rodent offspring. This approach can result in congruent perturbations in brain physiology, learning, memory, attention, and sensorimotor domains. Experimental designs utilizing such animal models have led to a greatly improved understanding of the biological mechanisms that could underlie the etiology and symptomology of schizophrenia, although there is still more to be discovered. The implementation of the Research and Domain Criterion (RDoC) has been critical in taking a more comprehensive approach to determining neural mechanisms underlying abnormal behavior in people with schizophrenia through its transdiagnostic approach toward targeting mechanisms rather than focusing on symptoms. Here, we describe several neurodevelopmental animal models of schizophrenia using an RDoC perspective approach. The implementation of animal models, combined with an RDoC framework, will bolster schizophrenia research leading to more targeted and likely effective therapeutic interventions resulting in better patient outcomes.
Collapse
Affiliation(s)
- Sahith Kaki
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Holly DeRosa
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
- University of Massachusetts Boston, Boston, MA, USA
| | - Brian Timmerman
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
| | | | - Amanda C Kentner
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
2
|
Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod 2021; 105:644-666. [PMID: 34270696 PMCID: PMC8444709 DOI: 10.1093/biolre/ioab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an ensemble of neurodevelopmental consequences in children and therefore constitutes a pressing public health concern. Adding to this burden, contemporary epidemiological and especially animal model research suggests that grandmaternal smoking is similarly associated with neurodevelopmental abnormalities in grandchildren, indicative of intergenerational transmission of the neurodevelopmental impacts of maternal smoking. Probing the mechanistic bases of neurodevelopmental anomalies in the children of maternal smokers and the intergenerational transmission thereof, emerging research intimates that epigenetic changes, namely DNA methylome perturbations, are key factors. Altogether, these findings warrant future research to fully elucidate the etiology of neurodevelopmental impairments in the children and grandchildren of maternal smokers and underscore the clear potential thereof to benefit public health by informing the development and implementation of preventative measures, prophylactics, and treatments. To this end, the present review aims to encapsulate the burgeoning evidence linking maternal smoking to intergenerational epigenetic inheritance of neurodevelopmental abnormalities, to identify the strengths and weaknesses thereof, and to highlight areas of emphasis for future human and animal model research therein.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| | - Li Yu
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
3
|
Shukla M, Vincent B. The multi-faceted impact of methamphetamine on Alzheimer's disease: From a triggering role to a possible therapeutic use. Ageing Res Rev 2020; 60:101062. [PMID: 32304732 DOI: 10.1016/j.arr.2020.101062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Although it has been initially synthesized for therapeutic purposes and currently FDA-approved and prescribed for obesity, attention-deficit/hyperactivity disorder, narcolepsy and depression, methamphetamine became a recreational drug that is nowadays massively manufactured illegally. Because it is a powerful and extremely addictive psychotropic agent, its abuse has turned out to become a major health problem worldwide. Importantly, the numerous effects triggered by this drug induce neurotoxicity in the brain ultimately leading to serious neurological impairments, tissue damage and neuropsychological disturbances that are reminiscent to most of the symptoms observed in Alzheimer's disease and other pathological manifestations in aging brain. In this context, there is a growing number of compelling evidence linking methamphetamine abuse with a higher probability of developing premature Alzheimer's disease and consequent neurodegeneration. This review proposes to establish a broad assessment of the effects that this drug can generate at the cellular and molecular levels in connection with the development of the age-related Alzheimer's disease. Altogether, the objective is to warn against the long-term effects that methamphetamine abuse may convey on young consumers and the increased risk of developing this devastating brain disorder at later stages of their lives, but also to discuss a more recently emerging concept suggesting a possible use of methamphetamine for treating this pathology under proper and strictly controlled conditions.
Collapse
|
4
|
Schaefers ATU, Teuchert-Noodt G. Developmental neuroplasticity and the origin of neurodegenerative diseases. World J Biol Psychiatry 2016; 17:587-599. [PMID: 23705632 DOI: 10.3109/15622975.2013.797104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Neurodegenerative diseases like Alzheimer's and Parkinson's Disease, marked by characteristic protein aggregations, are more and more accepted to be synaptic disorders and to arise from a combination of genetic and environmental factors. In this review we propose our concept that neuroplasticity might constitute a link between early life challenges and neurodegeneration. METHODS After introducing the general principles of neuroplasticity, we show how adverse environmental stimuli during development impact adult neuroplasticity and might lead to neurodegenerative processes. RESULTS There are significant overlaps between neurodevelopmental and neurodegenerative processes. Proteins that represent hallmarks of neurodegeneration are involved in plastic processes under physiological conditions. Brain regions - particularly the hippocampus - that retain life-long plastic capacities are the key targets of neurodegeneration. Neuroplasticity is highest in young age making the brain more susceptible to external influences than later in life. Impacts during critical periods have life-long consequences on neuroplasticity and structural self-organization and are known to be common risk factors for neurodegenerative diseases. CONCLUSIONS Several lines of evidence support a link between developmental neuroplasticity and neurodegenerative processes later in life. A deeper insight into these processes is necessary to design strategies to mitigate or even prevent neurodegenerative pathologies.
Collapse
|
5
|
Schaefers AT. Environmental enrichment and working memory tasks decrease hippocampal cell proliferation after wheel running – A role for the prefrontal cortex in hippocampal plasticity? Brain Res 2015. [DOI: 10.1016/j.brainres.2015.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Choline status and neurodevelopmental outcomes at 5 years of age in the Seychelles Child Development Nutrition Study. Br J Nutr 2013; 110:330-6. [PMID: 23298754 DOI: 10.1017/s0007114512005077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Choline is an essential nutrient that is found in many food sources and plays a critical role in the development of the central nervous system. Animal studies have shown that choline status pre- and postnatally can have long-lasting effects on attention and memory; however, effects in human subjects have not been well studied. The aim of the present study was to examine the association between plasma concentrations of free choline and its related metabolites in children and their neurodevelopment in the Seychelles Child Development Nutrition Study, an ongoing longitudinal study assessing the development of children born to mothers with high fish consumption during pregnancy. Plasma concentrations of free choline, betaine, dimethylglycine (DMG), methionine and homocysteine and specific measures of neurodevelopment were measured in 210 children aged 5 years. The children's plasma free choline concentration (9·17 (sd 2·09) μmol/l) was moderately, but significantly, correlated with betaine (r 0·24; P= 0·0006), DMG (r 0·15; P= 0·03), methionine (r 0·24; P= 0·0005) and homocysteine (r 0·19; P= 0·006) concentrations. Adjusted multiple linear regression revealed that betaine concentrations were positively associated with Preschool Language Scale – total language scores (β = 0·066; P= 0·04), but no other associations were evident. We found no indication that free choline concentration or its metabolites, within the normal physiological range, are associated with neurodevelopmental outcomes in children at 5 years of age. As there is considerable animal evidence suggesting that choline status during development is associated with cognitive outcome, the issue deserves further study in other cohorts.
Collapse
|
7
|
Siegel JA, Park BS, Raber J. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice. J Neurochem 2011; 119:89-99. [PMID: 21824143 DOI: 10.1111/j.1471-4159.2011.07418.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males.
Collapse
Affiliation(s)
- Jessica A Siegel
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
8
|
Winter Y, Schaefers ATU. A sorting system with automated gates permits individual operant experiments with mice from a social home cage. J Neurosci Methods 2011; 196:276-80. [PMID: 21256865 DOI: 10.1016/j.jneumeth.2011.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 11/16/2022]
Abstract
Behavioral experiments based on operant procedures can be time-consuming for small amounts of data. While individual testing and handling of animals can influence attention, emotion, and behavior, and interfere with experimental outcome, many operant protocols require individual testing. We developed an RFID-technology- and transponder-based sorting system that allows removing the human factor for longer-term experiments. Identity detectors and automated gates route mice individually from their social home cage to an adjacent operant compartment with 24/7 operation. CD1-mice learnt quickly to individually pass through the sorting system. At no time did more than a single mouse enter the operant compartment. After 3 days of adjusting to the sorting system, groups of 4 mice completed about 50 experimental trials per day in the operant compartment without experimenter intervention. The automated sorting system eliminates handling, isolation, and disturbance of the animals, eliminates experimenter-induced variability, saves experimenter time, and is financially economical. It makes possible a new approach for high-throughput experimentation, and is a viable tool for increasing quality and efficiency of many behavioral and neurobiological investigations. It can connect a social home cage, through individual sorting automation, to diverse setups including classical operant chambers, mazes, or arenas with video-based behavior classification. Such highly automated systems will permit efficient high-throughput screening even for transgenic animals with only subtle neurological or psychiatric symptoms where elaborate or longer-term protocols are required for behavioral diagnosis.
Collapse
Affiliation(s)
- York Winter
- Department of Biology, Bielefeld University, Bielefeld, Germany.
| | | |
Collapse
|
9
|
Haupt M, Schaefers AT. Effects of postweaning social and physical deprivation on locomotor activity patterns and explorative behavior in female CD-1 mice. Dev Psychobiol 2010; 52:383-93. [DOI: 10.1002/dev.20439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Developmental effects on dopamine projections and hippocampal cell proliferation in the rodent model of postweaning social and physical deprivation can be triggered by brief changes of environmental context. Behav Brain Res 2009; 205:26-31. [PMID: 19631238 DOI: 10.1016/j.bbr.2009.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 07/10/2009] [Accepted: 07/15/2009] [Indexed: 11/21/2022]
Abstract
Periadolescence is a critical period during which environmental stimuli modulate developmental neural plasticity. This includes the density of mesolimbic dopamine (DA) projections and the mitotic dynamic in the hippocampal dentate gyrus, both involved in central structures for emotional and cognitive functioning. Behavioural tests suggest that even short periods of stimulation can have lasting developmental effects on cognitive and emotional measures. We therefore exposed animals kept in isolation to brief daily context changes during periadolescence (postnatal days 30-60). We assessed the effects on neural development after animals had reached adulthood at postnatal day 90 by measuring the density of dopamine fibres in the medial prefrontal cortex (PFC), nucleus accumbens (core and shell), olfactory tubercle, and amygdala (basolateral and central), and by labelling mitoses in the dentate gyrus by BrdU. In experimental animals as compared to deprived controls, dopamine fibre densities were increased in the PFC and basolateral amygdala, decreased in the central amygdala, but not altered in the ventral striatum. Hippocampal cell proliferation was decreased. These results show that even a low level of experimental sensory stimulation during periadolescence triggers neural developmental processes, with lasting effects into adulthood.
Collapse
|
11
|
Butz M, Wörgötter F, van Ooyen A. Activity-dependent structural plasticity. ACTA ACUST UNITED AC 2009; 60:287-305. [DOI: 10.1016/j.brainresrev.2008.12.023] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 12/19/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
|
12
|
Lehmann K, Rodriguez EG, Kratz O, Moll GH, Dawirs RR, Teuchert-Noodt G. Early preweaning methamphetamine and postweaning rearing conditions interfere with the development of peripheral stress parameters and neural growth factors in gerbils. Int J Neurosci 2007; 117:1621-38. [PMID: 17917931 DOI: 10.1080/00207450600934937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adrenal steroid hormones and neuronal growth factors are two interacting systemic factors that mediate the environment's influence on the brain's structure and function. In order to further elucidate their role and relationship in the effects of early stressful experience and isolated rearing (IR), this study measured blood corticosterone titres and relative adrenal weights and assessed nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) concentrations in brain regions of both hemispheres of young adult Mongolian gerbils injected on postnatal day 14 with a single high dose of methamphetamine (MA) or saline and raised after weaning either in an enriched or an impoverished environment. Irrespective of MA challenge, IR decreased corticosterone titres to about half, but increased relative adrenal weights. BDNF concentrations were decreased by IR in saline-injected animals in the left prefrontal and parietal cortices and right entorhinal and hippocampal cortices, and in the subcortical regions of both hemispheres. NGF concentrations were unaltered by IR in saline-injected animals, but increased in MA challenged animals in the entorhinal/hippocampal cortices and subcortical areas of both hemispheres. MA application induced shifts of the lateral asymmetry in NGF contents in prefrontal and entorhinal cortices. The results suggest that an early pharmacological traumatization can set a switch for further brain development, and that growth factor concentrations might possibly be influenced by peripheral stress hormones.
Collapse
Affiliation(s)
- Konrad Lehmann
- Department of Neuroanatomy, Faculty of Biology, Bielefeld, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Bagorda F, Teuchert-Noodt G, Lehmann K. Isolation rearing or methamphetamine traumatisation induce a "dysconnection" of prefrontal efferents in gerbils: implications for schizophrenia. J Neural Transm (Vienna) 2005; 113:365-79. [PMID: 15959840 DOI: 10.1007/s00702-005-0324-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2005] [Accepted: 04/17/2005] [Indexed: 10/25/2022]
Abstract
A miswiring of prefrontal efferents is generally discussed by the name of "dysconnection" as the anatomical substrate of schizophrenia. Since direct histological confirmation of this hypothesis can hardly be obtained in humans, we used an animal model of schizophrenia to trace prefrontal efferents to distal cortical fields. Mongolian gerbils were intoxicated with a single high dose of methamphetamine on postnatal day 14 and reared in isolation after weaning (day 30). Controls received a saline injection and/or were reared under enriched conditions. Upon reaching adulthood (day 90), biocytin was injected into the medial prefrontal cortex into either deep or superficial laminae. The density of passing fibres and terminal fields in the frontal, parietal and insular cortices was assessed by digital image analysis. Isolation rearing or methamphetamine treatment alone reduced the projections from lamina V/VI to the frontal and from lamina III to the insular cortex, and from both laminae to the parietal cortex. In contrast, isolation rearing of methamphetamine-intoxicated gerbils significantly increased the projections from the deep laminae to the frontal and parietal cortices, compared to isolation-reared controls, with no difference in the efferents from superficial laminae. These results are the first to demonstrate a miswiring of prefrontal efferents in response to adverse systemic influences. They might give a hint at the anatomical basis of "dysconnection" in schizophrenia.
Collapse
Affiliation(s)
- F Bagorda
- Department of Neuroanatomy, Faculty of Biology, Bielefeld, Germany
| | | | | |
Collapse
|