1
|
Fasolato S, Bonaiuto E, Rossetto M, Vanzani P, Ceccato F, Vittadello F, Zennaro L, Rigo A, Mammano E, Angeli P, Pontisso P, Di Paolo ML. Serum Vascular Adhesion Protein-1 and Endothelial Dysfunction in Hepatic Cirrhosis: Searching for New Prognostic Markers. Int J Mol Sci 2024; 25:7309. [PMID: 39000418 PMCID: PMC11242677 DOI: 10.3390/ijms25137309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Endothelial dysfunction plays a key role in the development of liver cirrhosis. Among the biomarkers of endothelial dysfunction, the soluble form of Vascular Adhesion Protein-1 (sVAP-1) is an unconventional and less known adhesion molecule endowed also with amine oxidase activity. The aim of this study was to explore and correlate the behavior of sVAP-1 with that of the soluble vascular cell adhesion molecule-1 (sVCAM-1) and intercellular adhesion molecule-1 (sICAM-1) and with the severity of liver cirrhosis. A cross-sectional study was carried out by enrolling 28 controls, 59 cirrhotic patients without hepatocellular carcinoma, and 56 patients with hepatocellular carcinoma (HCC), mainly caused by alcohol abuse. The levels of adhesion molecules and of the pro-inflammatory cytokines (IL-6 and TNF-αα) were determined by immunoassay and the enzymatic activity of sVAP-1 by a fluorometric assay. In non-diabetic patients without HCC, a specific behavior of sVAP-1 was highlighted. Differently from sVCAM-1, sICAM-1, and cytokines, the sVAP-1 level was significantly increased only in the early stage of disease, and then, it decreased in the last stage (866 ± 390 ng/mL vs. 545 ± 316 ng/mL, in Child-Pugh class A vs. C, respectively, p < 0.05). Bivariate analysis correlates sVAP-1 to sVCAM-1, in the absence of HCC (Spearman's rho = 0.403, p < 0.01). Multiple linear regression analysis revealed that sVCAM-1 appears to be a predictor of sVAP-1 (β coefficient = 0.374, p = 0.021). In conclusion, in non-diabetic and non-HCC cirrhotic patients, sVAP-1 may be a potential prognostic biomarker that, together with sVCAM-1 and pro-inflammatory cytokines, may provide information on the progression of sinusoidal liver endothelium damage.
Collapse
Affiliation(s)
- Silvano Fasolato
- Department of Medicine, Padua University Hospital, 35128 Padua, Italy
| | - Emanuela Bonaiuto
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy
| | - Monica Rossetto
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy
| | - Paola Vanzani
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy
| | - Fabio Ceccato
- Unit of Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Fabio Vittadello
- Explora s.n.c.-Research and Statistical Analysis, 35010 Padua, Italy
| | - Lucio Zennaro
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy
| | - Adelio Rigo
- Nazionale di Biostrutture e Biosistemi (INBB), Consorzio Interuniversitario Istituto, Viale Medaglie d'Oro, 00136 Roma, Italy
| | - Enzo Mammano
- Unit of Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Paolo Angeli
- Department of Medicine, Medical Clinic 5, University Hospital of Padua, 35128 Padua, Italy
| | - Patrizia Pontisso
- Department of Medicine, Medical Clinic 5, University Hospital of Padua, 35128 Padua, Italy
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy
- Nazionale di Biostrutture e Biosistemi (INBB), Consorzio Interuniversitario Istituto, Viale Medaglie d'Oro, 00136 Roma, Italy
| |
Collapse
|
2
|
Yan L, Sun C, Zhang Y, Zhang P, Chen Y, Deng Y, Er T, Deng Y, Wang Z, Ma H. The Biological Implication of Semicarbazide-Sensitive Amine Oxidase (SSAO) Upregulation in Rat Systemic Inflammatory Response under Simulated Aerospace Environment. Int J Mol Sci 2023; 24:ijms24043666. [PMID: 36835077 PMCID: PMC9961990 DOI: 10.3390/ijms24043666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
The progress of space science and technology has ushered in a new era for humanity's exploration of outer space. Recent studies have indicated that the aerospace special environment including microgravity and space radiation poses a significant risk to the health of astronauts, which involves multiple pathophysiological effects on the human body as well on tissues and organs. It has been an important research topic to study the molecular mechanism of body damage and further explore countermeasures against the physiological and pathological changes caused by the space environment. In this study, we used the rat model to study the biological effects of the tissue damage and related molecular pathway under either simulated microgravity or heavy ion radiation or combined stimulation. Our study disclosed that ureaplasma-sensitive amino oxidase (SSAO) upregulation is closely related to the systematic inflammatory response (IL-6, TNF-α) in rats under a simulated aerospace environment. In particular, the space environment leads to significant changes in the level of inflammatory genes in heart tissues, thus altering the expression and activity of SSAO and causing inflammatory responses. The detailed molecular mechanisms have been further validated in the genetic engineering cell line model. Overall, this work clearly shows the biological implication of SSAO upregulation in microgravity and radiation-mediated inflammatory response, providing a scientific basis or potential target for further in-depth investigation of the pathological damage and protection strategy under a space environment.
Collapse
Affiliation(s)
- Liben Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Chunli Sun
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yaxi Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yu Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yifan Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tianyi Er
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhimin Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (Z.W.); (H.M.); Tel.: +86-010-68915996 (Z.W. & H.M.)
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (Z.W.); (H.M.); Tel.: +86-010-68915996 (Z.W. & H.M.)
| |
Collapse
|
3
|
Kim SY, Park SH, Lee CH, Tae J, Shin I. Rhodamine-based cyclic hydrazide derivatives as fluorescent probes for selective and rapid detection of formaldehyde. RSC Adv 2022; 12:22435-22439. [PMID: 36105987 PMCID: PMC9366419 DOI: 10.1039/d2ra02104h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
We describe fluorescent probes to detect formaldehyde (FA) in aqueous solutions and cells. The probes rapidly respond to FA in aqueous solutions and have great selectivity toward FA over other biologically relevant analytes. The results of cell studies reveal that probe 1 can be utilized to monitor endogenous and exogenous FA in live cells.
Collapse
Affiliation(s)
- Sung Yeon Kim
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| | - Sang-Hyun Park
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| | - Chang-Hee Lee
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| | - Jinsung Tae
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
4
|
Zhu BT. Biochemical mechanism underlying the pathogenesis of diabetic retinopathy and other diabetic complications in humans: the methanol-formaldehyde-formic acid hypothesis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:415-451. [PMID: 35607958 PMCID: PMC9828688 DOI: 10.3724/abbs.2022012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia in diabetic patients is associated with abnormally-elevated cellular glucose levels. It is hypothesized that increased cellular glucose will lead to increased formation of endogenous methanol and/or formaldehyde, both of which are then metabolically converted to formic acid. These one-carbon metabolites are known to be present naturally in humans, and their levels are increased under diabetic conditions. Mechanistically, while formaldehyde is a cross-linking agent capable of causing extensive cytotoxicity, formic acid is an inhibitor of mitochondrial cytochrome oxidase, capable of inducing histotoxic hypoxia, ATP deficiency and cytotoxicity. Chronic increase in the production and accumulation of these toxic one-carbon metabolites in diabetic patients can drive the pathogenesis of ocular as well as other diabetic complications. This hypothesis is supported by a large body of experimental and clinical observations scattered in the literature. For instance, methanol is known to have organ- and species-selective toxicities, including the characteristic ocular lesions commonly seen in humans and non-human primates, but not in rodents. Similarly, some of the diabetic complications (such as ocular lesions) also have a characteristic species-selective pattern, closely resembling methanol intoxication. Moreover, while alcohol consumption or combined use of folic acid plus vitamin B is beneficial for mitigating acute methanol toxicity in humans, their use also improves the outcomes of diabetic complications. In addition, there is also a large body of evidence from biochemical and cellular studies. Together, there is considerable experimental support for the proposed hypothesis that increased metabolic formation of toxic one-carbon metabolites in diabetic patients contributes importantly to the development of various clinical complications.
Collapse
Affiliation(s)
- Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen518172China
- Department of PharmacologyToxicology and TherapeuticsSchool of MedicineUniversity of Kansas Medical CenterKansas CityKS66160USA
| |
Collapse
|
5
|
Cao T, Ma H. A two-photon lysosome-targeted probe for endogenous formaldehyde in living cells. RSC Adv 2022; 12:18093-18101. [PMID: 35800308 PMCID: PMC9208363 DOI: 10.1039/d2ra02672d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
A turn-on two-photon lysosome-targeted probe based on the ICT mechanism has been synthesized and was successfully used not only to monitor and image formaldehyde exogenously but also endogenously with excellent performance in living cells.
Collapse
Affiliation(s)
- Ting Cao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, P. R. China
| | - Hong Ma
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, P. R. China
| |
Collapse
|
6
|
Squitti R, Ventriglia M, Granzotto A, Sensi SL, Rongioletti MCA. Non-Ceruloplasmin Copper as a Stratification Biomarker of Alzheimer's Disease Patients: How to Measure and Use It. Curr Alzheimer Res 2021; 18:533-545. [PMID: 34674622 DOI: 10.2174/1567205018666211022085755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a type of dementia very common in the elderly. A growing body of recent evidence has linked AD pathogenesis to copper (Cu) dysmetabolism in the body. In fact, a subset of patients affected either by AD or by its prodromal form known as Mild Cognitive Impairment (MCI) have been observed to be unable to maintain a proper balance of Cu metabolism and distribution and are characterized by the presence in their serum of increased levels of Cu not bound to ceruloplasmin (non-ceruloplasmin Cu). Since serum non-ceruloplasmin Cu is a biomark- er of Wilson's disease (WD), a well-known condition of Cu-driven toxicosis, in this review, we pro- pose that in close analogy with WD, the assessment of non-ceruloplasmin Cu levels can be exploit- ed as a cost-effective stratification and susceptibility/risk biomarker for the identification of some AD/MCI individuals. The approach can also be used as an eligibility criterion for clinical trials aim- ing at investigating Cu-related interventions against AD/MCI.
Collapse
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia. Italy
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, San Giovanni Calibita Fatebene-fratelli Hospital, Isola Tiberina, Rome. Italy
| | - Alberto Granzotto
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti. Italy
| | - Stefano L Sensi
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti. Italy
| | - Mauro Ciro Antonio Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, Rome. Italy
| |
Collapse
|
7
|
Qi YL, Wang HR, Chen LL, Guo L, Cao YY, Yang YS, Duan YT, Zhu HL. Recent advances in reaction-based fluorescent probes for the detection of central nervous system-related pathologies in vivo. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Fortibui MM, Lim W, Lee S, Park S, Kim J. A Golgi Apparatus-Targeting, Naphthalimide-Based Fluorescent Molecular Probe for the Selective Sensing of Formaldehyde. Molecules 2021; 26:4980. [PMID: 34443565 PMCID: PMC8401398 DOI: 10.3390/molecules26164980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
Formaldehyde (FA) is a colorless, flammable, foul-smelling chemical used in building materials and in the production of numerous household chemical goods. Herein, a fluorescent chemosensor for FA is designed and prepared using a selective organ-targeting probe containing naphthalimide as a fluorophore and hydrazine as a FA-binding site. The amine group of the hydrazine reacts with FA to form a double bond and this condensation reaction is accompanied by a shift in the absorption band of the probe from 438 nm to 443 nm upon the addition of FA. Further, the addition of FA is shown to enhance the emission band at 532 nm relative to the very weak fluorescent emission of the probe itself. Moreover, a high specificity is demonstrated towards FA over other competing analytes such as the calcium ion (Ca2+), magnesium ion (Mg2+), acetaldehyde, benzaldehyde, salicylaldehyde, glucose, glutathione, sodium sulfide (Na2S), sodium hydrosulfide (NaHS), hydrogen peroxide (H2O2), and the tert-butylhydroperoxide radical. A typical two-photon dye incorporated into the probe provides intense fluorescence upon excitation at 800 nm, thus demonstrating potential application as a two-photon fluorescent probe for FA sensing. Furthermore, the probe is shown to exhibit a fast response time for the sensing of FA at room temperature and to facilitate intense fluorescence imaging of breast cancer cells upon exposure to FA, thus demonstrating its potential application for the monitoring of FA in living cells. Moreover, the presence of the phenylsulfonamide group allows the probe to visualize dynamic changes in the targeted Golgi apparatus. Hence, the as-designed probe is expected to open up new possibilities for unique interactions with organ-specific biological molecules with potential application in early cancer cell diagnosis.
Collapse
Affiliation(s)
- Maxine Mambo Fortibui
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea; (M.M.F.); (S.L.)
| | - Wanyoung Lim
- Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Sohyun Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea; (M.M.F.); (S.L.)
| | - Sungsu Park
- Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
- Department School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Jinheung Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea; (M.M.F.); (S.L.)
| |
Collapse
|
9
|
Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, Andronie-Cioara FL, Toma MM, Bungau S, Bumbu AG. Role of Monoamine Oxidase Activity in Alzheimer's Disease: An Insight into the Therapeutic Potential of Inhibitors. Molecules 2021; 26:molecules26123724. [PMID: 34207264 PMCID: PMC8234097 DOI: 10.3390/molecules26123724] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 02/03/2023] Open
Abstract
Despite not being utilized as considerably as other antidepressants in the therapy of depression, the monoamine oxidase inhibitors (MAOIs) proceed to hold a place in neurodegeneration and to have a somewhat broad spectrum in respect of the treatment of neurological and psychiatric conditions. Preclinical and clinical studies on MAOIs have been developing in recent times, especially on account of rousing discoveries manifesting that these drugs possess neuroprotective activities. The altered brain levels of monoamine neurotransmitters due to monoamine oxidase (MAO) are directly associated with various neuropsychiatric conditions like Alzheimer’s disease (AD). Activated MAO induces the amyloid-beta (Aβ) deposition via abnormal cleavage of the amyloid precursor protein (APP). Additionally, activated MAO contributes to the generation of neurofibrillary tangles and cognitive impairment due to neuronal loss. No matter the attention of researchers on the participation of MAOIs in neuroprotection has been on monoamine oxidase-B (MAO-B) inhibitors, there is a developing frame of proof indicating that monoamine oxidase-A (MAO-A) inhibitors may also play a role in neuroprotection. The therapeutic potential of MAOIs alongside the complete understanding of the enzyme’s physiology may lead to the future advancement of these drugs.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
- Correspondence: (T.B.); (S.B.)
| | - Dapinder Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Neelam Sharma
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey;
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
- Correspondence: (T.B.); (S.B.)
| | - Adrian Gheorghe Bumbu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
10
|
Overview of the Neuroprotective Effects of the MAO-Inhibiting Antidepressant Phenelzine. Cell Mol Neurobiol 2021; 42:225-242. [PMID: 33839994 PMCID: PMC8732914 DOI: 10.1007/s10571-021-01078-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Phenelzine (PLZ) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. This multifaceted drug has a number of pharmacological and neurochemical effects in addition to inhibition of MAO, and findings on these effects have contributed to a body of evidence indicating that PLZ also has neuroprotective/neurorescue properties. These attributes are reviewed in this paper and include catabolism to the active metabolite β-phenylethylidenehydrazine (PEH) and effects of PLZ and PEH on the GABA-glutamate balance in brain, sequestration of reactive aldehydes, and inhibition of primary amine oxidase. Also discussed are the encouraging findings of the effects of PLZ in animal models of stroke, spinal cord injury, traumatic brain injury, and multiple sclerosis, as well other actions such as reduction of nitrative stress, reduction of the effects of a toxin on dopaminergic neurons, potential anticonvulsant actions, and effects on brain-derived neurotrophic factor, neural cell adhesion molecules, an anti-apoptotic factor, and brain levels of ornithine and N-acetylamino acids.
Collapse
|
11
|
Unzeta M, Hernàndez-Guillamon M, Sun P, Solé M. SSAO/VAP-1 in Cerebrovascular Disorders: A Potential Therapeutic Target for Stroke and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22073365. [PMID: 33805974 PMCID: PMC8036996 DOI: 10.3390/ijms22073365] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
The semicarbazide-sensitive amine oxidase (SSAO), also known as vascular adhesion protein-1 (VAP-1) or primary amine oxidase (PrAO), is a deaminating enzyme highly expressed in vessels that generates harmful products as a result of its enzymatic activity. As a multifunctional enzyme, it is also involved in inflammation through its ability to bind and promote the transmigration of circulating leukocytes into inflamed tissues. Inflammation is present in different systemic and cerebral diseases, including stroke and Alzheimer’s disease (AD). These pathologies show important affectations on cerebral vessels, together with increased SSAO levels. This review summarizes the main roles of SSAO/VAP-1 in human physiology and pathophysiology and discusses the mechanisms by which it can affect the onset and progression of both stroke and AD. As there is an evident interrelationship between stroke and AD, basically through the vascular system dysfunction, the possibility that SSAO/VAP-1 could be involved in the transition between these two pathologies is suggested. Hence, its inhibition is proposed to be an interesting therapeutical approach to the brain damage induced in these both cerebral pathologies.
Collapse
Affiliation(s)
- Mercedes Unzeta
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Auònoma de Barcelona, 08193 Barcelona, Spain;
| | - Mar Hernàndez-Guillamon
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Correspondence: ; Tel.: +34-934-896-766
| | - Ping Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| |
Collapse
|
12
|
Manna SK, Achar TK, Mondal S. Recent advances in selective formaldehyde detection in biological and environmental samples by fluorometric and colorimetric chemodosimeters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1084-1105. [PMID: 33595559 DOI: 10.1039/d0ay02252g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Formaldehyde, a highly reactive carbonyl species, has been widely used in day-to-day life owing to its numerous applications in essential commodities, etc.; the extrusion of formaldehyde from these sources basically leads to increased formaldehyde levels in the environment. Additionally, formaldehyde is endogenously produced in the human body via several biological processes. Considering the adverse effects of formaldehyde, it is highly important to develop an efficient and reliable method for monitoring formaldehyde in environmental and biological samples. Several chemodosimeters (reaction-based sensing probes) have been designed and synthesized to selectively detect the presence of formaldehyde utilizing the photophysical properties of molecules. In this review, we have comprehensively discussed the recent advances in the design principles and sensing mechanisms of developed probes and their biological/environmental applications in selective formaldehyde detection and imaging endogenous formaldehyde in cells. We have summarized the literature based on three different categories: (i) the Schiff base reaction, (ii) the 2-aza-Cope sigmatropic rearrangement reaction and (iii) miscellaneous approaches. In all cases, reactions are accompanied by changes in color and/or emission that can be detected by the naked eye.
Collapse
Affiliation(s)
- Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Purba Medinipur, West Bengal-721657, India.
| | - Tapas Kumar Achar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanchita Mondal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
13
|
Kumaravel S, Wu SH, Chen GZ, Huang ST, Lin CM, Lee YC, Chen CH. Development of ratiometric electrochemical molecular switches to assay endogenous formaldehyde in live cells, whole blood and creatinine in saliva. Biosens Bioelectron 2021; 171:112720. [DOI: 10.1016/j.bios.2020.112720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 01/12/2023]
|
14
|
Cai S, Liu C, Jiao X, Zhao L, Zeng X. A rational design of fluorescent probes for specific detection and imaging of endogenous formaldehyde in living cells. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Yuan W, zhong X, Han Q, Jiang Y, Shen J, Wang B. A novel formaldehyde fluorescent probe based on 1, 8-naphthalimide derivative and its application in living cell. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Unnikrishnan B, Wu RS, Wei SC, Huang CC, Chang HT. Fluorescent Carbon Dots for Selective Labeling of Subcellular Organelles. ACS OMEGA 2020; 5:11248-11261. [PMID: 32478212 PMCID: PMC7254528 DOI: 10.1021/acsomega.9b04301] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/24/2020] [Indexed: 05/05/2023]
Abstract
With the recent advancement in understanding and control of the structure and optical properties of fluorescent carbon dots (CDs), they have been shown to be valuable in biolabeling of bacteria, tumor cells, tissues, and organelles. Their extremely small size and tunable functional properties coupled with ultrastable fluorescence enable CDs to be used for easy and effective labeling of various organelles. In addition, CDs with advantages of easy preparation and functionalization with recognition elements and/or drugs have emerged as nanocarriers for organelle-targeted drug delivery. In this review, we mainly discuss the applications of fluorescent CDs for the labeling of organelles, including lysosome, nucleoli, nucleus, endoplasmic reticulum, and mitochondria. We highlight the importance of the surface properties (functional groups, hydrophobicity/hydrophilicity, charges, zwitterions) and the size of CDs for labeling. Several interesting examples are provided to highlight the potential and disadvantages of CDs for labeling organelles. Strategies for the preparation of CDs for specific labeling of organelles are suggested. With the edge in preparation of diverse CDs, their potential in labeling and drug delivery is highly expected.
Collapse
Affiliation(s)
- Binesh Unnikrishnan
- Department
of Bioscience and Biotechnology, National
Taiwan Ocean University, 2, Beining Road, Keelung 20224, Taiwan
| | - Ren-Siang Wu
- Department
of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shih-Chun Wei
- Department
of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department
of Bioscience and Biotechnology, National
Taiwan Ocean University, 2, Beining Road, Keelung 20224, Taiwan
- Center
of Excellence for the Oceans, National Taiwan
Ocean University, Keelung 20224, Taiwan
- School
of Pharmacy, College of Pharmacy, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Huan-Tsung Chang
- Department
of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Department
of Chemistry, Chung Yuan Christian University, Chungli District, Taoyuan City 32023, Taiwan
| |
Collapse
|
17
|
Chen J, Shao C, Wang X, Gu J, Zhu HL, Qian Y. Imaging of formaldehyde fluxes in epileptic brains with a two-photon fluorescence probe. Chem Commun (Camb) 2020; 56:3871-3874. [DOI: 10.1039/d0cc00676a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A two-photon (TP) fluorescence probe has been developed for imaging endogenous FA fluxes during metabolic and epigenetic processes in animal models, especially in live brains.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- China
| | - Chenwen Shao
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- China
| | - Xueao Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- China
| | - Jin Gu
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- China
| | - Yong Qian
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
18
|
Haddad M, Perrotte M, Khedher MRB, Demongin C, Lepage A, Fülöp T, Ramassamy C. Methylglyoxal and Glyoxal as Potential Peripheral Markers for MCI Diagnosis and Their Effects on the Expression of Neurotrophic, Inflammatory and Neurodegenerative Factors in Neurons and in Neuronal Derived-Extracellular Vesicles. Int J Mol Sci 2019; 20:ijms20194906. [PMID: 31623327 PMCID: PMC6801730 DOI: 10.3390/ijms20194906] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/14/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022] Open
Abstract
Methylglyoxal (MG) and glyoxal (GO) are suggested to be associated with the development of neurodegenerative pathologies. However, their peripheral levels in relation to cognitive decline and their effects on key factors in neuronal cells are poorly investigated. The aim of this study was to determine their serum levels in MCI (mild cognitive impairment) and Alzheimer’s disease (AD) patients, to analyze their effects on the neurotrophic and inflammatory factors, on neurodegenerative markers in neuronal cells and in neuronal derived-extracellular vesicles (nEVs). Our results show that MG and GO levels in serum, determined by HPLC, were higher in MCI. ROC (receiver-operating characteristic curves) analysis showed that the levels of MG in serum have higher sensitivity to differentiate MCI from controls but not from AD. Meanwhile, serum GO levels differentiate MCI from control and AD groups. Cells and nEVs levels of BDNF, PRGN, NSE, APP, MMP-9, ANGPTL-4, LCN2, PTX2, S100B, RAGE, Aβ peptide, pTau T181 and alpha-synuclein were quantified by luminex assay. Treatment of neuronal cells with MG or GO reduced the cellular levels of NSE, PRGN, APP, MMP-9 and ANGPTL-4 and the nEVs levels of BDNF, PRGN and LCN2. Our findings suggest that targeting MG and GO may be a promising therapeutic strategy to prevent or delay the progression of AD.
Collapse
Affiliation(s)
- Mohamed Haddad
- Institut National de Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada.
- Institute on Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Morgane Perrotte
- Institut National de Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada.
- Institute on Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Mohamed Raâfet Ben Khedher
- Institut National de Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada.
- Institute on Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Clément Demongin
- Institut National de Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada.
| | - Aurélie Lepage
- Department of Medicine, Geriatric Division, Research Center on Aging, Sherbrooke University, Sherbrooke, QC J1H 4C4, Canada.
| | - Tamás Fülöp
- Department of Medicine, Geriatric Division, Research Center on Aging, Sherbrooke University, Sherbrooke, QC J1H 4C4, Canada.
| | - Charles Ramassamy
- Institut National de Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada.
- Institute on Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
19
|
Ma Y, Tang Y, Zhao Y, Lin W. Rational Design of a Reversible Fluorescent Probe for Sensing Sulfur Dioxide/Formaldehyde in Living Cells, Zebrafish, and Living Mice. Anal Chem 2019; 91:10723-10730. [DOI: 10.1021/acs.analchem.9b02119] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yanyan Ma
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| | - Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| | - Yuping Zhao
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People’s Republic of China
| |
Collapse
|
20
|
Solé M, Esteban-Lopez M, Taltavull B, Fábregas C, Fadó R, Casals N, Rodríguez-Álvarez J, Miñano-Molina AJ, Unzeta M. Blood-brain barrier dysfunction underlying Alzheimer's disease is induced by an SSAO/VAP-1-dependent cerebrovascular activation with enhanced Aβ deposition. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2189-2202. [PMID: 31047972 DOI: 10.1016/j.bbadis.2019.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/03/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022]
Abstract
Dysfunctions of the vascular system directly contribute to the onset and progression of Alzheimer's disease (AD). The blood-brain barrier (BBB) shows signs of malfunction at early stages of the disease. When Abeta peptide (Aβ) is deposited on brain vessels, it induces vascular degeneration by producing reactive oxygen species and promoting inflammation. These molecular processes are also related to an excessive SSAO/VAP-1 (semicarbazide-sensitive amine oxidase) enzymatic activity, observed in plasma and in cerebrovascular tissue of AD patients. We studied the contribution of vascular SSAO/VAP-1 to the BBB dysfunction in AD using in vitro BBB models. Our results show that SSAO/VAP-1 expression is associated to endothelial activation by altering the release of pro-inflammatory and pro-angiogenic angioneurins, most highly IL-6, IL-8 and VEGF. It is also related to a BBB structure alteration, with a decrease in tight-junction proteins such as zona occludens or claudin-5. Moreover, the BBB function reveals increased permeability and leukocyte adhesion in cells expressing SSAO/VAP-1, as well as an enhancement of the vascular Aβ deposition induced by mechanisms both dependent and independent of the enzymatic activity of SSAO/VAP-1. These results reveal an interesting role of vascular SSAO/VAP-1 in BBB dysfunction related to AD progression, opening a new window in the search of alternative therapeutic targets for fighting AD.
Collapse
Affiliation(s)
- Montse Solé
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| | - María Esteban-Lopez
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Biel Taltavull
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Cristina Fábregas
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Rut Fadó
- Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Jose Rodríguez-Álvarez
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Alfredo J Miñano-Molina
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mercedes Unzeta
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| |
Collapse
|
21
|
Liu H, Sun Y, Li Z, Yang J, Aryee AA, Qu L, Du D, Lin Y. Lysosome-targeted carbon dots for ratiometric imaging of formaldehyde in living cells. NANOSCALE 2019; 11:8458-8463. [PMID: 30994690 DOI: 10.1039/c9nr01678c] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Formaldehyde (FA) is involved in many biological processes and is closely connected with many diseases including Alzheimer's disease and cancer. Therefore, methods for sensitive and selective detection of FA in living cells are highly demanded. As a new class of carbon nanomaterials, carbon dots (CDs) have attracted great attention owing to their robust photostability, good biocompatibility and environmental friendliness. In this manuscript, the first lysosome-targeted CDs for ratiometric fluorescence detection of FA were efficiently prepared from dexamethasone and 1,2,4,5-tetraaminobenzene through the microwave-assisted hydrothermal method. These CDs show highly selective and sensitive sensing ability towards FA with fast response and great changes of ratio values. The CDs exhibit robust photostability and good biocompatibility and were successfully employed in ratiometric fluorescence bioimaging of FA fluctuations in lysosomes of living cells, which demonstrates their great practicability in FA-related bioanalysis and biological studies.
Collapse
Affiliation(s)
- Haifang Liu
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Baker G, Matveychuk D, MacKenzie EM, Holt A, Wang Y, Kar S. Attenuation of the effects of oxidative stress by the MAO-inhibiting antidepressant and carbonyl scavenger phenelzine. Chem Biol Interact 2019; 304:139-147. [PMID: 30857888 DOI: 10.1016/j.cbi.2019.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
Phenelzine (β-phenylethylhydrazine) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. It possesses a number of important pharmacological properties which may alter the effects of oxidative stress. After conducting a comprehensive literature search, the authors of this review paper aim to provide an overview and discussion of the mechanisms by which phenelzine may attenuate oxidative stress. It inhibits γ-aminobutyric acid (GABA) transaminase, resulting in elevated brain GABA levels, inhibits both MAO and primary amine oxidase and, due to its hydrazine-containing structure, reacts chemically to sequester a number of reactive aldehydes (e.g. acrolein and 4-hydroxy-2-nonenal) proposed to be implicated in oxidative stress in a number of neurodegenerative disorders. Phenelzine is unusual in that it is both an inhibitor of and a substrate for MAO, the latter action producing at least one active metabolite, β-phenylethylidenehydrazine (PEH). This metabolite inhibits GABA transaminase, is a very weak inhibitor of MAO but a strong inhibitor of primary amine oxidase, and sequesters aldehydes. Phenelzine may ameliorate the effects of oxidative stress by reducing formation of reactive metabolites (aldehydes, hydrogen peroxide, ammonia/ammonia derivatives) produced by the interaction of MAO with biogenic amines, by sequestering various other reactive aldehydes and by inhibiting primary amine oxidase. In PC12 cells treated with the neurotoxin MPP+, phenelzine has been reported to reduce several adverse effects of MPP+. It has also been reported to reduce lipid peroxidative damage induced in plasma and platelet proteins by peroxynitrite. In animal models, phenelzine has a neuroprotective effect in global ischemia and in cortical impact traumatic brain injury. Recent studies reported in the literature on the possible involvement of acrolein in spinal cord injury and multiple sclerosis indicate that phenelzine can attenuate adverse effects of acrolein in these models. Results from studies in our laboratories on effects of phenelzine and PEH on primary amine oxidase (which catalyzes formation of toxic aldehydes and is overexpressed in Alzheimer's disease), on sequestration of the toxic aldehyde acrolein, and on reduction of acrolein-induced toxicity in mouse cortical neurons are also reported.
Collapse
Affiliation(s)
- Glen Baker
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Dmitriy Matveychuk
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Erin M MacKenzie
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Andrew Holt
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Yanlin Wang
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada; Department of Medicine (Neurology), University of Alberta, Edmonton, Canada.
| | - Satyabrata Kar
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada; Department of Medicine (Neurology), University of Alberta, Edmonton, Canada.
| |
Collapse
|
23
|
Abstract
Significance: Vascular adhesion protein-1 (VAP-1) is an ectoenzyme that oxidates primary amines in a reaction producing also hydrogen peroxide. VAP-1 on the blood vessel endothelium regulates leukocyte extravasation from the blood into tissues under physiological and pathological conditions. Recent Advances: Inhibition of VAP-1 by neutralizing antibodies and by several novel small-molecule enzyme inhibitors interferes with leukocyte trafficking and alleviates inflammation in many experimental models. Targeting of VAP-1 also shows beneficial effects in several other diseases, such as ischemia/reperfusion, fibrosis, and cancer. Moreover, soluble VAP-1 levels may serve as a new prognostic biomarker in selected diseases. Critical Issues: Understanding the contribution of the enzyme activity-independent and enzyme activity-dependent functions, which often appear to be mediated by the hydrogen peroxide production, in the VAP-1 biology will be crucial. Similarly, there is a pressing need to understand which of the VAP-1 functions are regulated through the modulation of leukocyte trafficking, and what is the role of VAP-1 synthesized in adipose and smooth muscle cells. Future Directions: The specificity and selectivity of new VAP-1 inhibitors, and their value in animal models under therapeutic settings need to be addressed. Results from several programs studying the therapeutic potential of VAP-1 inhibition, which now are in clinical trials, will reveal the relevance of this amine oxidase in humans.
Collapse
Affiliation(s)
- Marko Salmi
- 1 MediCity , Turku, Finland .,2 Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- 1 MediCity , Turku, Finland .,2 Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
24
|
Tang Y, Ma Y, Yin J, Lin W. Strategies for designing organic fluorescent probes for biological imaging of reactive carbonyl species. Chem Soc Rev 2019; 48:4036-4048. [DOI: 10.1039/c8cs00956b] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review highlights the design strategies of typical organic fluorescent probes for reactive carbonyl species and their application in biological imaging.
Collapse
Affiliation(s)
- Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Yanyan Ma
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Junling Yin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|
25
|
BODIPY-based fluorescent sensor for imaging of endogenous formaldehyde in living cells. Talanta 2018; 189:274-280. [DOI: 10.1016/j.talanta.2018.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/22/2018] [Accepted: 07/01/2018] [Indexed: 12/20/2022]
|
26
|
Yang M, Fan J, Du J, Long S, Wang J, Peng X. Imaging of Formaldehyde in Live Cells and Daphnia magna via Aza-Cope Reaction Utilizing Fluorescence Probe With Large Stokes Shifts. Front Chem 2018; 6:488. [PMID: 30374438 PMCID: PMC6196232 DOI: 10.3389/fchem.2018.00488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022] Open
Abstract
Formaldehyde (FA), a highly reactive carbonyl species, plays significant role in physiological and pathological functions. However, elevated FA will lead to cognitive impairments, memory loss and various neurodegenerative diseases due to its potent DNA and protein cross-linking mechanisms. In this work, a fluorescence probe, BD-CHO, based on benz-2-oxa-1, 3- diazole (BD) skeleton, was designed and synthesized for detection of FA via Aza-Cope reaction with high selectivity and large Stokes shifts (about 118 nm). BD-CHO was successfully applied to monitor the changes FA level in living cells, and kidney tissues of mice. Importantly it was the first time that BD-CHO was used for visualizing exogenous FA changes in Daphnia magna through fluorescence microscopy, demonstrating its potential application for studies of biological processes associated with FA.
Collapse
Affiliation(s)
- Mingwang Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Jia Wang
- Department of Breast Surgery, Institute of Breast Disease, Second Hospital of Dalian Medical University, Dalian, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| |
Collapse
|
27
|
Shanahan P, O'Sullivan J, Tipton KF, Kinsella GK, Ryan BJ, Henehan GTM. Theobromine and related methylxanthines as inhibitors of Primary Amine Oxidase. J Food Biochem 2018; 43:e12697. [PMID: 31353656 DOI: 10.1111/jfbc.12697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 02/02/2023]
Abstract
Methylxanthines are among the most widely consumed drugs in the world and evidence of their health benefits has been growing in recent years. Primary Amine Oxidase (PrAO) has been recognized as a therapeutic target for the amelioration of inflammatory, vascular, and neurodegenerative diseases. Previous work in our laboratories showed that caffeine inhibited Bovine PrAO with a Ki of 1.0 mM using benzylamine as substrate. This study aimed to extend our previous work and explore the possibility that related methylxanthines might influence PrAO activity. While paraxanthine, theophylline, and 7-methylxanthine had little effect on PrAO, theobromine was a noncompetitive inhibitor with a Ki of 276 ± 44 µM. The specific structural elements of methylxanthines that are required for inhibition allow us to suggest that their binding site on PrAO may be a target for therapeutics. The health benefits associated with dietary methylxanthine consumption could involve PrAO inhibition. PRACTICAL APPLICATIONS: Inhibition of PrAO by methylxanthines may be significant in conferring health benefits. The design of PrAO inhibitors based on the structural motifs identified in this study (N-methylation at specific locations) is indicated. Existing therapeutics based on a core xanthine structure can be evaluated for their effects on PrAO. PrAO inhibition must be considered as a potential mediator of the beneficial health effects of some methylxanthines. If inhibition in human tissues is comparable to, or greater than, that found in these studies it points to an important role for these compounds in human health.
Collapse
Affiliation(s)
- Padraig Shanahan
- Applied Enzymology Group, School of Food Science and Environmental Health, College of Science and Health, Dublin Institute of Technology, Dublin, Ireland
| | | | - Keith F Tipton
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Gemma K Kinsella
- Applied Enzymology Group, School of Food Science and Environmental Health, College of Science and Health, Dublin Institute of Technology, Dublin, Ireland
| | - Barry J Ryan
- Applied Enzymology Group, School of Food Science and Environmental Health, College of Science and Health, Dublin Institute of Technology, Dublin, Ireland
| | - Gary T M Henehan
- Applied Enzymology Group, School of Food Science and Environmental Health, College of Science and Health, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
28
|
Oh J, Kang S, Lee CG, Han MS. A colorimetric chemosensor for heptanal with selectivity over formaldehyde and acetaldehyde through synergistic interaction of hydrophobic interactions and oxime formation. Analyst 2018; 143:4592-4599. [DOI: 10.1039/c8an01238e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxylamine-functionalized polydiacetylene was evaluated as a heptanal chemosensor with selectivity over formaldehyde and acetaldehyde.
Collapse
Affiliation(s)
- Jinyoung Oh
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Seungyoon Kang
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Cheol Gyu Lee
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Min Su Han
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| |
Collapse
|
29
|
Xu A, Tang Y, Lin W. Development of a mitochondrial-targeted two-photon fluorescence turn-on probe for formaldehyde and its bio-imaging applications in living cells and tissues. NEW J CHEM 2018. [DOI: 10.1039/c8nj01240g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first mitochondrial-targeted two-photon fluorescence probe (MT-FA) for formaldehyde (FA) was engineered for monitoring FA in the mitochondria of living cells and liver tissues in one- and two-photon modes.
Collapse
Affiliation(s)
- An Xu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|
30
|
Liang XG, Chen B, Shao LX, Cheng J, Huang MZ, Chen Y, Hu YZ, Han YF, Han F, Li X. A Fluorogenic Probe for Ultrafast and Reversible Detection of Formaldehyde in Neurovascular Tissues. Am J Cancer Res 2017; 7:2305-2313. [PMID: 28740553 PMCID: PMC5505062 DOI: 10.7150/thno.19554] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/16/2017] [Indexed: 12/19/2022] Open
Abstract
Formaldehyde (FA) is endogenously produced in live systems and has been implicated in a diverse array of pathophysiological processes. To disentangle the detailed molecular mechanisms of FA biology, a reliable method for monitoring FA changes in live cells would be indispensable. Although there have been several fluorescent probes reported to detect FA, most are limited by the slow detection kinetics and the intrinsic disadvantage of detecting FA in an irreversible manner which may disturb endogenous FA homeostasis. Herein we developed a coumarin-hydrazonate based fluorogenic probe (PFM) based on a finely-tailored stereoelectronic effect. PFM could respond to FA swiftly and reversibly. This, together with its desirable specificity and sensitivity, endows us to track endogenous FA in live neurovascular cells with excellent temporal and spatial resolution. Further study in the brain tissue imaging showed the first direct observation of aberrant FA accumulation in cortex and hippocampus of Alzheimer's mouse model, indicating the potential of PFM as a diagnostic tool.
Collapse
|
31
|
Tang Y, Ma Y, Xu A, Xu G, Lin W. A turn-on fluorescent probe for endogenous formaldehyde in the endoplasmic reticulum of living cells. Methods Appl Fluoresc 2017; 5:024005. [PMID: 28430668 DOI: 10.1088/2050-6120/aa6773] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As the simplest aldehyde compounds, formaldehyde (FA) is implicated in nervous system diseases and cancer. Endoplasmic reticulum is an organelle that plays important functions in living cells. Accordingly, the development of efficient methods for FA detection in the endoplasmic reticulum (ER) is of great biomedical importance. In this work, we developed the first ER-targeted fluorescent FA probe Na-FA-ER. The detection is based on the condensation reaction of the hydrazine group and FA to suppress the photo-induced electron transfer (PET) pathway, resulting in a fluorescence increase. The novel Na-FA-ER showed high sensitivity to FA. In addition, the Na-FA-ER enabled the bio-imaging of exogenous and endogenous FA in living HeLa cells. Most significantly, the new Na-FA-ER was employed to visualize the endogenous FA in the ER in living cells for the first time.
Collapse
Affiliation(s)
- Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Chen Y, Zhou CF, Xiao F, Huang HL, Zhang P, Gu HF, Tang XQ. Inhibition of ALDH2 protects PC12 cells against formaldehyde-induced cytotoxicity: involving the protection of hydrogen sulphide. Clin Exp Pharmacol Physiol 2017; 44:595-601. [DOI: 10.1111/1440-1681.12741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/11/2017] [Accepted: 02/23/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Ying Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study; Institute of Pharmacy and Pharmacology; University of South China; Hengyang Hunan China
- Institute of Neuroscience; Medical College; University of South China; Hengyang Hunan China
| | - Cheng-Fang Zhou
- Institute of Neuroscience; Medical College; University of South China; Hengyang Hunan China
| | - Fan Xiao
- Institute of Neuroscience; Medical College; University of South China; Hengyang Hunan China
| | - Hong-Lin Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study; Institute of Pharmacy and Pharmacology; University of South China; Hengyang Hunan China
| | - Ping Zhang
- Department of Neurology; Nanhua Affiliated Hospital; University of South China; Hengyang Hunan China
| | - Hong-Feng Gu
- Institute of Neuroscience; Medical College; University of South China; Hengyang Hunan China
| | - Xiao-Qing Tang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study; Institute of Pharmacy and Pharmacology; University of South China; Hengyang Hunan China
- Institute of Neuroscience; Medical College; University of South China; Hengyang Hunan China
| |
Collapse
|
33
|
Analgesic and Anti-Inflammatory Effects of the Novel Semicarbazide-Sensitive Amine-Oxidase Inhibitor SzV-1287 in Chronic Arthritis Models of the Mouse. Sci Rep 2017; 7:39863. [PMID: 28067251 PMCID: PMC5220351 DOI: 10.1038/srep39863] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/28/2016] [Indexed: 01/03/2023] Open
Abstract
Semicarbazide-sensitive amine oxidase (SSAO) catalyses oxidative deamination of primary amines. Since there is no data about its function in pain and arthritis mechanisms, we investigated the effects of our novel SSAO inhibitor SzV-1287 in chronic mouse models of joint inflammation. Effects of SzV-1287 (20 mg/kg i.p./day) were investigated in the K/BxN serum-transfer and complete Freund's adjuvant (CFA)-evoked active immunization models compared to the reference SSAO inhibitor LJP-1207. Mechanonociception was assessed by aesthesiometry, oedema by plethysmometry, clinical severity by scoring, joint function by grid test, myeloperoxidase activity by luminescence, vascular leakage by fluorescence in vivo imaging, histopathological changes by semiquantitative evaluation, and cytokines by Luminex assay. SzV-1287 significantly inhibited hyperalgesia and oedema in both models. Plasma leakage and keratinocyte chemoattractant production in the tibiotarsal joint, but not myeloperoxidase activity was significantly reduced by SzV-1287 in K/BxN-arthritis. SzV-1287 did not influence vascular and cellular mechanisms in CFA-arthritis, but significantly decreased histopathological alterations. There was no difference in the anti-hyperalgesic and anti-inflammatory actions of SzV-1287 and LJP-1207, but only SzV-1287 decreased CFA-induced tissue damage. Unlike SzV-1287, LJP-1207 induced cartilage destruction, which was confirmed in vitro. SzV-1287 exerts potent analgesic and anti-inflammatory actions in chronic arthritis models of distinct mechanisms, without inducing cartilage damage.
Collapse
|
34
|
Tong Z, Wang W, Luo W, Lv J, Li H, Luo H, Jia J, He R. Urine Formaldehyde Predicts Cognitive Impairment in Post-Stroke Dementia and Alzheimer's Disease. J Alzheimers Dis 2017; 55:1031-1038. [PMID: 27802225 DOI: 10.3233/jad-160357] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although Alzheimer's disease (AD) was first described over 100 years ago, there is still no suitable biomarker for diagnosing AD in easily collectable samples (e.g., blood plasma, saliva, and urine). Here, we investigated the relationship between morning urine formaldehyde concentration and cognitive impairment in patients with post-stroke dementia (PSD) or AD in this cross-sectional survey for 7 years. Cognitive abilities of the study participants (n = 577, four groups: 231 controls, 61 stroke, 65 PSD, and 220 AD) were assessed by Mini-Mental State Examination (MMSE). Morning urine formaldehyde concentrations were measured by high performance liquid chromatography (HPLC). Gender- and age-matched participants were selected from the four groups (n = 42 in each group). Both semicarbazide-sensitive amine oxidase (SSAO, a formaldehyde-generating enzyme) and formaldehyde levels in the blood and urine were analyzed by using an enzyme-linked immunosorbent assay (ELISA) and HPLC, respectively. We found that morning urine formaldehyde levels were inversely correlated with MMSE scores. The threshold value (the best Cut-Off value) of formaldehyde concentration for predicting cognitive impairment was 0.0418 mM in patients with PSD (Sensitivity: 92.3%; Specificity: 77.1%), and 0.0449 mM in patients with AD (Sensitivity: 94.1%; Specificity: 81.8%), respectively. The results of biochemical analysis revealed that the observed increase in urine formaldehyde resulted from an overexpression of SSAO in the blood. The findings suggest that measuring the concentration of formaldehyde in overnight fasting urine could be used as a potentially noninvasive method for evaluating the likelihood of ensuing cognitive impairment or dementia.
Collapse
Affiliation(s)
- Zhiqian Tong
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Beijing, China
| | | | - Wenhong Luo
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Jihui Lv
- Beijing Geriatric Hospital, Beijing, China
| | - Hui Li
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Hongjun Luo
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Jianping Jia
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Beijing, China
| | - Rongqiao He
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Beijing, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Matveychuk D, Dursun SM, Wood PL, Baker GB. Reactive Aldehydes and Neurodegenerative Disorders. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.19691231040000] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dmitriy Matveychuk
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Serdar M. Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul L. Wood
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Glen B. Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
36
|
Tang Y, Kong X, Liu ZR, Xu A, Lin W. Lysosome-Targeted Turn-On Fluorescent Probe for Endogenous Formaldehyde in Living Cells. Anal Chem 2016; 88:9359-9363. [PMID: 27653930 DOI: 10.1021/acs.analchem.6b02879] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As one of the simplest reactive carbonyl species, formaldehyde is implicated in nervous system diseases and cancer. Organelles play crucial roles in various physiological processes in living cells. Accordingly, the detection of endogenous formaldehyde at the subcellular level is of high interest. We herein describe the development of the first organelle-targeted fluorescent formaldehyde probe (Na-FA-Lyso). The new probe exhibits favorable features including a large fluorescence enhancement (about 350-fold) and a fast response to formaldehyde. Significantly, the novel probe Na-FA-Lyso was employed to visualize the endogenous formaldehyde in the lysosomes in living cells for the first time.
Collapse
Affiliation(s)
- Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - Zhan-Rong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - An Xu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan , Jinan, Shandong 250022, P. R. China
| |
Collapse
|
37
|
Liu W, Truillet C, Flavell RR, Brewer TF, Evans MJ, Wilson DM, Chang CJ. A reactivity-based [ 18F]FDG probe for in vivo formaldehyde imaging using positron emission tomography. Chem Sci 2016; 7:5503-5507. [PMID: 30034690 PMCID: PMC6021783 DOI: 10.1039/c6sc01503d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/04/2016] [Indexed: 12/11/2022] Open
Abstract
We present an aza-Cope-based reactivity probe for imaging formaldehyde in vivo using positron emission tomography.
Formaldehyde (FA) is a reactive carbonyl species (RCS) that plays a broad spectrum of roles in epigenetics, toxicology, and progression of diseases ranging from cancer to diabetes to neurodegeneration, motivating the development of translatable technologies for FA imaging. Here we report formaldehyde-caged-[18F]fluorodeoxyglucose-1 ([18F]FAC-FDG-1), an aza-Cope-based reactivity probe for in vivo FA imaging using positron emission tomography (PET). [18F]FAC-FDG-1 reacts selectively with FA over potentially competing analytes to generate [18F]FDG, allowing its FA-dependent uptake and retention in cell culture as well as in animal models. The relative uptake of [18F]FAC-FDG-1 was evaluated using FA-treated PC3 prostate cancer and U87-MG glioblastoma cells demonstrating a dose-dependent response to exogenously added FA. Moreover, [18F]FAC-FDG-1 is capable of FA detection in vivo using a PC3 tumor xenograft model. In addition to providing a unique tool for monitoring FA in living animals, these data establish a general approach for translatable detection of FA and other reactive biological analytes in vivo by exploiting the widely-available clinical [18F]FDG tracer as a masked aldehyde that can be caged by analyte-responsive triggers.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry , University of Berkeley , Berkeley , CA 94720 , USA . .,Department of Radiology and Biomedical Imaging , University of California , San Francisco , California 94158 , USA .
| | - Charles Truillet
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California 94158 , USA .
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California 94158 , USA .
| | - Thomas F Brewer
- Department of Chemistry , University of Berkeley , Berkeley , CA 94720 , USA .
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California 94158 , USA .
| | - David M Wilson
- Department of Radiology and Biomedical Imaging , University of California , San Francisco , California 94158 , USA .
| | - Christopher J Chang
- Department of Chemistry , University of Berkeley , Berkeley , CA 94720 , USA . .,Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , USA.,Howard Hughes Medical Institute , University of California , Berkeley , California 94720 , USA
| |
Collapse
|
38
|
Tang Y, Kong X, Xu A, Dong B, Lin W. Development of a Two-Photon Fluorescent Probe for Imaging of Endogenous Formaldehyde in Living Tissues. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510373] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Biological Science; University of Jinan; Jinan Shandong 250022 P.R. China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Biological Science; University of Jinan; Jinan Shandong 250022 P.R. China
| | - An Xu
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Biological Science; University of Jinan; Jinan Shandong 250022 P.R. China
| | - Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Biological Science; University of Jinan; Jinan Shandong 250022 P.R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Biological Science; University of Jinan; Jinan Shandong 250022 P.R. China
| |
Collapse
|
39
|
Tang Y, Kong X, Xu A, Dong B, Lin W. Development of a Two-Photon Fluorescent Probe for Imaging of Endogenous Formaldehyde in Living Tissues. Angew Chem Int Ed Engl 2016; 55:3356-9. [DOI: 10.1002/anie.201510373] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/09/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Biological Science; University of Jinan; Jinan Shandong 250022 P.R. China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Biological Science; University of Jinan; Jinan Shandong 250022 P.R. China
| | - An Xu
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Biological Science; University of Jinan; Jinan Shandong 250022 P.R. China
| | - Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Biological Science; University of Jinan; Jinan Shandong 250022 P.R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Biological Science; University of Jinan; Jinan Shandong 250022 P.R. China
| |
Collapse
|
40
|
Roth A, Li H, Anorma C, Chan J. A Reaction-Based Fluorescent Probe for Imaging of Formaldehyde in Living Cells. J Am Chem Soc 2015; 137:10890-3. [DOI: 10.1021/jacs.5b05339] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aaron Roth
- Department
of Chemistry,
Roger Adams Laboratory, University of Illinois, 600 South Mathews, Urbana, Illinois 61801, United States
| | - Hao Li
- Department
of Chemistry,
Roger Adams Laboratory, University of Illinois, 600 South Mathews, Urbana, Illinois 61801, United States
| | - Chelsea Anorma
- Department
of Chemistry,
Roger Adams Laboratory, University of Illinois, 600 South Mathews, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department
of Chemistry,
Roger Adams Laboratory, University of Illinois, 600 South Mathews, Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
Pannecoeck R, Serruys D, Benmeridja L, Delanghe JR, van Geel N, Speeckaert R, Speeckaert MM. Vascular adhesion protein-1: Role in human pathology and application as a biomarker. Crit Rev Clin Lab Sci 2015; 52:284-300. [PMID: 26287391 DOI: 10.3109/10408363.2015.1050714] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vascular adhesion protein-1 (VAP-1) is a member of the copper-containing amine oxidase/semicarbazide-sensitive amine oxidase (AOC/SSAO) enzyme family. SSAO enzymes catalyze oxidative deamination of primary amines, which results in the production of the corresponding aldehyde, hydrogen peroxide and ammonium. VAP-1 is continuously expressed as a transmembrane glycoprotein in the vascular wall during development and facilitates the accumulation of inflammatory cells into the inflamed environment in concert with other leukocyte adhesion molecules. The soluble form of VAP-1 is released into the circulation mainly from vascular endothelial cells. Over- and under-expression of sVAP-1 result in alterations of the reported reaction product levels, which are involved in the pathogenesis of multiple human diseases. The combination of enzymatic and adhesion capacities as well as its strong association with inflammatory pathologies makes VAP-1 an interesting therapeutic target for drug discovery. In this article, we will review the general characteristics and biological functions of VAP-1, focusing on its important role as a prognostic biomarker in human pathologies. In addition, the potential therapeutic application of VAP-1 inhibitors will be discussed.
Collapse
Affiliation(s)
| | | | | | | | - Nanja van Geel
- c Department of Dermatology , Ghent University Hospital , Gent , Belgium
| | | | | |
Collapse
|
42
|
Dorokhov YL, Shindyapina AV, Sheshukova EV, Komarova TV. Metabolic methanol: molecular pathways and physiological roles. Physiol Rev 2015; 95:603-44. [PMID: 25834233 DOI: 10.1152/physrev.00034.2014] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methanol has been historically considered an exogenous product that leads only to pathological changes in the human body when consumed. However, in normal, healthy individuals, methanol and its short-lived oxidized product, formaldehyde, are naturally occurring compounds whose functions and origins have received limited attention. There are several sources of human physiological methanol. Fruits, vegetables, and alcoholic beverages are likely the main sources of exogenous methanol in the healthy human body. Metabolic methanol may occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl methionine. Regardless of its source, low levels of methanol in the body are maintained by physiological and metabolic clearance mechanisms. Although human blood contains small amounts of methanol and formaldehyde, the content of these molecules increases sharply after receiving even methanol-free ethanol, indicating an endogenous source of the metabolic methanol present at low levels in the blood regulated by a cluster of genes. Recent studies of the pathogenesis of neurological disorders indicate metabolic formaldehyde as a putative causative agent. The detection of increased formaldehyde content in the blood of both neurological patients and the elderly indicates the important role of genetic and biochemical mechanisms of maintaining low levels of methanol and formaldehyde.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Anastasia V Shindyapina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Ekaterina V Sheshukova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Tatiana V Komarova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
43
|
Solé M, Miñano-Molina AJ, Unzeta M. A cross-talk between Aβ and endothelial SSAO/VAP-1 accelerates vascular damage and Aβ aggregation related to CAA-AD. Neurobiol Aging 2015; 36:762-75. [DOI: 10.1016/j.neurobiolaging.2014.09.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/18/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023]
|
44
|
Wei HJ, Li X, Tang XQ. Therapeutic benefits of H₂S in Alzheimer's disease. J Clin Neurosci 2014; 21:1665-9. [PMID: 24882562 DOI: 10.1016/j.jocn.2014.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/25/2013] [Accepted: 01/01/2014] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H2S), an endogenously generated gaseous mediator, has been discovered to regulate a series of physiological and pathological processes in mammalian systems. In recent decades scientific interest has grown in the physiological and pathological implications of H2S, specifically its role in the central nervous system (CNS). H2S can work in the CNS as a neuromodulator to promote long-term potentiation and regulate intracellular calcium concentration and pH level in brain cells. H2S may protect the nervous system from oxidative stress, apoptosis, or degeneration. The aim of this review is to present the current understanding of H2S as a potential agent for the treatment of Alzheimer's disease (AD). Dysregulation of H2S homeostasis is implicated in the pathological processes of AD. Substantial evidence from both in vivo and in vitro studies shows that H2S prevents neuronal impairment and attenuates cognitive dysfunction in the experimental model of AD. The mechanisms underlying the protective role of H2S in AD involve its antioxidant, anti-apoptotic, and anti-inflammatory effects. We conclude that H2S has potential therapeutic value for the treatment of AD.
Collapse
Affiliation(s)
- Hai-Jun Wei
- Department of Physiology, Medical College, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, PR China; Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, PR China
| | - Xiang Li
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Xiao-Qing Tang
- Department of Physiology, Medical College, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, PR China; Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, PR China.
| |
Collapse
|
45
|
Li X, Zhang KY, Zhang P, Chen LX, Wang L, Xie M, Wang CY, Tang XQ. Hydrogen sulfide inhibits formaldehyde-induced endoplasmic reticulum stress in PC12 cells by upregulation of SIRT-1. PLoS One 2014; 9:e89856. [PMID: 24587076 PMCID: PMC3938548 DOI: 10.1371/journal.pone.0089856] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/23/2014] [Indexed: 12/29/2022] Open
Abstract
Background Formaldehyde (FA), a well-known environmental pollutant, has been classified as a neurotoxic molecule. Our recent data demonstrate that hydrogen sulfide (H2S), the third gaseous transmitter, has a protective effect on the neurotoxicity of FA. However, the exact mechanisms underlying this protection remain largely unknown. Endoplasmic reticulum (ER) stress has been implicated in the neurotoxicity of FA. Silent mating type information regulator 2 homolog 1 (SIRT-1), a histone deacetylases, has various biological activities, including the extension of lifespan, the modulation of ER stress, and the neuroprotective action. Objective We hypothesize that the protection of H2S against FA-induced neurotoxicity involves in inhibiting ER stress by upregulation of SIRT-1. The present study attempted to investigate the protective effect of H2S on FA-induced ER stress in PC12 cells and the contribution of SIRT-1 to the protection of H2S against FA-induced injuries, including ER stress, cytotoxicity and apoptosis. Principal Findings We found that exogenous application of sodium hydrosulfide (NaHS; an H2S donor) significantly attenuated FA-induced ER stress responses, including the upregulated levels of glucose-regulated protein 78, C/EBP homologous protein, and cleaved caspase-12 expression. We showed that NaHS upregulates the expression of SIRT-1 in PC12 cells. Moreover, the protective effects of H2S on FA-elicited ER stress, cytotoxicity and apoptosis were reversed by Sirtinol, a specific inhibitor of SIRT-1. Conclusion/Significance These data indicate that H2S exerts its protection against the neurotoxicity of FA through overcoming ER stress via upregulation of SIRT-1. Our findings provide novel insights into the protective mechanisms of H2S against FA-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiang Li
- Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
- Department of Neurology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
| | - Kai-Yan Zhang
- Department of Neurology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
- Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China
| | - Ping Zhang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
| | - Li-Xun Chen
- Department of Neurology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
| | - Li Wang
- Department of Anthropotomy, Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Ming Xie
- Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
- Department of Neurology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
- * E-mail: (X-QT); (MX)
| | - Chun-Yan Wang
- Department of Pathophysiology, Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Xiao-Qing Tang
- Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China
- Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China
- * E-mail: (X-QT); (MX)
| |
Collapse
|
46
|
Manzetti S, Ghisi R. The environmental release and fate of antibiotics. MARINE POLLUTION BULLETIN 2014; 79:7-15. [PMID: 24456854 DOI: 10.1016/j.marpolbul.2014.01.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/13/2013] [Accepted: 01/03/2014] [Indexed: 06/03/2023]
Abstract
Antibiotics have been used as medical remedies for over 50 years and have recently emerged as new pollutants in the environment. This review encompasses the fate of several antibiotics in the environment, including sulfonamides, nitrofurans, terfenadines, cephalosporins and cyclosporins. It investigates the cycle of transfer from humans and animals including their metabolic transformation. The results show that antibiotic metabolites are of considerable persistence and are localized to ground-water and drinking water supplies. Furthermore, the results also show that several phases of the cycle of antibiotics in the environment are not well understood, such as how low concentrations of antibiotic metabolites in the diet affect humans and animals. This review also shows that improved wastewater decontamination processes are remediating factors for these emerging pollutants. The results obtained here may help legislators and authorities in understanding the fate and transformation of antibiotics in the environment.
Collapse
Affiliation(s)
- Sergio Manzetti
- Fjordforsk A.S. Midtun, 6894 Vangsnes, Norway(1); Science for Life Laboratory, Department for Cell and Molecular Biology, University of Uppsala, Box 596, 751 24 Uppsala, Sweden
| | - Rossella Ghisi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Agripolis, viale dell'Università 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
47
|
Sun P, Solé M, Unzeta M. Involvement of SSAO/VAP-1 in oxygen-glucose deprivation-mediated damage using the endothelial hSSAO/VAP-1-expressing cells as experimental model of cerebral ischemia. Cerebrovasc Dis 2014; 37:171-80. [PMID: 24503888 DOI: 10.1159/000357660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/02/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the acute phase of ischemic stroke, endothelial cells are activated and induce the expression of adhesion molecules. Vascular adhesion protein 1 (VAP-1) is a proinflammatory protein that mediates leukocyte recruitment through its semicarbazide-sensitive amine oxidase (SSAO) activity (EC 1.4.3.21). Plasmatic SSAO activity predicts the appearance of parenchymal hemorrhages after tissue plasminogen activator treatment in ischemic stroke patients, and it is increased as well in hemorrhagic stroke patients. The aim of this study has been to elucidate the role of SSAO/VAP-1 present in endothelial cells during ischemic stroke conditions. METHODS Based on the use of endothelial cells expressing, or not expressing, the human SSAO/VAP-1 protein, we have set up an easy ischemic model using oxygen-glucose deprivation (OGD) as an experimental approach to the stroke process. Different OGD and reoxygenation conditions have been analyzed. Western blotting has been used to analyze the activated apoptotic pathways. Several metalloproteinase inhibitors were also used to determine their role in the SSAO/VAP-1 release from the membrane of endothelial cells to the culture media, as a soluble form. Adhesion assays were also performed in order to assess the SSAO/VAP-1-dependent leukocyte adhesion to the endothelia under different OGD and reoxygenation conditions. RESULTS Our results show that SSAO/VAP-1 expression increases the susceptibility of endothelial cells to OGD, and that its enzymatic activity, through specific substrate oxidation, increases vascular cell damage under these experimental conditions. Caspase-3 and caspase-8 are activated during the death process. In addition, OGD constitutes a stimulus for soluble SSAO/VAP-1 release, partly mediated by metalloproteinase-2-dependent shedding. Short-time OGD induces SSAO/VAP-1-dependent leukocyte binding on endothelial cells, which is partly dependent on its enzymatic activity. CONCLUSIONS Our results show that SSAO/VAP-1 could participate in some of the processes occurring during stroke. Its expression in endothelial cells increases the OGD-associated cell damage. SSAO/VAP-1 mediates also part of the tissue damage during the reoxygenation process by oxidizing its known enzymatic substrate, methylamine. Also, OGD constitutes a stimulus for its soluble-form release, found elevated in many pathological conditions including stroke. OGD induces SSAO-dependent leukocyte-binding activity, which may have consequences in disease progression, since leukocyte infiltration has shown a determinant role in cerebral ischemia. For all the stroke-related processes in which SSAO/VAP-1 participates, it would be an interesting therapeutic target. Therefore, this model will be a very useful tool for the screening of new molecules as therapeutic agents for cerebral ischemia.
Collapse
Affiliation(s)
- Ping Sun
- Institut de Neurociències i Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
48
|
Bonaiuto E, Milelli A, Cozza G, Tumiatti V, Marchetti C, Agostinelli E, Fimognari C, Hrelia P, Minarini A, Di Paolo ML. Novel polyamine analogues: From substrates towards potential inhibitors of monoamine oxidases. Eur J Med Chem 2013; 70:88-101. [DOI: 10.1016/j.ejmech.2013.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 01/12/2023]
|
49
|
Tulpule K, Dringen R. Formaldehyde in brain: an overlooked player in neurodegeneration? J Neurochem 2013; 127:7-21. [PMID: 23800365 DOI: 10.1111/jnc.12356] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/12/2013] [Accepted: 06/21/2013] [Indexed: 02/06/2023]
Abstract
Formaldehyde is an environmental pollutant that is also generated in substantial amounts in the human body during normal metabolism. This aldehyde is a well-established neurotoxin that affects memory, learning, and behavior. In addition, in several pathological conditions, including Alzheimer's disease, an increase in the expression of formaldehyde-generating enzymes and elevated levels of formaldehyde in brain have been reported. This article gives an overview on the current knowledge on the generation and metabolism of formaldehyde in brain cells as well as on formaldehyde-induced alterations in metabolic processes. Brain cells have the potential to generate and to dispose formaldehyde. In culture, both astrocytes and neurons efficiently oxidize formaldehyde to formate which can be exported or further oxidized. Although moderate concentrations of formaldehyde are not acutely toxic for brain cells, exposure to formaldehyde severely affects their metabolism as demonstrated by the formaldehyde-induced acceleration of glycolytic flux and by the rapid multidrug resistance protein 1-mediated export of glutathione from both astrocytes and neurons. These formaldehyde-induced alterations in the metabolism of brain cells may contribute to the impaired cognitive performance observed after formaldehyde exposure and to the neurodegeneration in diseases that are associated with increased formaldehyde levels in brain.
Collapse
Affiliation(s)
- Ketki Tulpule
- Indian Institute of Science Education and Research, Pashan, Pune, India
| | | |
Collapse
|
50
|
Tulpule K, Hohnholt MC, Dringen R. Formaldehyde metabolism and formaldehyde-induced stimulation of lactate production and glutathione export in cultured neurons. J Neurochem 2013; 125:260-72. [PMID: 23356791 DOI: 10.1111/jnc.12170] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/23/2013] [Accepted: 01/25/2013] [Indexed: 11/30/2022]
Abstract
Formaldehyde is endogenously produced in the human body and brain levels of this compound are elevated in neurodegenerative conditions. Although the toxic potential of an excess of formaldehyde has been studied, little is known on the molecular mechanisms underlying its neurotoxicity as well as on the ability of neurons to metabolize formaldehyde. To address these topics, we have used cerebellar granule neuron cultures as model system. These cultures express mRNAs of various enzymes that are involved in formaldehyde metabolism and were remarkably resistant toward acute formaldehyde toxicity. Cerebellar granule neurons metabolized formaldehyde with a rate of around 200 nmol/(h × mg) which was accompanied by significant increases in the cellular and extracellular concentrations of formate. In addition, formaldehyde application significantly increased glucose consumption, almost doubled the rate of lactate release from viable neurons and strongly accelerated the export of the antioxidant glutathione. The latter process was completely prevented by inhibition of the known glutathione exporter multidrug resistance protein 1. These data indicate that cerebellar granule neurons are capable of metabolizing formaldehyde and that the neuronal glycolysis and glutathione export are severely affected by the presence of formaldehyde.
Collapse
Affiliation(s)
- Ketki Tulpule
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, Leobener Strasse, Bremen, Germany
| | - Michaela C Hohnholt
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, Leobener Strasse, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, Leobener Strasse, Bremen, Germany
| |
Collapse
|