1
|
Kopalli SR, Behl T, Kyada A, Rekha MM, Kundlas M, Rani P, Nathiya D, Satyam Naidu K, Gulati M, Bhise M, Gupta P, Wal P, Fareed M, Ramniwas S, Koppula S, Gasmi A. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025; 569:161-183. [PMID: 39922366 DOI: 10.1016/j.neuroscience.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. Dysregulation of synaptic plasticity is a feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (0.4 %), Parkinson's (1-2 %), Alzheimer's (5-7 %), and Huntington's ((0.2 %)). This review discusses the molecular mechanisms via which flavonoids influence synaptic plasticity as well as their therapeutic potential in neurodegenerative diseases. Flavonoids modulate key signaling pathways such as MAPK/ERK and PI3K/Akt/mTOR to support neuroprotection, synaptic plasticity, and neuronal health, while also influencing neurotrophic factors (BDNF, NGF) and their receptors (TrkB, TrkA). They regulate neurotransmitter receptors like GABA, AMPA, and NMDA to balance excitatory and inhibitory transmission, and exert antioxidant effects via the Nrf2-ARE pathway and anti-inflammatory actions by inhibiting NF-κB signaling, highlighting their potential for treating neurodegenerative diseases. These varied reactions support the preservation of synapse function and neuronal integrity in the face of neurodegenerative insults. Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | | | | | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy Kanpur UP, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413 Punjab, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrient Sciences, Saint-Etienne, France
| |
Collapse
|
2
|
Salarvandian S, Digaleh H, Khodagholi F, Javadpour P, Asadi S, Zaman AAO, Dargahi L. Harmonic activity of glutamate dehydrogenase and neuroplasticity: The impact on aging, cognitive dysfunction, and neurodegeneration. Behav Brain Res 2025; 480:115399. [PMID: 39675635 DOI: 10.1016/j.bbr.2024.115399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
In recent years, glutamate has attracted significant attention for its roles in various brain processes. However, one of its key regulators, glutamate dehydrogenase (GDH), remains understudied despite its pivotal role in several biochemical pathways. Dysfunction or dysregulation of GDH has been implicated in aging and various neurological disorders, such as Alzheimer's disease and Parkinson's disease. In this review, the impact of GDH on aging, cognitive impairment, and neurodegenerative conditions, as exemplars of the phenomena that may affected by neuroplasticity, has been reviewed. Despite extensive research on synaptic plasticity, the precise influence of GDH on brain structure and function remains undiscovered. This review of existing literature on GDH and neuroplasticity reveals diverse and occasionally conflicting effects. Future research endeavors should aim to describe the precise mechanisms by which GDH influences neuroplasticity (eg. synaptic plasticity and neurogenesis), particularly in the context of human aging and disease progression. Studies on GDH activity have been limited by factors such as insufficient sample sizes and varying experimental conditions. Researchers should focus on investigating the molecular mechanisms by which GDH modulates neuroplasticity, utilizing various animal strains and species, ages, sexes, GDH isoforms, brain regions, and cell types. Understanding GDH's role in neuroplasticity may offer innovative therapeutic strategies for neurodegenerative and psychiatric diseases, potentially slowing the aging process and promoting brain regeneration.
Collapse
Affiliation(s)
- Shakiba Salarvandian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Digaleh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Asadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Orang Zaman
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Al‐Thani NA, Stewart GS, Costello DA. The Role of the Urea Cycle in the Alzheimer's Disease Brain. J Neurochem 2025; 169:e70033. [PMID: 40022483 PMCID: PMC11871420 DOI: 10.1111/jnc.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 03/03/2025]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder classified as the leading form of dementia in the elderly. Classical hallmarks of AD pathology believed to cause AD include Amyloid-beta (Aβ) plaques as well as neurofibrillary tau tangles (NTT). However, research into these classical hallmarks has failed to account for a causative link or therapeutic success. More recently, metabolic hallmarks of AD pathology have become a popular avenue of research. Elevated urea and ammonia detected in cases of AD point towards a dysfunctional urea cycle involved in AD. This review covers the expansive body of literature surrounding the work of researchers deciphering the role of the urea cycle in AD pathology through the study of urea cycle enzymes, metabolites, and transporters in the AD brain. Urea cycle enzymes of interest in AD pathology include OTC, NOS isoforms, ARG1, ARG2, MAOB, and ODC, which all present as promising therapeutic targets. Urea metabolites indicated in AD pathology have varying concentrations across the regions of the brain and the different cell types (neurons, microglia, astrocytes). Finally, the role of UT-B as a clearance modulator presents this protein as a key target for research in the role of the urea cycle in the AD brain. In the future, these key enzymes, pathways, and proteins relating to the urea cycle in AD should be further investigated to better understand the cell-specific urea cycle profiles in the AD brain and uncover their therapeutic potential.
Collapse
Affiliation(s)
- Najlaa A. Al‐Thani
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
- UCD Conway InstituteUniversity College DublinDublinIreland
| | - Gavin S. Stewart
- UCD School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| | - Derek A. Costello
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
- UCD Conway InstituteUniversity College DublinDublinIreland
| |
Collapse
|
4
|
Xu D, Ren Q, Liu Q, Liu M, Gong H, Liu Y, Yin Z, Zeng Z, Xia S, Zhang Y, Li J, Gao Q, Wang J, Li X. Hippocampal Glutamate Levels and Their Correlation With Subregion Volume in School-Aged Children With MRI-Negative Epilepsy: A Preliminary Study. J Magn Reson Imaging 2025; 61:1258-1268. [PMID: 38970314 DOI: 10.1002/jmri.29514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Abnormal levels of glutamate constitute a key pathophysiologic mechanism in epilepsy. The use of glutamate chemical exchange saturation transfer (GluCEST) imaging to measure glutamate levels in pediatric epilepsy is rarely reported in research. PURPOSE To investigate hippocampal glutamate level variations in pediatric epilepsy and the correlation between glutamate and hippocampal subregional volumes. STUDY TYPE Cross-sectional, prospective. SUBJECTS A total of 38 school-aged pediatric epilepsy patients with structurally normal MRI as determined by at least two independent radiologists (60% males; 8.7 ± 2.5 years; including 20 cases of focal pediatric epilepsy [FE] and 18 cases of generalized pediatric epilepsy [GE]) and 17 healthy controls (HC) (41% males; 9.0 ± 2.5 years). FIELD STRENGTH/SEQUENCE 3.0 T; 3D magnetization prepared rapid gradient echo (MPRAGE) and 2D turbo spin echo GluCEST sequences. ASSESSMENT The relative concentration of glutamate was calculated through pixel-wise magnetization transfer ratio asymmetry (MTRasym) analysis of the GluCEST data. Hippocampal subfield volumes were computed from MPRAGE data using FreeSurfer. STATISTICAL TESTS This study used t tests, one-way analysis of variance, Kruskal-Wallis tests, and Pearson correlation analysis. P < 0.05 was considered statistically significant. RESULTS The MTRasym values of both the left and right hippocampi were significantly elevated in GE (left: 2.51 ± 0.23 [GE] vs. 2.31 ± 0.12 [HCs], right: 2.50 ± 0.22 [GE] vs. 2.27 ± 0.22 [HCs]). The MTRasym values of the ipsilateral hippocampus were significantly elevated in FE (2.49 ± 0.28 [ipsilateral] vs. 2.29 ± 0.16 [HCs]). The MTRasym values of the ipsilateral hippocampus were significantly increased compared to the contralateral hippocampus in FE (2.49 ± 0.28 [ipsilateral] vs. 2.35 ± 0.34 [contralateral]). No significant differences in hippocampal volume were found between different groups (left hippocampus, P = 0.87; right hippocampus, P = 0.87). DATA CONCLUSION GluCEST imaging have potential for the noninvasive measurement of glutamate levels in the brains of children with epilepsy. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Donghao Xu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Qingfa Ren
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Quanyuan Liu
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Miaomiao Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - He Gong
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yuwei Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Zhijie Yin
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Zhen Zeng
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Shuyuan Xia
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Yanyan Zhang
- Department of Pediatric Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Jie Li
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Quansheng Gao
- Environmental & Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China
| | - Jing Wang
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| |
Collapse
|
5
|
Thapaliya K, Marshall-Gradisnik S, Eaton-Fitch N, Eftekhari Z, Inderyas M, Barnden L. Imbalanced Brain Neurochemicals in Long COVID and ME/CFS: A Preliminary Study Using MRI. Am J Med 2025; 138:567-574.e1. [PMID: 38588934 DOI: 10.1016/j.amjmed.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients experience multiple complex symptoms, potentially linked to imbalances in brain neurochemicals. This study aims to measure brain neurochemical levels in long COVID and ME/CFS patients as well as healthy controls to investigate associations with severity measures. METHODS Magnetic resonance spectroscopy data were acquired with a 3T Prisma magnetic resonance imaging scanner (Siemens Healthcare, Erlangen, Germany). We measured absolute levels of brain neurochemicals in the posterior cingulate cortex in long COVID (n = 17), ME/CFS (n = 17), and healthy controls (n = 10) using Osprey software. The statistical analyses were performed using SPSS version 29 (IBM, Armonk, NY). Age and sex were included as nuisance covariates. RESULTS Glutamate levels were significantly higher in patients with long COVID (P = .02) and ME/CFS (P = .017) than in healthy controls. No significant difference was found between the 2 patient cohorts. Additionally, N-acetyl-aspartate levels were significantly higher in long COVID patients (P = .012). Importantly, brain neurochemical levels were associated with self-reported severity measures in long COVID and ME/CFS. CONCLUSION Our study identified significantly elevated glutamate and N-acetyl-aspartate levels in long COVID and ME/CFS patients compared with healthy controls. No significant differences in brain neurochemicals were observed between the 2 patient cohorts, suggesting a potential overlap in their underlying pathology. These findings suggest that imbalanced neurochemicals contribute to the complex symptoms experienced by long COVID and ME/CFS patients.
Collapse
Affiliation(s)
- Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Griffith University, Gold Coast, QLD, Australia.
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Griffith University, Gold Coast, QLD, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Griffith University, Gold Coast, QLD, Australia
| | - Zeinab Eftekhari
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Australia
| | - Maira Inderyas
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Griffith University, Gold Coast, QLD, Australia
| | - Leighton Barnden
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
6
|
Hu N, Cheng Zeng, Cao Y, Li X, Bai F, Wang J, Yang B, Li C. Therapeutic potential of Shilong Qingxue Granule and its extract against glutamate induced neural injury: Insights from in vivo and in vitro models. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119396. [PMID: 39848417 DOI: 10.1016/j.jep.2025.119396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 01/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shilong Qingxue Granule (SQG), a traditional Chinese medicine, effectively treats the secondary neurological damage and functional deficits caused by cerebral hemorrhage, though its exact mechanism remains unclear. AIM OF THE STUDY This study aimed to investigate the effects of SQG and its mechanisms. MATERIALS AND METHODS we evaluated the effects of SQG and its extracts on glutamate induced nerve damage using in vivo and in vitro models. Brain water content was measured and brain tissue was stained with hematoxylin and eosin (HE) to evaluate the brain protective effect of SQG in rats. HPLC and UPLC-Q-TOF-MS were used to identify the chemical components in SQG. The model of PC12 cells induced by glutamate was established to detect intracellular Ca2+ and mitochondrial membrane potential (MMP), the content of intracellular reactive oxygen species (ROS), acridine orange/ethidium bromide (AO/EB), and the possible mechanism of action in vivo was explored by Western blot and RNA sequencing. RESULTS SQG alleviates brain edema and neuronal damage in glutamate induced rats by modulating mitochondrial apoptotic and MAPK signaling pathways. The SQG extract was separated by silica gel chromatographic column to obtain 20 components, and the S-18 improves PC12 survival under glutamate induced conditions by MMP, reducing ROS and Ca2+ levels, and protecting against cell body and nucleus damage to against apoptosis. CONCLUSION SQG and its extract demonstrate protective effects against glutamate induced nerve injury in vivo and in vitro, suggesting potential therapeutic benefits for neurological disorders involving glutamate excitotoxicity.
Collapse
Affiliation(s)
- Nan Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - Cheng Zeng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yi Cao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xuehao Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Fei Bai
- College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China; Department of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Jinhui Wang
- Department of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Baofeng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Department of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Chunli Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Mukherjee U, Basu B, Beyer SE, Ghodsi S, Robillard N, Vanrobaeys Y, Taylor EB, Abel T, Chatterjee S. Histone Lysine Crotonylation Regulates Long-Term Memory Storage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639114. [PMID: 40027819 PMCID: PMC11870504 DOI: 10.1101/2025.02.19.639114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Histone post-translational modifications (PTMs), particularly lysine acetylation (Kac), are critical epigenetic regulators of gene transcription underlying long-term memory consolidation. Beyond Kac, several other non-acetyl acylations have been identified, but their role in memory consolidation remains unknown. Here, we demonstrate histone lysine crotonylation (Kcr) as a key molecular switch of hippocampal memory storage. Spatial memory training induces distinct spatiotemporal patterns of Kcr induction in the dorsal hippocampus of mice. Through genetic and pharmacological manipulations, we show that reducing hippocampal Kcr levels impairs long-term memory, while increasing Kcr enhances memory. Utilizing single-nuclei multiomics, we delineate that Kcr enhancement during memory consolidation activates transcription of genes involved in neurotransmission and synaptic function within hippocampal excitatory neurons. Cell-cell communication analysis further inferred that Kcr enhancement strengthens glutamatergic signaling within principal hippocampal neurons. Our findings establish Kcr as a novel epigenetic mechanism governing memory consolidation and provide a foundation for therapeutic strategies targeting memory-related disorders.
Collapse
Affiliation(s)
- Utsav Mukherjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States
| | - Budhaditya Basu
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Stacy E. Beyer
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Saaman Ghodsi
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Nathan Robillard
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, United States
| | - Eric B. Taylor
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, United States
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, United States
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
8
|
Panossian A, Lemerond T, Efferth T. Adaptogens in Long-Lasting Brain Fatigue: An Insight from Systems Biology and Network Pharmacology. Pharmaceuticals (Basel) 2025; 18:261. [PMID: 40006074 DOI: 10.3390/ph18020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Long-lasting brain fatigue is a consequence of stroke or traumatic brain injury associated with emotional, psychological, and physical overload, distress in hypertension, atherosclerosis, viral infection, and aging-related chronic low-grade inflammatory disorders. The pathogenesis of brain fatigue is linked to disrupted neurotransmission, the glutamate-glutamine cycle imbalance, glucose metabolism, and ATP energy supply, which are associated with multiple molecular targets and signaling pathways in neuroendocrine-immune and blood circulation systems. Regeneration of damaged brain tissue is a long-lasting multistage process, including spontaneously regulating hypothalamus-pituitary (HPA) axis-controlled anabolic-catabolic homeostasis to recover harmonized sympathoadrenal system (SAS)-mediated function, brain energy supply, and deregulated gene expression in rehabilitation. The driving mechanism of spontaneous recovery and regeneration of brain tissue is a cross-talk of mediators of neuronal, microglia, immunocompetent, and endothelial cells collectively involved in neurogenesis and angiogenesis, which plant adaptogens can target. Adaptogens are small molecules of plant origin that increase the adaptability of cells and organisms to stress by interaction with the HPA axis and SAS of the stress system (neuroendocrine-immune and cardiovascular complex), targeting multiple mediators of adaptive GPCR signaling pathways. Two major groups of adaptogens comprise (i) phenolic phenethyl and phenylpropanoid derivatives and (ii) tetracyclic and pentacyclic glycosides, whose chemical structure can be distinguished as related correspondingly to (i) monoamine neurotransmitters of SAS (epinephrine, norepinephrine, and dopamine) and (ii) steroid hormones (cortisol, testosterone, and estradiol). In this narrative review, we discuss (i) the multitarget mechanism of integrated pharmacological activity of botanical adaptogens in stress overload, ischemic stroke, and long-lasting brain fatigue; (ii) the time-dependent dual response of physiological regulatory systems to adaptogens to support homeostasis in chronic stress and overload; and (iii) the dual dose-dependent reversal (hormetic) effect of botanical adaptogens. This narrative review shows that the adaptogenic concept cannot be reduced and rectified to the various effects of adaptogens on selected molecular targets or specific modes of action without estimating their interactions within the networks of mediators of the neuroendocrine-immune complex that, in turn, regulates other pharmacological systems (cardiovascular, gastrointestinal, reproductive systems) due to numerous intra- and extracellular communications and feedback regulations. These interactions result in polyvalent action and the pleiotropic pharmacological activity of adaptogens, which is essential for characterizing adaptogens as distinct types of botanicals. They trigger the defense adaptive stress response that leads to the extension of the limits of resilience to overload, inducing brain fatigue and mental disorders. For the first time, this review justifies the neurogenesis potential of adaptogens, particularly the botanical hybrid preparation (BHP) of Arctic Root and Ashwagandha, providing a rationale for potential use in individuals experiencing long-lasting brain fatigue. The review provided insight into future research on the network pharmacology of adaptogens in preventing and rehabilitating long-lasting brain fatigue following stroke, trauma, and viral infections.
Collapse
Affiliation(s)
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
9
|
Park MK, Choi BY, Kho AR, Lee SH, Hong DK, Kang BS, Lee CJ, Yang HW, Woo SY, Park SW, Kim DY, Jung HH, Yang WI, Suh SW. L-theanine ameliorates traumatic-brain-injury-induced hippocampal neuronal death in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156457. [PMID: 40023064 DOI: 10.1016/j.phymed.2025.156457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/01/2024] [Accepted: 02/01/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major health concern, often resulting in significant brain damage and functional impairments. A key contributing factor to TBI-induced neuronal injury is the overactivation of AMPA glutamate receptors, leading to an increased influx of calcium and zinc ions. This study investigates the neuroprotective potential of l-theanine, known for its antioxidant potential and ability to enhance glutathione synthesis, against hippocampal damage in a TBI rat model. METHODS Rats subjected to TBIs were treated with two dosages of l-theanine (100 and 200 mg/kg) and an AMPA receptor inhibitor, NBQX (30 mg/kg). The neuronal damage assessment, conducted 24 h post-injury, involved a histological analysis, focusing on the factors of neuronal death, oxidative damage, and glial cell activation. The statistical analysis included the performance of an ANOVA followed by a Bonferroni post hoc test, with the data presented as mean ± SEM values and the significance determined at p < 0.05. RESULTS Treatment with l-theanine was observed to significantly mitigate the zinc accumulation, neuronal death, and cognitive impairments associated with TBI. These benefits are likely attributed to the inhibition of AMPA receptor activity and reduction in neuroinflammation, possibly enhanced as a result of increased glutathione production. CONCLUSION This study suggests that l-theanine can perform a neuroprotective role in TBI, modulating AMPA receptor activation and diminishing neuroinflammation. Its antioxidant and anti-inflammatory properties further enhance the material's potential use as a therapeutic agent for reducing hippocampal damage caused as a result of a TBI.
Collapse
Affiliation(s)
- Min Kyu Park
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Bo Young Choi
- Institute of Sport Science, Hallym University, Chuncheon, 24252, Republic of Korea; Department of Physical Education, Hallym University, Chuncheon, 24252, Republic of Korea.
| | - A Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Song Hee Lee
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Dae Ki Hong
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Beom Seok Kang
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Chang Jun Lee
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Hyun Wook Yang
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Seo Young Woo
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Se Wan Park
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Dong Yeon Kim
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Hyun Ho Jung
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Won Il Yang
- Institute of Sport Science, Hallym University, Chuncheon, 24252, Republic of Korea; Department of Physical Education, Hallym University, Chuncheon, 24252, Republic of Korea; Department of Sport Industry Studies, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
10
|
Choi H, An YK, Lee CJ, Song CU, Kim EJ, Lee CE, Cho SJ, Eyun SI. Genome assembly, gene content, and plastic gene expression responses to salinity changes in the Brackishwater Clam (Corbicula japonica) from a dynamic estuarine environment. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136627. [PMID: 39616841 DOI: 10.1016/j.jhazmat.2024.136627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 01/28/2025]
Abstract
Estuaries are dynamic transition zones between marine and freshwater environments, where salinity varies greatly on spatial and temporal scales. The temporal salinity fluctuations of these habitats require organisms to rapidly regulate ionic concentrations and osmotic pressure to survive in these dynamic conditions. Understanding the extent of plasticity of euryhaline animals is vital for predicting their responses and resilience to salinity change. We generated the first high-resolution genome and transcriptome sequences of C. japonica. In comparison with 11 other molluscan genomes, the C. japonica genome displayed striking expansions of putative neuron-related genes and gene families. The involvement of these genes in the glutamate/GABA-glutamine and glycine cycle suggests a possible contribution to the excitation of neuronal networks, particularly under high salinity conditions. This study contributes to our understanding of mechanisms underlying the rapid responses of estuarine species to changing conditions and raises many intriguing hypotheses and questions for future investigation.
Collapse
Affiliation(s)
- Hyeongwoo Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Yun Keun An
- Division of Marine Technology, Chonnam National University, Yeosu 59626, Korea
| | - Chan-Jun Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea
| | - Chi-Une Song
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Eun-Jeong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea.
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
11
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2025; 62:1631-1674. [PMID: 39012443 PMCID: PMC11772559 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
12
|
Lei L, Peng L, Wan L, Chen Z, Wang C, Peng H, Qiu R, Tang B, Jiang H. Genetic Analysis of GCA Repeats in the GLS Gene: Implications for Undiagnosed Ataxia and Spinocerebellar Ataxia 3 in Mainland China. Mov Disord 2025; 40:324-334. [PMID: 39699045 DOI: 10.1002/mds.30083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Recent studies have reported that expanded GCA repeats in the GLS gene can cause glutaminase deficiency with ataxia phenotype. However, to data, no studies have investigated the distribution and role of GCA repeats in the GLS gene of Chinese individuals. OBJECTIVE The aim was to investigate the distribution of GCA repeats in Chinese individuals, including undiagnosed ataxia patients for identifying causal factors, healthy controls for determining the normal range, and ATX-ATXN3 (spinocerebellar ataxia type 3, SCA3) patients for exploring genetic modifiers. METHODS We combined whole-genome sequencing (WGS), repeat-primed polymerase chain reaction, capillary electrophoresis (RP-PCR/CE), and ExpansionHunter to screen the GCA repeats in the GLS gene of 349 undiagnosed ataxia individuals, 1505 healthy controls, and 1236 ATX-ATXN3 (SCA3) patients from mainland China. RESULTS No expanded GCA repeats in the GLS gene were detected across any of the samples. The average number of GCA repeats was 11 (range: 8-31), 12 (range: 6-33), and 11 (range: 6-33) for undiagnosed ataxia patients, healthy controls, and SCA3 patients, respectively. The intermediate repeat size (9 < repeat size ≤ 13) of the nonexpanded GCA allele in the GLS gene was associated with later disease onset in ATX-ATXN3 (SCA3) patients. CONCLUSIONS Abnormal expansions of GLS GCA repeats are rare in the Chinese population. However, intermediate-length normal GCA repeat sizes may influence the age at onset (AAO) in ATX-ATXN3 (SCA3) patients. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lijing Lei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P. R. China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, P. R. China
- Bioinformatics Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P. R. China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, P. R. China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, P. R. China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P. R. China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, P. R. China
- Bioinformatics Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P. R. China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, P. R. China
| | - Chunrong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Huirong Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, P. R. China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P. R. China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, P. R. China
- Bioinformatics Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P. R. China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, P. R. China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P. R. China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, P. R. China
- Bioinformatics Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P. R. China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, P. R. China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, P. R. China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, P. R. China
- Furong Laboratory, Central South University, Changsha, P. R. China
- Brain Research Center, Central South University, Changsha, P. R. China
| |
Collapse
|
13
|
Mohammad ZB, Yudin SCY, Goldberg BJ, Serra KL, Klegeris A. Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication. Rev Neurosci 2025; 36:91-117. [PMID: 39240134 PMCID: PMC11717358 DOI: 10.1515/revneuro-2024-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.
Collapse
Affiliation(s)
- Zainab B. Mohammad
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Samantha C. Y. Yudin
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Benjamin J. Goldberg
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kursti L. Serra
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
14
|
Sakthivel K, Balasubramanian R, Sampathrajan V, Veerasamy R, Appachi SV, K K K. Transforming tomatoes into GABA-rich functional foods through genome editing: A modern biotechnological approach. Funct Integr Genomics 2025; 25:27. [PMID: 39871009 DOI: 10.1007/s10142-025-01538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
Gamma-aminobutyric acid (GABA) functions as an inhibitory neurotransmitter which blocks the impulses between nerve cells in the brain. Due to the increasing awareness about the health promoting benefits associated with GABA, it is also artificially synthesized and consumed as a nutritional supplement by people in some regions of the world. Though among the fresh vegetables, tomato fruits do contain a comparatively higher amount of GABA (0.07 to 2.01 mg g-1 FW), it needs to be further enhanced to fully impart its potential health benefits. Achieving this feat through classical breeding approaches is time and resource consuming, and is also associated with linkage drag. On the other hand, precise targeting of specific sites in the genome with less off- target effects is mediated by CRISPR/Cas9 genome editing tool and is widely used to overcome the barriers associated with traditional breeding approaches. Combining genome editing with speed breeding techniques can enable the rapid development of GABA-rich tomato cultivars, paving a way to unlock a new era of functional foods, where every bite contributes to cognitive well-being and holistic health. This review highlights the significance of GABA boosted functional foods and explores the potential of CRISPR/Cas9 technology for developing GABA enriched tomatoes.
Collapse
Affiliation(s)
- Kausalya Sakthivel
- Department of Plant Biotechnology, Tamilnadu Agricultural University, 641003, Coimbatore, India
| | | | | | - Ravichandran Veerasamy
- Department of Crop Physiology, Tamilnadu Agricultural University, 641003, Coimbatore, India
| | | | - Kumar K K
- Department of Plant Biotechnology, Tamilnadu Agricultural University, 641003, Coimbatore, India.
| |
Collapse
|
15
|
Huang Q, Hu B, Zhang P, Yuan Y, Yue S, Chen X, Liang J, Tang Z, Zhang B. Neuroscience of cancer: unraveling the complex interplay between the nervous system, the tumor and the tumor immune microenvironment. Mol Cancer 2025; 24:24. [PMID: 39825376 PMCID: PMC11740516 DOI: 10.1186/s12943-024-02219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025] Open
Abstract
The study of the multifaceted interactions between neuroscience and cancer is an emerging field with significant implications for understanding tumor biology and the innovation in therapeutic approaches. Increasing evidence suggests that neurological functions are connected with tumorigenesis. In particular, the peripheral and central nervous systems, synapse, neurotransmitters, and neurotrophins affect tumor progression and metastasis through various regulatory approaches and the tumor immune microenvironment. In this review, we summarized the neurological functions that affect tumorigenesis and metastasis, which are controlled by the central and peripheral nervous systems. We also explored the roles of neurotransmitters and neurotrophins in cancer progression. Moreover, we examined the interplay between the nervous system and the tumor immune microenvironment. We have also identified drugs that target the nervous system for cancer treatment. In this review we present the work supporting that therapeutic agent targeting the nervous system could have significant potential to improve cancer therapy.
Collapse
Affiliation(s)
- Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Bai Hu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ye Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| |
Collapse
|
16
|
Turner LA, Easton AA, Ferguson MM, Danzmann RG. Differences in gene expression between high and low tolerance rainbow trout (Oncorhynchus mykiss) to acute thermal stress. PLoS One 2025; 20:e0312694. [PMID: 39775350 PMCID: PMC11709236 DOI: 10.1371/journal.pone.0312694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025] Open
Abstract
Understanding the mechanisms that underlie the adaptive response of ectotherms to rising temperatures is key to mitigate the effects of climate change. We assessed the molecular and physiological processes that differentiate between rainbow trout (Oncorhynchus mykiss) with high and low tolerance to acute thermal stress. To achieve our goal, we used a critical thermal maximum trial in two strains of rainbow trout to elicit loss of equilibrium responses to identify high and low tolerance fish. We then compared the hepatic transcriptome profiles of high and low tolerance fish relative to untreated controls common to both strains to uncover patterns of differential gene expression and to gain a broad perspective on the interacting gene pathways and functional processes involved. We observed some of the classic responses to increased temperature (e.g., induction of heat shock proteins) but these responses were not the defining factors that differentiated high and low tolerance fish. Instead, high tolerance fish appeared to suppress growth-related functions, enhance certain autophagy components, better regulate neurodegenerative processes, and enhance stress-related protein synthesis, specifically spliceosomal complex activities, mRNA regulation, and protein processing through post-translational processes, relative to low tolerance fish. In contrast, low tolerance fish had higher transcript diversity and demonstrated elevated developmental, cytoskeletal, and morphogenic, as well as lipid and carbohydrate metabolic processes, relative to high tolerance fish. Our results suggest that high tolerance fish engaged in processes that supported the prevention of further damage by enhancing repair pathways, whereas low tolerance fish were more focused on replacing damaged cells and their structures.
Collapse
Affiliation(s)
- Leah A. Turner
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anne A. Easton
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Ontario Aquaculture Research Centre, University of Guelph, Elora, Ontario, Canada
| | - Moira M. Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Roy G. Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
17
|
Goyal R, Castro PA, Levin JB, Shim S, Mizuno GO, Tian L, Borodinsky LN. Vesicular glutamate release is necessary for neural tube formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.05.631426. [PMID: 39829813 PMCID: PMC11741360 DOI: 10.1101/2025.01.05.631426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The brain and spinal cord originate from a neural tube that is preceded by a flat structure known as the neural plate during early embryogenesis. In humans, failure of the neural plate to convert into a tube by the fourth week of pregnancy leads to neural tube defects (NTDs), birth defects with serious neurological consequences. The signaling mechanisms governing the process of neural tube morphogenesis are unclear. Here we show that in Xenopus laevis embryos, neural plate cells release glutamate during neural plate folding in a Ca 2+ and vesicular glutamate transporter-1 (VGluT1)-dependent manner. Vesicular release of glutamate elicits Ca 2+ transients in neural plate cells that correlate with activation of Erk1/2. Knocking down or out VGluT1 leads to NTDs through increased expression of Sox2, neural stem cell transcription factor, and neural plate cell proliferation. Exposure during early pregnancy to neuroactive drugs that disrupt these signaling mechanisms might increase the risk of NTDs in offspring.
Collapse
|
18
|
Selvaraj S, Weerasinghe L. The Role of Nanotechnology in Understanding the Pathophysiology of Traumatic Brain Injury. Cent Nerv Syst Agents Med Chem 2025; 25:20-38. [PMID: 38676493 DOI: 10.2174/0118715249291999240418112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Recently, traumatic brain injury (TBI) has been a growing disorder due to frequent brain dysfunction. The Glasgow Coma Scale expresses TBI as classified as having mild, moderate, or severe brain effects, according to the effects on the brain. Brain receptors undergo various modifications in their pathology through chemical synaptic pathways, leading to depression, Alzheimer's, and Parkinson's disease. These brain disorders can be controlled using central receptors such as dopamine, glutamate, and γ-aminobutyric acid, which are clearly explained in this review. Furthermore, there are many complications in TBI's clinical trials and diagnostics, leading to insignificant treatment, causing permanent neuro-damage, physical disability, and even death. Bio-screening and conventional molecular-based therapies are inappropriate due to poor preclinical testing and delayed recovery. Hence, modern nanotechnology utilizing nanopulsed laser therapy and advanced nanoparticle insertion will be suitable for TBI's diagnostics and treatment. In recent days, nanotechnology has an important role in TBI control and provides a higher success rate than conventional therapies. This review highlights the pathophysiology of TBI by comprising the drawbacks of conventional techniques and supports suitable modern alternates for treating TBI.
Collapse
Affiliation(s)
- Saranya Selvaraj
- Department of Chemistry, Faculty of Applied sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
19
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
20
|
Tichauer JE, Rovegno M. Role of astrocytes connexins - pannexins in acute brain injury. Neurotherapeutics 2025; 22:e00523. [PMID: 39848901 PMCID: PMC11840357 DOI: 10.1016/j.neurot.2025.e00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
Acute brain injuries (ABIs) encompass a broad spectrum of primary injuries such as ischemia, hypoxia, trauma, and hemorrhage that converge into secondary injury where some mechanisms show common determinants. In this regard, astroglial connexin and pannexin channels have been shown to play an important role. These channels are transmembrane proteins sharing similar topology and form gateways between adjacent cells named gap junctions (GJs) and pores into unopposed membranes named hemichannels (HCs). In astrocytes, GJs and HCs enable intercellular communication and have active participation in normal brain physiological processes, such as calcium waves, synapsis modulation, regional blood flow regulation, and homeostatic control of the extracellular environment, among others. However, after acute brain injury, astrocytes can change their phenotype and modify the activity of both channels and hemichannels, which can result in the amplification of danger signals, increased mediators of inflammation, and neuronal death, contributing to the expansion of brain damage and neurological deterioration. This is known as secondary brain damage. In this review, we discussed the main biological mechanism of secondary brain damage with a particular focus on astroglial connexin and pannexin participation during acute brain injuries.
Collapse
Affiliation(s)
- Juan E Tichauer
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
21
|
Campbell MD, Djukovic D, Raftery D, Marcinek DJ. Age-related changes of skeletal muscle metabolic response to contraction are also sex-dependent. J Physiol 2025; 603:69-86. [PMID: 37742081 PMCID: PMC10959763 DOI: 10.1113/jp285124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired mitochondrial metabolic response may contribute to reduced exercise tolerance and decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance. We hypothesized that elevated energy stress in mitochondria with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we used in vivo electrical stimulation to simulate high-intensity intervals (HII) or low intensity steady-state (LISS) exercise in young (5-7 months) and aged (27-29 months) male and female mice to characterize effects of age and sex on mitochondrial substrate utilization in skeletal muscle following contraction. Mitochondrial respiration using glutamate decreased in aged males following HII and glutamate oxidation was inhibited following HII in both the contracted and non-stimulated muscle of aged female muscle. Analyses of the muscle metabolome of female mice indicated that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. To test improved mitochondrial function on substrate utilization following HII, we treated aged females with elamipretide (ELAM), a mitochondrially-targeted peptide shown to improve mitochondrial bioenergetics and restore redox status in aged muscle. ELAM removed inhibition of glutamate oxidation and showed increased metabolic pathway changes following HII, suggesting rescuing redox status and improving bioenergetic function in mitochondria from aged muscle increases glutamate utilization and enhances the metabolic response to muscle contraction in aged muscle. KEY POINTS: Acute local contraction of gastrocnemius can systemically alter mitochondrial respiration in non-stimulated muscle. Age-related changes in mitochondrial respiration using glutamate or palmitoyl carnitine following contraction are sex-dependent. Respiration using glutamate after high-intensity contraction is inhibited in aged female muscle. Metabolite level and pathway changes following muscle contraction decrease with age in female mice. Treatment with the mitochondrially-targeted peptide elamipretide can partially rescue metabolite response to muscle contraction.
Collapse
Affiliation(s)
| | - Danijel Djukovic
- Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
| | - Daniel Raftery
- Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
| | | |
Collapse
|
22
|
Nguyen HD, Vu GH, Hoang LT, Kim MS. Elucidation of toxic effects of 1,2-diacetylbenzene: an in silico study. Forensic Toxicol 2025; 43:33-45. [PMID: 39298088 DOI: 10.1007/s11419-024-00702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/30/2024] [Indexed: 09/21/2024]
Abstract
PURPOSE We aimed to explore the metabolite products of 1,2-diacetylbenzene (DAB) and investigate their harmful effects, physicochemical properties, and biological activities, along with those of DAB itself. METHODS Key approaches included MetaTox, PASS online, ADMESWISS, ADMETlab 2.0, molecular docking, and molecular dynamic simulation to identify metabolites, toxic effects, Lipinski's rule criteria, absorption, distribution, metabolism, and excretion properties, interactions with cytochrome (CYP) 450 isoforms, and the stability of the DAB-cytochrome complex. RESULTS A total of 13 metabolite products from DAB were identified, involving Phase I reactions (aliphatic hydroxylation, epoxidation, oxidative dehydrogenation, and hydrogenation) and Phase II reactions (oxidative sulfation and methylation). Molecular dynamics and modeling revealed a stable interaction between CYP1A2 and DAB, suggesting the involvement of CYP1A2 in DAB metabolism. All studied compounds adhered to Lipinski's rule, indicating their potential as inducers or activators of toxic mechanisms. The physicochemical parameters and pharmacokinetics of the investigated compounds were consistent with their harmful effects, which included neurotoxic, nephrotoxic, endocrine disruptor, and hepatotoxic consequences due to their high gastrointestinal absorption and ability to cross the blood-brain barrier. Various CYP450 isoforms exhibited different functions, and the compounds were found to act as superoxide dismutase inhibitors, neuropeptide Y2 antagonists, glutaminase inhibitors, and activators of caspases 3 and 8. DAB and its metabolites were also associated with apoptosis, oxidative stress, and neuroendocrine disruption. CONCLUSION The toxic effects of DAB and its metabolites were predicted in this study. Further research is warranted to explore their effects on other organs, such as the liver and kidneys, and to validate our findings.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, 70433, USA.
| | - Giang Huong Vu
- Department of Public Heath, Hong Bang Health Center, Hai Phong, Vietnam
| | - Linh Thuy Hoang
- College of Pharmacy, California Northstate University College of Pharmacy, Elk Grove, CA, USA
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
23
|
Sharipov RR, Surin AM, Silonov SA, Smirnov EY, Neklesova MV, Vishnyakov IE, Gavrilova AA, Mikryukova AA, Moskovtsev AA, Bakaeva ZV, Kolesnikov SS, Kuznetsova IM, Turoverov KK, Fonin AV. Promyelocytic leukemia protein (PML) knockout increases mitochondrial Ca 2+ uptake in HeLa cells. Biochem Biophys Res Commun 2024; 739:150990. [PMID: 39550867 DOI: 10.1016/j.bbrc.2024.150990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
The multifunctional promyelocytic leukemia protein (PML) is involved in the regulation of various cellular processes in both physiological and pathological conditions. Specifically, PML is one of the inositol-1,4,5-trisphosphate receptors (IP3Rs) activity regulators and can influence Ca2+ transport from the endoplasmic reticulum (ER) to mitochondria. In this work, the effects of PML knockout on calcium homeostasis in the cytosol, ER, and mitochondria of HeLa cells were studied upon stimulation with histamine, which induces Ca2+ mobilization from the ER via IP3Rs. We utilized calcium indicators with different subcellular localizations, including synthetic dyes Fura-2 (cytosolic), Xrhod-5F (mitochondrial), and protein sensor R-CEPIAer (ER), as well as mitochondrial potential-sensitive probes Rh123 and TMRM. Our results show that PML knockout induced changes in HeLa cell and mitochondrial morphology, slightly decreased basal and integral Ca2+ levels, enhanced mitochondrial Ca2+ uptake from the cytoplasm, and maintained residual mitochondrial potential after depolarization. Additionally, it reduced the Ca2+ pool in ER membranes not associated with histamine receptor activation and, consequently, IP3Rs. These findings suggest that changes in calcium ion transport due to PML knockout in HeLa cells affect mitochondrial activity.
Collapse
Affiliation(s)
- R R Sharipov
- Institute of General Pathology and Pathophysiology, Moscow, Baltiyskaya St., 8, 125315, Russia
| | - A M Surin
- Institute of General Pathology and Pathophysiology, Moscow, Baltiyskaya St., 8, 125315, Russia
| | - S A Silonov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia
| | - E Y Smirnov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia
| | - M V Neklesova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia
| | - I E Vishnyakov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia
| | - A A Gavrilova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia
| | - A A Mikryukova
- Institute of General Pathology and Pathophysiology, Moscow, Baltiyskaya St., 8, 125315, Russia
| | - A A Moskovtsev
- Institute of General Pathology and Pathophysiology, Moscow, Baltiyskaya St., 8, 125315, Russia
| | - Z V Bakaeva
- National Medical Research Center for Children's Health, 119296, Moscow, Russia
| | - S S Kolesnikov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St.3, 142290, Pushchino, Russia
| | - I M Kuznetsova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia
| | - K K Turoverov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia
| | - A V Fonin
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia.
| |
Collapse
|
24
|
Yang H, Tan H, Wen H, Xin P, Liu Y, Deng Z, Xu Y, Gao F, Zhang L, Ye Z, Zhang Z, Chen Y, Wang Y, Sun J, Lam JWY, Zhao Z, Kwok RTK, Qiu Z, Tang BZ. Recent Progress in Nanomedicine for the Diagnosis and Treatment of Alzheimer's Diseases. ACS NANO 2024; 18:33792-33826. [PMID: 39625718 DOI: 10.1021/acsnano.4c11966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory loss and progressive and permanent deterioration of cognitive function. The most challenging issue in combating AD is its complicated pathogenesis, which includes the deposition of amyloid β (Aβ) plaques, intracellular hyperphosphorylated tau protein, neurofibrillary tangles (NFT), etc. Despite rapid advancements in mechanistic research and drug development for AD, the currently developed drugs only improve cognitive ability and temporarily relieve symptoms but cannot prevent the development of AD. Moreover, the blood-brain barrier (BBB) creates a huge barrier to drug delivery in the brain. Therefore, effective diagnostic tools and treatments are urgently needed. In recent years, nanomedicine has provided opportunities to overcome the challenges and limitations associated with traditional diagnostics or treatments. Various types of nanoparticles (NPs) play an essential role in nanomedicine for the diagnosis and treatment of AD, acting as drug carriers to improve targeting and bioavailability across/bypass the BBB or acting as drugs directly on AD lesions. This review categorizes different types of NPs and summarizes their applications in nanomedicine for the diagnosis and treatment of AD. It also discusses the challenges associated with clinical applications and explores the latest developments and prospects of nanomedicine for AD.
Collapse
Affiliation(s)
- Han Yang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Haifei Wen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Peikun Xin
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanling Liu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziwei Deng
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanning Xu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Feng Gao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Liping Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Zicong Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yunhao Chen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yueze Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Jianwei Sun
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ryan T K Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| |
Collapse
|
25
|
Lakhawat SS, Mech P, Kumar A, Malik N, Kumar V, Sharma V, Bhatti JS, Jaswal S, Kumar S, Sharma PK. Intricate mechanism of anxiety disorder, recognizing the potential role of gut microbiota and therapeutic interventions. Metab Brain Dis 2024; 40:64. [PMID: 39671133 DOI: 10.1007/s11011-024-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/29/2024] [Indexed: 12/14/2024]
Abstract
Anxiety is a widespread psychological disorder affecting both humans and animals. It is a typical stress reaction; however, its longer persistence can cause severe health disorders affecting the day-to-day life activities of individuals. An intriguing facet of the anxiety-related disorder can be addressed better by investigating the role of neurotransmitters in regulating emotions, provoking anxiety, analyzing the cross-talks between neurotransmitters, and, most importantly, identifying the biomarkers of the anxiety. Recent years have witnessed the potential role of the gut microbiota in human health and disorders, including anxiety. Animal models are commonly used to study anxiety disorder as they offer a simpler and more controlled environment than humans. Ultimately, developing new strategies for diagnosing and treating anxiety is of paramount interest to medical scientists. Altogether, this review article shall highlight the intricate mechanisms of anxiety while emphasizing the emerging role of gut microbiota in regulating metabolic pathways through various interaction networks in the host. In addition, the review will foster information about the therapeutic interventions of the anxiety and related disorder.
Collapse
Affiliation(s)
- Sudarshan Singh Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Priyanka Mech
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Environmental Sciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Sunil Jaswal
- Department of Human Genetics and Molecular Medicine Central University Punjab, Bathinda, 151401, India
| | - Sunil Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
26
|
Puranik N, Song M. Glutamate: Molecular Mechanisms and Signaling Pathway in Alzheimer's Disease, a Potential Therapeutic Target. Molecules 2024; 29:5744. [PMID: 39683904 DOI: 10.3390/molecules29235744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Gamma-glutamate is an important excitatory neurotransmitter in the central nervous system (CNS), which plays an important role in transmitting synapses, plasticity, and other brain activities. Nevertheless, alterations in the glutamatergic signaling pathway are now accepted as a central element in Alzheimer's disease (AD) pathophysiology. One of the most prevalent types of dementia in older adults is AD, a progressive neurodegenerative illness brought on by a persistent decline in cognitive function. Since AD has been shown to be multifactorial, a variety of pharmaceutical targets may be used to treat the condition. N-methyl-D-aspartic acid receptor (NMDAR) antagonists and acetylcholinesterase inhibitors (AChEIs) are two drug classes that the Food and Drug Administration has authorized for the treatment of AD. The AChEIs approved to treat AD are galantamine, donepezil, and rivastigmine. However, memantine is the only non-competitive NMDAR antagonist that has been authorized for the treatment of AD. This review aims to outline the involvement of glutamate (GLU) at the molecular level and the signaling pathways that are associated with AD to demonstrate the drug target therapeutic potential of glutamate and its receptor. We will also consider the opinion of the leading authorities working in this area, the drawback of the existing therapeutic strategies, and the direction for the further investigation.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
27
|
Dhurandhar Y, Tomar S, Das A, Singh AP, Prajapati JL, Bodakhe SH, Namdeo KP. Unlocking the Potential of Oxymatrine: A Comprehensive Review of Its Neuroprotective Mechanisms and Therapeutic Prospects in Neurological Disorders. ACS Chem Neurosci 2024; 15:4245-4257. [PMID: 39539195 DOI: 10.1021/acschemneuro.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Sophora flavescens, the source of oxymatrine, is gaining popularity due to its potential in neuroprotection and treatment of various neurological conditions like epilepsy, depression, Parkinson's, Alzheimer's and multiple sclerosis. Its natural occurrence and promising preliminary research highlight its ability to reduce nerve cell damage and inflammation, attributed to its antiapoptotic, antioxidant and anti-inflammatory properties. However, challenges like solubility, potential adverse effects and limited bioavailability hinder its full therapeutic utilization. Current strategies, including formulation optimization and innovative drug delivery systems, aim to enhance its efficacy and safety. Despite its potential, further research is necessary to overcome these obstacles and maximize its clinical effectiveness. Conclusively, oxymatrine demonstrates distinct neuroprotective properties, offering unique advantages over other agents currently being studied or used in clinical practice for neurological disorders. nevertheless, additional study is necessary to surmount current obstacles and maximize its effectiveness for clinical settings. This study provides a comprehensive overview of oxymatrine's neuroprotective mechanisms and therapeutic potential while emphasizing the need for continued investigation and development for practical clinical application.
Collapse
Affiliation(s)
- Yogita Dhurandhar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Shubham Tomar
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - As Pee Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Jeevan Lal Prajapati
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Kamta P Namdeo
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
28
|
Szpręgiel I, Bysiek A. Psilocybin and the glutamatergic pathway: implications for the treatment of neuropsychiatric diseases. Pharmacol Rep 2024; 76:1297-1304. [PMID: 39412581 PMCID: PMC11582295 DOI: 10.1007/s43440-024-00660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 11/22/2024]
Abstract
In recent decades, psilocybin has gained attention as a potential drug for several mental disorders. Clinical and preclinical studies have provided evidence that psilocybin can be used as a fast-acting antidepressant. However, the exact mechanisms of action of psilocybin have not been clearly defined. Data show that psilocybin as an agonist of 5-HT2A receptors located in cortical pyramidal cells exerted a significant effect on glutamate (GLU) extracellular levels in both the frontal cortex and hippocampus. Increased GLU release from pyramidal cells in the prefrontal cortex results in increased activity of γ-aminobutyric acid (GABA)ergic interneurons and, consequently, increased release of the GABA neurotransmitter. It seems that this mechanism appears to promote the antidepressant effects of psilocybin. By interacting with the glutamatergic pathway, psilocybin seems to participate also in the process of neuroplasticity. Therefore, the aim of this mini-review is to discuss the available literature data indicating the impact of psilocybin on glutamatergic neurotransmission and its therapeutic effects in the treatment of depression and other diseases of the nervous system.
Collapse
Affiliation(s)
- Izabela Szpręgiel
- Department of Pharmacology and Brain Biostructure, Unit II, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| | - Agnieszka Bysiek
- Department of Pharmacology and Brain Biostructure, Unit II, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| |
Collapse
|
29
|
Hlozkova K, Vasylkivska M, Boufersaoui A, Marzullo B, Kolarik M, Alquezar-Artieda N, Shaikh M, Alaei NF, Zaliova M, Zwyrtkova M, Bakardijeva-Mihaylova V, Alberich-Jorda M, Trka J, Tennant DA, Starkova J. Rewired glutamate metabolism diminishes cytostatic action of L-asparaginase. Cancer Lett 2024; 605:217242. [PMID: 39270769 DOI: 10.1016/j.canlet.2024.217242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Tumor cells often adapt to amino acid deprivation through metabolic rewiring, compensating for the loss with alternative amino acids/substrates. We have described such a scenario in leukemic cells treated with L-asparaginase (ASNase). Clinical effect of ASNase is based on nutrient stress achieved by its dual enzymatic action which leads to depletion of asparagine and glutamine and is accompanied with elevated aspartate and glutamate concentrations in serum of acute lymphoblastic leukemia patients. We showed that in these limited conditions glutamate uptake compensates for the loss of glutamine availability. Extracellular glutamate flux detection confirms its integration into the TCA cycle and its participation in nucleotide and glutathione synthesis. Importantly, it is glutamate-driven de novo synthesis of glutathione which is the essential metabolic pathway necessary for glutamate's pro-survival effect. In vivo findings support this effect by showing that inhibition of glutamate transporters enhances the therapeutic effect of ASNase. In summary, ASNase induces elevated extracellular glutamate levels under nutrient stress, which leads to a rewiring of intracellular glutamate metabolism and has a negative impact on ASNase treatment.
Collapse
Affiliation(s)
- Katerina Hlozkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic.
| | - Maryna Vasylkivska
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Adam Boufersaoui
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Bryan Marzullo
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matus Kolarik
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Natividad Alquezar-Artieda
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Mehak Shaikh
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nadia Fatemeh Alaei
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa Zaliova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic
| | - Martina Zwyrtkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Violeta Bakardijeva-Mihaylova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Meritxell Alberich-Jorda
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Julia Starkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
30
|
Prabhune NM, Ameen B, Prabhu S. Therapeutic potential of synthetic and natural iron chelators against ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03640-4. [PMID: 39601820 DOI: 10.1007/s00210-024-03640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron accumulation that results in the production of reactive oxygen species. This further causes lipid peroxidation and damage to the cellular components, eventually culminating into oxidative stress. Recent studies have highlighted the pivotal role of ferroptosis in the pathophysiological development and progression of various diseases such as β-thalassemia, hemochromatosis, and neurodegenerative disorders like AD and PD. Extensive efforts are in progress to understand the molecular mechanisms governing the role of ferroptosis in these conditions, and chelation therapy stands out as a potential approach to mitigate ferroptosis and its related implications in their development. There are currently both synthetic and natural iron chelators that are being researched for their potential as ferroptosis inhibitors. While synthetic chelators are relatively well-established and studied, their short plasma half-life and toxic side effects necessitate the exploration and identification of natural products that can act as efficient and safe iron chelators. In this review, we comprehensively discuss both synthetic and natural iron chelators as potential therapeutic strategies against ferroptosis-induced pathologies.
Collapse
Affiliation(s)
- Nupura Manish Prabhune
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bilal Ameen
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sudharshan Prabhu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
31
|
Yan F, Chen B, Ma Z, Chen Q, Jin Z, Wang Y, Qu F, Meng Q. Exploring molecular mechanisms of postoperative delirium through multi-omics strategies in plasma exosomes. Sci Rep 2024; 14:29466. [PMID: 39604493 PMCID: PMC11603267 DOI: 10.1038/s41598-024-80865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Currently, the diagnosis of delirium is solely based on clinical observation, lacking objective diagnostic tools, and the regulatory networks and pathological mechanisms behind it are not yet fully understood. Exosomes have garnered considerable interest as potential biomarkers for a variety of illnesses. This research aimed to delineate both the proteomic and metabolomic landscapes inherent to exosomes, assessing their diagnostic utility in postoperative delirium (POD) and understanding the underlying pathophysiological frameworks. Integrated analyses of proteomics and metabolomics were conducted on exosomes derived from plasma of individuals from both the non-postoperative delirium (NPOD) control group and the POD group. Subsequently, the study utilized the Connectivity Map (CMap) methodology for the identification of promising small-molecule drugs and carried out molecular docking assessments to explore the binding affinities with the enzyme MMP9 of these identified molecules. We identified significant differences in exosomal metabolites and proteins between the POD and control groups, highlighting pathways related to neuroinflammation and blood-brain barrier (BBB) integrity. Our CMap analysis identified potential small-molecule therapeutics, and molecular docking studies revealed two compounds with high affinity to MMP9, suggesting a new therapeutic avenue for POD. This study highlights MMP9, TLR2, ICAM1, S100B, and glutamate as key biomarkers in the pathophysiology of POD, emphasizing the roles of neuroinflammation and BBB integrity. Notably, molecular docking suggests mirin and orantinib as potential inhibitors targeting MMP9, providing new therapeutic avenues. The findings broaden our understanding of POD mechanisms and suggest targeted strategies for its management, reinforcing the importance of multidimensional biomarker analysis and molecular targeting in POD intervention.
Collapse
Affiliation(s)
- Fuhui Yan
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Bowang Chen
- Department of Intensive Care Unit, Affiliated Jining First People's Hospital of Shandong First Medical University, Jining, Shandong, China
| | - Zhen Ma
- Department of Intensive Care Unit, Affiliated Jining First People's Hospital of Shandong First Medical University, Jining, Shandong, China
| | - Qirong Chen
- Department of Intensive Care Unit, Affiliated Jining First People's Hospital of Shandong First Medical University, Jining, Shandong, China
| | - Zhi Jin
- Department of Intensive Care Unit, Affiliated Jining First People's Hospital of Shandong First Medical University, Jining, Shandong, China
| | - Yujie Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Feng Qu
- Department of Intensive Care Unit, Affiliated Jining First People's Hospital of Shandong First Medical University, Jining, Shandong, China.
| | - Qiang Meng
- Department of Intensive Care Unit, Affiliated Jining First People's Hospital of Shandong First Medical University, Jining, Shandong, China.
| |
Collapse
|
32
|
Rohrer C, Palumbo A, Paul M, Reese E, Basu S. Neurotransmitters and neural hormone-based probes for quadruplex DNA sequences associated with neurodegenerative diseases. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-24. [PMID: 39561111 DOI: 10.1080/15257770.2024.2431145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
The potential of neurotransmitters and neural hormones as possible G-quadruplex DNA binders was analyzed using fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), DNA melting analysis, and molecular docking. G-quadruplex sequences, (GGC)3 and G4C2, with roles in Fragile X syndrome and amyotrophic lateral sclerosis (ALS), respectively, were selected, and their interactions with melatonin, serotonin, and gamma-aminobutyric acid (GABA), were studied. Both melatonin and serotonin demonstrated strong interactions with the DNA sequences with hydrogen bonding being the primary mode of interaction, with some non-intercalative interactions involving the π systems. GABA demonstrated much weaker interactions and may not be a suitable candidate as a probe for low concentrations of G-quadruplex DNA.
Collapse
Affiliation(s)
- Callie Rohrer
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Alexis Palumbo
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Marissa Paul
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Erin Reese
- Department of Biology, Susquehanna University, Selinsgrove, PA, USA
| | - Swarna Basu
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| |
Collapse
|
33
|
Yasukohchi M, Omata T, Ochiai K, Sano K, Murofushi Y, Kimura S, Takase N, Honda T, Yasukawa K, Takanashi JI. Pathomechanism of infantile traumatic brain injury with a biphasic clinical course and late reduced diffusion evaluated by MR spectroscopy. J Neurol Sci 2024; 466:123228. [PMID: 39278172 DOI: 10.1016/j.jns.2024.123228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Infantile traumatic brain injury (TBI) with a biphasic clinical course and late reduced diffusion (TBIRD) has recently been reported as a distinct type of TBI in infancy. However, the pathological and prognostic factors of TBIRD remain unknown. We aimed to compare patients with and without TBIRD and evaluate the pathomechanism of TBIRD using magnetic resonance spectroscopy (MRS). METHODS Ten Japanese patients with TBI were admitted to our hospital and underwent MRS between September 2015 and September 2022 (age range, 3-15 months; median age, 8.5 months). TBIRD was diagnosed in six patients. MRS data were compared among patients with TBIRD, patients without TBIRD, and controls. Neurological prognosis was classified into grades 1 (normal) to 3 (severe). RESULTS In patients with TBIRD, MRS revealed an increase in the glutamine (Gln) level on days 3-29, which subsequently became close to normal. The degree of Gln elevation in the non-TBIRD group was smaller (117-158 % of controls) than that in the TBIRD group (210-337 %) within 14 days. MRS in the TBIRD group showed decreased N-acetyl aspartate (NAA) concentrations. The degree of NAA decrease was more prominent in grade 3 than in grades 1 and 2. NAA levels in the non-TBIRD group were almost normal. CONCLUSIONS Patients with TBI and markedly elevated Gln levels on MRS may develop TBIRD. Neuro-excitotoxicity is a possible pathological mechanism of TBIRD. Decreased NAA levels may be useful for predicting the prognosis of patients with TBIRD.
Collapse
Affiliation(s)
- Madoka Yasukohchi
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-shi, Chiba 276-8524, Japan.
| | - Taku Omata
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-shi, Chiba 276-8524, Japan.
| | - Kenta Ochiai
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-shi, Chiba 276-8524, Japan
| | - Kentaro Sano
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-shi, Chiba 276-8524, Japan
| | - Yuka Murofushi
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-shi, Chiba 276-8524, Japan
| | - Sho Kimura
- Department of Pediatric Critical Care Medicine, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-shi, Chiba 276-8524, Japan
| | - Nanako Takase
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-shi, Chiba 276-8524, Japan
| | - Takafumi Honda
- Department of Pediatric Critical Care Medicine, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-shi, Chiba 276-8524, Japan.
| | - Kumi Yasukawa
- Department of Pediatric Critical Care Medicine, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-shi, Chiba 276-8524, Japan.
| | - Jun-Ichi Takanashi
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-shi, Chiba 276-8524, Japan.
| |
Collapse
|
34
|
Nguyen QNS, Yoo KY, Pham TTT, Selvaraj B, Vu HT, Le TT, Lee H, Tran QL, Thuong PT, Pae AN, Jung SH, Lee JW. Neuroprotective Effects of Ethanol Extract Polyscias guilfoylei (EEPG) Against Glutamate Induced Neurotoxicity in HT22 Cells. Int J Mol Sci 2024; 25:12153. [PMID: 39596219 PMCID: PMC11595212 DOI: 10.3390/ijms252212153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress induced by glutamate is a significant contributor to neuronal cell damage and can lead to neurodegenerative diseases such as Alzheimer's, Huntington's, and ischemic brain injury. At the cellular level, oxidative stress increases Ca2+ ion influx and reactive oxygen species (ROS), which activate the MAPK signaling pathway. Additionally, the generation of ROS causes mitochondrial dysfunction, triggering apoptosis by promoting the translocation of AIF to the nucleus from the mitochondria. The neuroprotective potential of Polyscias guilfoylei has not yet been reported. Therefore, in this study, the ethanol extract of Polyscias guilfoylei (EEPG) was examined for its protective effect against oxidative cell damage caused by glutamate in neuronal cells. EEPG treatment increased the viability of HT22 cells exposed to high concentrations of glutamate. Cellular Ca2+ ion influx and ROS generation decreased with EEPG treatment in glutamate-treated HT22 cells. EEPG treatment inhibited MAPK activation and AIF nuclear translocation. In an in vivo study, EEPG attenuated brain cell death in an ischemic brain injury rat model. This study demonstrates the potential therapeutic effects of Polyscias guilfoylei in the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Qui Ngoc Sang Nguyen
- Natural Product Research Center, Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Q.N.S.N.); (T.T.T.P.); (B.S.); (T.T.L.)
- Department of Anatomy, College of Dentistry and Research Institute for Dental Engineering, Gangneung Wonju National University, 7 Jukheon-gil, Gangneung 25457, Republic of Korea; (K.-Y.Y.); (H.L.)
- Institute of Natural Product Chemistry, Vietnamese Academy Science and Technology, 1H Building, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi 100000, Vietnam
| | - Ki-Yeon Yoo
- Department of Anatomy, College of Dentistry and Research Institute for Dental Engineering, Gangneung Wonju National University, 7 Jukheon-gil, Gangneung 25457, Republic of Korea; (K.-Y.Y.); (H.L.)
| | - Thi Thu Trang Pham
- Natural Product Research Center, Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Q.N.S.N.); (T.T.T.P.); (B.S.); (T.T.L.)
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung 25451, Republic of Korea
| | - Baskar Selvaraj
- Natural Product Research Center, Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Q.N.S.N.); (T.T.T.P.); (B.S.); (T.T.L.)
| | - Huong Thuy Vu
- Traphaco Join-Stock Company, 75 P. Yên Ninh, Quán Thánh, Ba Đình, Hanoi 1000000, Vietnam; (H.T.V.); (Q.L.T.)
- Faculty of Herbal Medicine, Traditional Pharmacy, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Ba Dinh, Hanoi 100000, Vietnam
| | - Tam Thi Le
- Natural Product Research Center, Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Q.N.S.N.); (T.T.T.P.); (B.S.); (T.T.L.)
| | - Heesu Lee
- Department of Anatomy, College of Dentistry and Research Institute for Dental Engineering, Gangneung Wonju National University, 7 Jukheon-gil, Gangneung 25457, Republic of Korea; (K.-Y.Y.); (H.L.)
| | - Quang Luc Tran
- Traphaco Join-Stock Company, 75 P. Yên Ninh, Quán Thánh, Ba Đình, Hanoi 1000000, Vietnam; (H.T.V.); (Q.L.T.)
| | - Phuong Thien Thuong
- Division of Biotechnology, Vietnam Korea Institute of Science and Technology, Hoa lac High-tech Park, km29 Thang Long Boulevard, Hanoi 100000, Vietnam;
| | - Ae Nim Pae
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea;
- Center for Brain Disorders, Brain Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang Hoon Jung
- Natural Product Research Center, Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Q.N.S.N.); (T.T.T.P.); (B.S.); (T.T.L.)
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung 25451, Republic of Korea
| | - Jae Wook Lee
- Natural Product Research Center, Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Q.N.S.N.); (T.T.T.P.); (B.S.); (T.T.L.)
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung 25451, Republic of Korea
| |
Collapse
|
35
|
Achanta U, Krishnan S, Chandrasekaran A, Wilson S R, Aiyappan SK, Sundar S. Neonatal Encephalopathy due to Glutaminase Deficiency in a Neonate. Clin Case Rep 2024; 12:e9567. [PMID: 39559284 PMCID: PMC11570421 DOI: 10.1002/ccr3.9567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 11/20/2024] Open
Abstract
Identifying neurometabolic disorders that lead to neonatal encephalopathy is difficult, and access to exome sequencing is a significant advantage in developing countries. We present a case of neonatal encephalopathy characterized by refractory seizures and significant apnea resulting from glutaminase deficiency, along with elevated levels of glutamine and glycine in the cerebrospinal fluid. Although the condition was fatal, it was possible to offer genetic counseling and recommendations for future pregnancies following exome sequencing.
Collapse
Affiliation(s)
- Unnati Achanta
- Department of PaediatricsSRM Medical College Hospital and Research CentreChengalpattuIndia
| | - Shrinidhi Krishnan
- Department of PaediatricsSRM Medical College Hospital and Research CentreChengalpattuIndia
| | - Ashok Chandrasekaran
- Department of NeonatologySRM Medical College Hospital and Research CentreChengalpattuIndia
| | - Robert Wilson S
- Department of NeurologySRM Medical College Hospital and Research CentreChengalpattuIndia
| | - Senthil Kumar Aiyappan
- Department of RadiologySRM Medical College Hospital and Research CentreChengalpattuIndia
| | - Subash Sundar
- Department of PaediatricsSRM Medical College Hospital and Research CentreChengalpattuIndia
| |
Collapse
|
36
|
Mohaček-Grošev V, Škrabić M, Gebavi H, Blažek Bregović V, Marić I, Amendola V, Grdadolnik J. Binding of Glutamic Acid to Silver and Gold Nanoparticles Investigated by Surface-Enhanced Raman Spectroscopy. BIOSENSORS 2024; 14:522. [PMID: 39589981 PMCID: PMC11591887 DOI: 10.3390/bios14110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
Glutamate is the most important excitatory neurotransmitter, which is relevant for the study of several diseases such as amyotrophic lateral sclerosis and Alzheimer. It is the form L-glutamic acid (Glu) takes at physiologically relevant pHs. The surface-enhanced Raman spectra of Glu obtained at pH values ranging from 3.3 to 12 are collected in the presence of silver and gold colloids and on solid substrates. The observed bands are compared with the positions of calculated normal modes for free neutral glutamic acid, glutamic acid monohydrate, glutamic acid bound to gold and silver atoms, and sodium glutamate. Although gold atoms prefer to bind to the NH2 group as compared to carbonyl groups, silver atoms prefer binding to hydroxyl groups more than binding to the amino group. SERS spectra of glutamic acid solutions with a pH value of 12, in which both carboxylic groups are deprotonated, indicate a complexation of the glutamic acid dianion with the sodium cation, which was introduced into the solution to adjust the pH value. Further research towards an optimal substrate is needed.
Collapse
Affiliation(s)
- Vlasta Mohaček-Grošev
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Marko Škrabić
- Department of Physics and Biophysics, School of Medicine, University of Zagreb, Šalata bb, 10000 Zagreb, Croatia;
| | - Hrvoje Gebavi
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Vesna Blažek Bregović
- Laboratory for Optics and Thin Films, Division of Materials Physics, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Ivan Marić
- Radiation Chemistry and Dosimetry Laboratory, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, I-35131 Padova, Italy;
| | - Jože Grdadolnik
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
37
|
Zonneveld MH, Al Kuhaili N, Mooijaart SP, Slagboom PE, Jukema JW, Noordam R, Trompet S. Increased 1H-NMR metabolomics-based health score associates with declined cognitive performance and functional independence in older adults at risk of cardiovascular disease. GeroScience 2024:10.1007/s11357-024-01391-x. [PMID: 39436550 DOI: 10.1007/s11357-024-01391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
The 1-HMR metabolomics-based MetaboHealth score, comprised of 14 serum metabolic markers, associates with disease-specific mortality, but it is unclear whether the score also reflects cognitive changes and functional impairment. We aimed to assess the associations between the MetaboHealth score with cognitive function and functional decline in older adults at increased cardiovascular risk. A total of 5292 older adults free of dementia at baseline with mean age 75.3 years (SD = 3.4) from the Prospective Study of Pravastatin in the Elderly (PROSPER). MetaboHealth score were measured at baseline, and cognitive function and functional independence were measured at baseline and every 3 months during up to 2.5 years follow-up. Cognitive function was assessed using the Stroop test (selective attention), the Letter Digit Coding test (LDCT) (processing speed), and the two versions of the Picture Learning test (delayed and immediate; memory). Two tests of functional independence were used: Barthel Index (BI) and instrumental activities at daily living (IADL). A higher MetaboHealth score was associated with worse cognitive function (in all domains) and with worse functional independence. For example, after full adjustments, a 1-SD higher MetaboHealth score was associated with 9.02 s (95%CI 7.29, 10.75) slower performance on the Stroop test and 2.79 (2.21, 3.26) less digits coded on the LDCT. During follow-up, 1-SD higher MetaboHealth score was associated with an additional decline of 0.53 s (0.23, 0.83) on the Stroop test and - 0.08 (- 0.11, - 0.06) points on the IADL. Metabolic disturbance, as reflected by an increased metabolomics-based health score, may mark future cognitive and functional decline.
Collapse
Affiliation(s)
- Michelle H Zonneveld
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nour Al Kuhaili
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Simon P Mooijaart
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
- LUMC Center for Medicine for Older People, Leiden University Medical Center, Leiden, The Netherlands
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
38
|
Nakamura T, Shimizu T, Nishinakama N, Takahashi R, Arasaki K, Uda A, Watanabe K, Watarai M. A novel method of Francisella infection of epithelial cells using HeLa cells expressing fc gamma receptor. BMC Infect Dis 2024; 24:1171. [PMID: 39420255 PMCID: PMC11488177 DOI: 10.1186/s12879-024-10083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Francisella tularensis, the causative agent of tularemia, is a facultative intracellular bacterium. Although the life cycle of this bacterium inside phagocytic cells (e.g., macrophages, neutrophils) has been well analyzed, the difficulty of gene silencing and editing genes in phagocytic cells makes it difficult to analyze host factors important for the infection. On the other hand, epithelial cell lines, such as HeLa, have been established as cell lines that are easy to perform gene editing. However, the infection efficiency of Francisella into these epithelial cells is extremely low. METHODS In order to facilitate the molecular biological analysis of Francisella infection using epithelial cells, we constructed an efficient infection model of F. tularensis subsp. novicida (F. novicida) in HeLa cells expressing mouse FcγRII (HeLa-FcγRII), and the system was applied to evaluate the role of host GLS1 on Francisella infection. RESULTS As a result of colony forming unit count, HeLa-FcγRII cells uptake F. novicida in a serum-dependent manner and demonstrated an approximately 100-fold increase in intracellular bacterial infection compared to parental HeLa cells. Furthermore, taking advantage of the gene silencing capability of HeLa-FcγRII cells, we developed GLS1, a gene encoding glutaminase, knockdown cells using lentiviral sh RNA vector and assessed the impact of GLS1 on F. novicida infection. LDH assay revealed that GLS1-knockdown HeLa-FcγRII cells exhibited increased cytotoxicity during infection with F. novicida compared with control HeLa-FcγRII cells. Furthermore, the cell death was inhibited by the addition of ammonia, the metabolite produced through glutaminase activity. These results suggest that ammonia plays an important role in the proliferation of F. novicida. CONCLUSIONS In this report, we proposed a new cell-based infection system for Francisella infection using HeLa-FcγRII cells and demonstrated its effectiveness. This system has the potential to accelerate cell-based infection assays, such as large-scale genetic screening, and to provide new insights into Francisella infection in epithelial cells, which has been difficult to analyze in phagocytic cells.
Collapse
Affiliation(s)
- Takemasa Nakamura
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Takashi Shimizu
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Naho Nishinakama
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Reika Takahashi
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Kenta Watanabe
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Masahisa Watarai
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
39
|
Shepherd R, Angus LM, Mansell T, Arman B, Kim BW, Lange K, Burgner D, Kerr JA, Pang K, Zajac JD, Saffery R, Cheung A, Novakovic B. Impact of Distinct Antiandrogen Exposures on the Plasma Metabolome in Feminizing Gender-affirming Hormone Therapy. J Clin Endocrinol Metab 2024; 109:2857-2871. [PMID: 38609170 PMCID: PMC11479691 DOI: 10.1210/clinem/dgae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
CONTEXT The plasma metabolome is a functional readout of metabolic activity and is associated with phenotypes exhibiting sexual dimorphism, such as cardiovascular disease. Sex hormones are thought to play a key role in driving sexual dimorphism. OBJECTIVE Gender-affirming hormone therapy (GAHT) is a cornerstone of transgender care, but longitudinal changes in the plasma metabolome with feminizing GAHT have not been described. METHODS Blood samples were collected at baseline and after 3 and 6 months of GAHT from transgender women (n = 53). Participants were randomized to different anti-androgens, cyproterone acetate or spironolactone. Nuclear magnetic resonance-based metabolomics was used to measure 249 metabolic biomarkers in plasma. Additionally, we used metabolic biomarker data from an unrelated cohort of children and their parents (n = 3748) to identify sex- and age-related metabolite patterns. RESULTS We identified 43 metabolic biomarkers altered after 6 months in both anti-androgen groups, most belonging to the very low- or low-density lipoprotein subclasses, with all but 1 showing a decrease. We observed a cyproterone acetate-specific decrease in glutamine, glycine, and alanine levels. Notably, of the metabolic biomarkers exhibiting the most abundant "sex- and age-related" pattern (higher in assigned female children and lower in assigned female adults, relative to assigned males), 80% were significantly lowered after GAHT, reflecting a shift toward the adult female profile. CONCLUSION Our results suggest an anti-atherogenic signature in the plasma metabolome after the first 6 months of feminizing GAHT, with cyproterone acetate also reducing specific plasma amino acids. This study provides novel insight into the metabolic changes occurring across feminizing GAHT.
Collapse
Affiliation(s)
- Rebecca Shepherd
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Lachlan M Angus
- Department of Medicine (Austin Health), The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Endocrinology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Toby Mansell
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Inflammatory Origins, Infection and Immunity Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Bridget Arman
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
| | - Bo Won Kim
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Katherine Lange
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- The Centre for Community Child Health, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - David Burgner
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Inflammatory Origins, Infection and Immunity Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Jessica A Kerr
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Psychological Medicine, University of Otago, Christchurch 8011, New Zealand
- Murdoch Children's Research Institute, Centre for Adolescent Health, Population Health Theme, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Ken Pang
- Brain and Mind Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
- Department of Adolescent Medicine, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Jeffrey D Zajac
- Department of Medicine (Austin Health), The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Endocrinology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Richard Saffery
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ada Cheung
- Department of Medicine (Austin Health), The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Endocrinology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Boris Novakovic
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
40
|
Li H, Choi H, Houser MC, Li C, Liu T, Gao S, Sullivan K, Schlaeger JM. Impact of Acupuncture on Human Metabolomic Profiles: A Systematic Review. Metabolites 2024; 14:542. [PMID: 39452923 PMCID: PMC11509109 DOI: 10.3390/metabo14100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Metabolomics provides insights into the biological underpinnings of disease development and treatment. This systematic review investigated the impact of acupuncture on metabolite levels and associated metabolic pathways using a metabolomic approach. METHODS Five databases (i.e., PubMed, Embase, Scopus, CINAHL, and Cochrane Central) were searched using terms such as "acupuncture" and "metabolites" to retrieve relevant journal articles published through January 2024. Studies utilizing mass spectrometry or nuclear magnetic resonance were included. Risk of bias was evaluated using the Cochrane Risk of Bias tool and the Newcastle-Ottawa scale. Metabolic pathway analysis was conducted using MetaboAnalyst 6.0 to identify common significant pathways affected by acupuncture. Additionally, subgroup pathway enrichment analysis identified metabolites significantly altered in more than two studies. RESULTS Among 4019 articles, 22 studies met inclusion criteria, examining changes in metabolomic biomarkers before and after acupuncture for various diseases and symptoms. A total of 226 metabolites showed significant changes, with 14 common metabolites altered in more than two studies (glutamine, androsterone glucuronide, choline, citric acid, decanoylcarnitine, estrone, glutathione, glycine, hypoxanthine, lactic acid, pyruvic acid, serine, proline, and sn-glycero-3-phosphocholine). Common pathways affected by acupuncture were glycine, serine, and threonine metabolism, glutathione metabolism, arginine biosynthesis, and glyoxylate and dicarboxylate metabolism. CONCLUSIONS This review provides insights of the metabolomic mechanisms underlying acupuncture, highlighting its impact on specific metabolic pathways. Recognizing these changes can enhance acupuncture's effectiveness and support the development of personalized treatments. The findings underscore metabolomics as a valuable tool for understanding and optimizing acupuncture for various diseases and symptoms.
Collapse
Affiliation(s)
- Hongjin Li
- College of Nursing, University of Illinois Chicago, Chicago, IL 60612, USA; (H.C.); (K.S.); (J.M.S.)
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Hannah Choi
- College of Nursing, University of Illinois Chicago, Chicago, IL 60612, USA; (H.C.); (K.S.); (J.M.S.)
| | - Madelyn C. Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA;
| | - Changwei Li
- School of Public Health, Tulane University, New Orleans, LA 70112, USA;
| | - Tingting Liu
- College of Nursing, Florida State University, Tallahassee, FL 32306, USA;
| | - Shuang Gao
- College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Katy Sullivan
- College of Nursing, University of Illinois Chicago, Chicago, IL 60612, USA; (H.C.); (K.S.); (J.M.S.)
| | - Judith M. Schlaeger
- College of Nursing, University of Illinois Chicago, Chicago, IL 60612, USA; (H.C.); (K.S.); (J.M.S.)
| |
Collapse
|
41
|
Wang Z, Li D, Chen M, Yu X, Chen C, Chen Y, Zhang L, Shu Y. A comprehensive study on the regulation of Compound Zaoren Granules on cAMP/CREB signaling pathway and metabolic disorder in CUMS-PCPA induced insomnia rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118401. [PMID: 38815875 DOI: 10.1016/j.jep.2024.118401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Zaoren Granules (CZG), an optimized herbal formulation based on the traditional Chinese medicine prescription Suanzaoren decoction, are designed specifically for insomnia treatment. However, the mechanisms underlying its efficacy in treating insomnia are not yet fully understood. AIM OF THE STUDY The research investigated the mechanisms of CZG's improvement in insomnia by regulating cAMP/CREB signaling pathway and metabolic profiles. METHODS The main components of CZG were characterized by liquid chromatography-mass spectrometry (LC-MS). Subsequently, these validated components were applied to network pharmacological analysis to predict signaling pathways associated with insomnia. We evaluated the effect of CZG on BV-2 cells in vitro. We also evaluated the behavioral indexes of CUMS combined with PCPA induced insomnia in rats. HE staining and Nissl staining were used to observe the pathological damage of hippocampus. ELISA was used to detect the levels of various neurotransmitters, orexins, HPA axis, and inflammatory factors in insomnia rats. Then we detected the expression of cAMP/CREB signaling pathway through ELISA, WB, and IHC. Finally, the metabolomics was further analyzed by using UHPLC-QTOF-MS/MS to investigate the changes in the hippocampus of insomnia rats and the possible metabolic pathways were also speculated. RESULTS The results of CZG in vitro experiments showed that CZG has protective and anti-inflammatory effects on LPS induced BV-2 cells. A total of 161 chemical components were identified in CZG. After conducting network pharmacology analysis through these confirmed components, we select the cAMP/CREB signaling pathway for further investigate. The behavioral research results on insomnia rats showed that CZG significantly prolonged sleep time, mitigated brain tissue pathological damage, and exhibited liver protective properties. CZG treats insomnia by regulating the content of various neurotransmitters, reducing levels of orexin, HPA axis, and inflammatory factors. It can also treat insomnia by upregulating the expression of the cAMP/CREB signaling pathway. Hippocampus metabolomics analysis identified 69 differential metabolites associated with insomnia. The metabolic pathways related to these differential metabolites have also been predicted. CONCLUSION These results indicate that CZG can significantly prolong sleep time. CZG is used to treat insomnia by regulating various neurotransmitters, HPA axis, inflammatory factors, cAMP/CREB signaling pathways, and metabolic disorders.
Collapse
Affiliation(s)
- Zekun Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Danting Li
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Key laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Xiaocong Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Chen Chen
- Nanjing Women and Children's Healthcare Hospital, 210029, China
| | - Yajun Chen
- Nanjing Women and Children's Healthcare Hospital, 210029, China
| | - Lingfeng Zhang
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, China
| | - Yachun Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Seaside Rehabilitation Hospital, Lianyungang, 222042, China.
| |
Collapse
|
42
|
Bravo-Miana RDC, Arizaga-Echebarria JK, Sabas-Ortega V, Crespillo-Velasco H, Prada A, Castillo-Triviño T, Otaegui D. Tetraspanins, GLAST and L1CAM Quantification in Single Extracellular Vesicles from Cerebrospinal Fluid and Serum of People with Multiple Sclerosis. Biomedicines 2024; 12:2245. [PMID: 39457558 PMCID: PMC11504864 DOI: 10.3390/biomedicines12102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Objective: This study aimed to unravel the single tetraspanin pattern of extracellular vesicles (EVs), L1CAM+ and GLAST+ EV levels as diagnostic biomarkers to stratify people with multiple sclerosis (pwMS), specifically relapsing-remitting (RRMS) and primary progressive (PPMS). Methods: The ExoView platform was used to directly track single EVs using a clinically feasible volume of cerebrospinal fluid (CSF) and serum samples. This technology allowed us to examine the patterns of classical tetraspanin and quantify the levels of L1CAM and GLAST proteins, commonly used to immunoisolate putative neuron- and astrocyte-derived EVs. Results: The tetraspanin EV pattern does not allow us to differentiate RRMS, PPMS and non-MS donors neither in CSF nor serum, but this was associated with the type of biofluid. L1CAM+ and GLAST+ EVs showed a very low presence of tetraspanin proteins. Additionally, a significant decrease in the particle count of L1CAM+ EVs was detected in L1CAM-captured spots, and L1CAM+ and GLAST+ EVs decreased in GLAST-captured spots in the CSF from PPMS subjects compared to RRMS. Interestingly, only GLAST+ EVs exhibited a lower quantity in the CSF from PPMS compared to both MS and non-MS samples. Finally, GLAST+ EVs demonstrated a medium negative and significative correlation with GFAP levels-a biomarker of MS progression, astrocyte damage and neurodegenerative processes. Conclusions: ExoView technology could track neural EV biomarkers and be potentially useful in the diagnostic evaluation and follow-up of pwMS. GLAST+ EVs might provide insights into the etiology of PPMS and could offer small windows to elucidate the molecular mechanisms behind its clinical presentation.
Collapse
Affiliation(s)
- Rocío Del Carmen Bravo-Miana
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (J.K.A.-E.); (V.S.-O.); (H.C.-V.); (A.P.); (T.C.-T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jone Karmele Arizaga-Echebarria
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (J.K.A.-E.); (V.S.-O.); (H.C.-V.); (A.P.); (T.C.-T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Valeria Sabas-Ortega
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (J.K.A.-E.); (V.S.-O.); (H.C.-V.); (A.P.); (T.C.-T.)
| | - Hirune Crespillo-Velasco
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (J.K.A.-E.); (V.S.-O.); (H.C.-V.); (A.P.); (T.C.-T.)
| | - Alvaro Prada
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (J.K.A.-E.); (V.S.-O.); (H.C.-V.); (A.P.); (T.C.-T.)
- Immunology Department, Donostia University Hospital, 20014 San Sebastián, Spain
| | - Tamara Castillo-Triviño
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (J.K.A.-E.); (V.S.-O.); (H.C.-V.); (A.P.); (T.C.-T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Neurology Department, Donostia University Hospital, 20014 San Sebastián, Spain
| | - David Otaegui
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (J.K.A.-E.); (V.S.-O.); (H.C.-V.); (A.P.); (T.C.-T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
43
|
Dash UK, Mazumdar D, Singh S. High Mobility Group Box Protein (HMGB1): A Potential Therapeutic Target for Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8188-8205. [PMID: 38478143 DOI: 10.1007/s12035-024-04081-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
HMGB (high mobility group B) is one of the ubiquitous non-histone nuclear protein superfamilies that make up the HMG (high mobility group) protein group. HMGB1 is involved in a variety of physiological and pathological processes in the human body, including a structural role in the cell nucleus as well as replication, repair, DNA transcription, and assembly of nuclear proteins. It functions as a signaling regulator in the cytoplasm and a pro-inflammatory cytokine in the extracellular environment. Among several studies, HMGB1 protein is also emerging as a crucial factor involved in the development and progression of diabetic encephalopathy (DE) along with other factors such as hyperglycaemia-induced oxidative and nitrosative stress. Diabetes' chronic side effect is DE, which manifests as cognitive and psychoneurological dysfunction. The HMGB1 is released outside to the extracellular medium in diabetes condition through active or passive routes, where it functions as a damage-associated molecular pattern (DAMP) molecule to activate several signaling pathways by interacting with receptors for advanced glycosylation end-products (RAGE)/toll like receptors (TLR). HMGB1 reportedly activates inflammatory pathways, disrupts the blood-brain barrier, causes glutamate toxicity and oxidative stress, and promotes neuroinflammation, contributing to the development of cognitive impairment and neuronal damage which is suggestive of the involvement of HMGB1 in the enhancement of the diabetes-induced encephalopathic condition. Additionally, HMGB1 is reported to induce insulin resistance, further exacerbating the metabolic dysfunction associated with diabetes mellitus (DM). Thus, the present review explores the possible pathways associated with DM-induced hyperactivation of HMGB1 ultimately leading to DE.
Collapse
Affiliation(s)
- Udit Kumar Dash
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Debashree Mazumdar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
44
|
Ekpono EU, Aja PM, Ibiam UA, Agu PC, Eze ED, Afodun AM, Okoye OG, Ifie JE, Atoki AV. Cucurbita Pepo L. Seed Oil Modulates Dyslipidemia and Neuronal Dysfunction in Tramadol-Induced Toxicity in Wistar Albino Rats. Dose Response 2024; 22:15593258241290458. [PMID: 39381131 PMCID: PMC11457233 DOI: 10.1177/15593258241290458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Objective: The modulating effects of Cucurbita pepo seed oil (CPSO) on dyslipidemia and neuronal dysfunction in tramadol toxicity were studied. Methods: Fifty-six albino rats were divided into seven groups of eight rats each after a 2-week acclimatization period. All animals had unrestricted access to water and feed, and treatments were administered orally once daily for 42 days. Glutamate dehydrogenase and glutaminase activities were assessed using brain homogenate, while lipid profiles were analyzed in serum samples. Results: Tramadol toxicity was evidenced by significant (P < 0.05) increases in brain glutamate dehydrogenase along with significant (P < 0.05) decreases in the activities of glutaminase in the group administered only tramadol. Also, serum levels of total cholesterol, LDL-C and triglycerides also increased significantly (P < 0.05) following administration of tramadol with decreased level of HDL-C (P < 0.05). However, treatment with CPSO significantly restored the activities and levels of the altered biochemical parameters in a dose-dependent manner. The results of the biochemical investigation using the lipid profile and the enzymes of glutamate metabolism were corroborated by the results obtained from the histopathological examination of the brain. Conclusion: The results of this study therefore suggest that tramadol-induced dyslipidemia and neuronal dysfunction be managed and prevented by the administration of Cucurbita pepo seed oil.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Kampala, Uganda
| | - Udu Ama Ibiam
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Peter Chinedu Agu
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Ejike Daniel Eze
- Department of Physiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Adam Moyosore Afodun
- Department of Anatomy and Cell Biology, Faculty of Health Sciences, Busitema University, Uganda
| | - Osita Gabriel Okoye
- Department of Science Laboratory Technology, Federal Polytechnic, Oko, Nigeria
| | - Josiah Eseoghene Ifie
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Kampala, Uganda
| | - Ayomide Victor Atoki
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
45
|
Trainito A, Muscarà C, Gugliandolo A, Chiricosta L, Salamone S, Pollastro F, Mazzon E, D’Angiolini S. Cannabinol (CBN) Influences the Ion Channels and Synaptic-Related Genes in NSC-34 Cell Line: A Transcriptomic Study. Cells 2024; 13:1573. [PMID: 39329756 PMCID: PMC11430194 DOI: 10.3390/cells13181573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Neurological disorders such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and schizophrenia are associated with altered neuronal excitability, resulting from dysfunctions in the molecular architecture and physiological regulation of ion channels and synaptic transmission. Ion channels and synapses are regarded as suitable therapeutic targets in modern pharmacology. Cannabinoids have received great attention as an original therapeutic approach for their effects on human health due to their ability to modulate the neurotransmitter release through interaction with the endocannabinoid system. In our study, we explored the effect of cannabinol (CBN) through next-generation sequencing analysis of NSC-34 cell physiology. Our findings revealed that CBN strongly influences the ontologies related to ion channels and synapse activity at all doses tested. Specifically, the genes coding for calcium and potassium voltage-gated channel subunits, and the glutamatergic and GABAergic receptors (Cacna1b, Cacna1h, Cacng8, Kcnc3, Kcnd1, Kcnd2, Kcnj4, Grik5, Grik1, Slc17a7, Gabra5), were up-regulated. Conversely, the genes involved into serotoninergic and cholinergic pathways (Htr3a, Htr3b, Htr1b, Chrna3, Chrnb2, Chrnb4), were down-regulated. These findings highlight the influence of CBN in the expression of genes involved into ion influx and synaptic transmission.
Collapse
Affiliation(s)
- Alessandra Trainito
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Claudia Muscarà
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy (F.P.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy (F.P.)
| | - Emanuela Mazzon
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Simone D’Angiolini
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
46
|
Castillo-Vazquez SK, Massieu L, Rincón-Heredia R, García-de la Torre P, Quiroz-Baez R, Gomez-Verjan JC, Rivero-Segura NA. Glutamatergic Neurotransmission in Aging and Neurodegenerative Diseases: A Potential Target to Improve Cognitive Impairment in Aging. Arch Med Res 2024; 55:103039. [PMID: 38981341 DOI: 10.1016/j.arcmed.2024.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Aging is characterized by the decline in many of the individual's capabilities. It has been recognized that the brain undergoes structural and functional changes during aging that are occasionally associated with the development of neurodegenerative diseases. In this sense, altered glutamatergic neurotransmission, which involves the release, binding, reuptake, and degradation of glutamate (Glu) in the brain, has been widely studied in physiological and pathophysiological aging. In particular, changes in glutamatergic neurotransmission are exacerbated during neurodegenerative diseases and are associated with cognitive impairment, characterized by difficulties in memory, learning, concentration, and decision-making. Thus, in the present manuscript, we aim to highlight the relevance of glutamatergic neurotransmission during cognitive impairment to develop novel strategies to prevent, ameliorate, or delay cognitive decline. To achieve this goal, we provide a comprehensive review of the changes reported in glutamatergic neurotransmission components, such as Glu transporters and receptors during physiological aging and in the most studied neurodegenerative diseases. Finally, we describe the current therapeutic strategies developed to target glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourdes Massieu
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Paola García-de la Torre
- 4 Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City Mexico
| | - Ricardo Quiroz-Baez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico
| | | | | |
Collapse
|
47
|
Sultana OF, Bandaru M, Islam MA, Reddy PH. Unraveling the complexity of human brain: Structure, function in healthy and disease states. Ageing Res Rev 2024; 100:102414. [PMID: 39002647 PMCID: PMC11384519 DOI: 10.1016/j.arr.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The human brain stands as an intricate organ, embodying a nexus of structure, function, development, and diversity. This review delves into the multifaceted landscape of the brain, spanning its anatomical intricacies, diverse functional capacities, dynamic developmental trajectories, and inherent variability across individuals. The dynamic process of brain development, from early embryonic stages to adulthood, highlights the nuanced changes that occur throughout the lifespan. The brain, a remarkably complex organ, is composed of various anatomical regions, each contributing uniquely to its overall functionality. Through an exploration of neuroanatomy, neurophysiology, and electrophysiology, this review elucidates how different brain structures interact to support a wide array of cognitive processes, sensory perception, motor control, and emotional regulation. Moreover, it addresses the impact of age, sex, and ethnic background on brain structure and function, and gender differences profoundly influence the onset, progression, and manifestation of brain disorders shaped by genetic, hormonal, environmental, and social factors. Delving into the complexities of the human brain, it investigates how variations in anatomical configuration correspond to diverse functional capacities across individuals. Furthermore, it examines the impact of neurodegenerative diseases on the structural and functional integrity of the brain. Specifically, our article explores the pathological processes underlying neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, shedding light on the structural alterations and functional impairments that accompany these conditions. We will also explore the current research trends in neurodegenerative diseases and identify the existing gaps in the literature. Overall, this article deepens our understanding of the fundamental principles governing brain structure and function and paves the way for a deeper understanding of individual differences and tailored approaches in neuroscience and clinical practice-additionally, a comprehensive understanding of structural and functional changes that manifest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
48
|
Varma M, Bhandari R, Sarkar A, Jain M, Paliwal JK, Medhi B, Kuhad A. Exploring Astrocytes Involvement and Glutamate Induced Neuroinflammation in Chlorpyrifos-Induced Paradigm Of Autism Spectrum Disorders (ASD). Neurochem Res 2024; 49:2573-2599. [PMID: 38896196 DOI: 10.1007/s11064-024-04191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders manifested mainly in children, with symptoms ranging from social/communication deficits and stereotypies to associated behavioral anomalies like anxiety, depression, and ADHD. While the patho-mechanism is not well understood, the role of neuroinflammation has been suggested. Nevertheless, the triggers giving rise to this neuroinflammation have not previously been explored in detail, so the present study was aimed at exploring the role of glutamate on these processes, potentially carried out through increased activity of inflammatory cells like astrocytes, and a decline in neuronal health. A novel chlorpyrifos-induced paradigm of ASD in rat pups was used for the present study. The animals were subjected to tests assessing their neonatal development and adolescent behaviors (social skills, stereotypies, sensorimotor deficits, anxiety, depression, olfactory, and pain perception). Markers for inflammation and the levels of molecules involved in glutamate excitotoxicity, and neuroinflammation were also measured. Additionally, the expression of reactive oxygen species and markers of neuronal inflammation (GFAP) and function (c-Fos) were evaluated, along with an assessment of histopathological alterations. Based on these evaluations, it was found that postnatal administration of CPF had a negative impact on neurobehavior during both the neonatal and adolescent phases, especially on developmental markers, and brought about the generation of ASD-like symptoms. This was further corroborated by elevations in the expression of glutamate and downstream calcium, as well as certain cytokines and neuroinflammatory markers, and validated through histopathological and immunohistochemical results showing a decline in neuronal health in an astrocyte-mediated cytokine-dependent fashion. Through our findings, conclusive evidence regarding the involvement of glutamate in neuroinflammatory pathways implicated in the development of ASD-like symptoms, as well as its ability to activate further downstream processes linked to neuronal damage has been obtained. The role of astrocytes and the detrimental effect on neuronal health are also concluded. The significance of our study and its findings lies in the evaluation of the involvement of chlorpyrifos-induced neurotoxicity in the development of ASD, particularly in relation to glutamatergic dysfunction and neuronal damage.
Collapse
Affiliation(s)
- Manasi Varma
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
- Director, AKB INNOVANT HEALHCARE PVT. LTD., Chandigarh, India.
| | - Ankan Sarkar
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Manish Jain
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Jyoti K Paliwal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Bikash Medhi
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
- Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
49
|
Nguyen KT, Beauchamp DW, O'Hara RB. A Pathophysiological Approach for Selecting Medications to Treat Nociceptive and Neuropathic Pain in Servicemembers. Mil Med 2024; 189:e1879-e1889. [PMID: 38300182 DOI: 10.1093/milmed/usad506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/12/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
INTRODUCTION The prevalence of chronic pain of service members (SMs) in the U.S. is estimated to be higher (roughly 31-44%) compared to that of civilian population (26%). This higher prevalence is likely due to the high physical demands related combat and training injuries that are not immediately resolved and worsen over time. Mental Health America reports that chronic pain can lead to other mental health conditions such as severe anxiety, depression, bipolar disorder, and post-traumatic stress disorder. Such mental health conditions can negatively affect job performance, reduce readiness for military duties, and often lead to patterns of misuse of opioid after SMs entering civilian life. The primary objective of this narrative review is to present a summarized guideline for the treatment of two types of pain that likely affect SMs, namely nociceptive somatic pain and neuropathic pain. This review focused on a stepwise approach starting with nonopioid interventions prior to opioid therapy. The secondary objective of this review is to elucidate the primary mechanisms of action and pathways associated with these two types of pain. METHODS We followed the Scale for Assessment of Narrative Review Articles when transcribing this narrative review article to enhance the quality and brevity of this review. This Scale has 0.77% an intra-class coefficient of correlation, 95% confidence interval and 0.88 inter-rater reliability. We searched PubMed, Google Scholar, WorldCAT, and the Cochrane Library for the primary and secondary articles that targeted mechanisms of action, pathways, and pharmacological modalities for nociceptive somatic and neuropathic pain that were published from 2011 to 2022. We excluded articles related to pediatric, some specific pain conditions such as cancer-related pain, palliative care, end-of-life care, and articles that were not written in English language. For pharmacologic selection, we adopted the guidelines from the Policy for Implementation of a Comprehensive Policy on Pain Management by the Military Health Care system for the Fiscal Year 2021; the Clinical Practice Guidance for Opioid Therapy for Chronic Pain by the Department of Defense/Veterans Health Administration (2022); the (2021) Implementation of a Comprehensive Policy on Pain Management by the Military Health Care System; and the (2022) Guideline for Prescribing Opioids for Chronic Painby the Centers for Disease Control. DISCUSSION From the knowledge of the mechanisms of action and pathways, we can be more likely to identify the causative origins of pain. As a result, we can correctly diagnose the type of pain, properly develop an efficient and personalized treatment plan, minimize adverse effects, and optimize clinical outcomes. The guideline, however, does not serve as a substitute for clinical judgment in patient-centered decision-making. Medication choices should be individualized judiciously based on the patient's comorbid conditions, available social and economic resources, and the patient's preferences to balance the benefits and risks associated with various pain medications and to achieve optimal pain relief and improve the patient's quality of life.
Collapse
Affiliation(s)
- Khan Thi Nguyen
- Interdisciplinary Pain Management Clinic, William Beaumont Army Medical Center, Fort Bliss, TX 79918, USA
| | - Daniel W Beauchamp
- Interdisciplinary Pain Management Clinic, William Beaumont Army Medical Center, Fort Bliss, TX 79918, USA
| | - Reginald B O'Hara
- Department of Clinical Investigation, William Beaumont Army Medical Center, Fort Bliss, TX 79918, USA
| |
Collapse
|
50
|
Liddicoat C, Edwards RA, Roach M, Robinson JM, Wallace KJ, Barnes AD, Brame J, Heintz-Buschart A, Cavagnaro TR, Dinsdale EA, Doane MP, Eisenhauer N, Mitchell G, Rai B, Ramesh SA, Breed MF. Bioenergetic mapping of 'healthy microbiomes' via compound processing potential imprinted in gut and soil metagenomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173543. [PMID: 38821286 DOI: 10.1016/j.scitotenv.2024.173543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Despite mounting evidence of their importance in human health and ecosystem functioning, the definition and measurement of 'healthy microbiomes' remain unclear. More advanced knowledge exists on health associations for compounds used or produced by microbes. Environmental microbiome exposures (especially via soils) also help shape, and may supplement, the functional capacity of human microbiomes. Given the synchronous interaction between microbes, their feedstocks, and micro-environments, with functional genes facilitating chemical transformations, our objective was to examine microbiomes in terms of their capacity to process compounds relevant to human health. Here we integrate functional genomics and biochemistry frameworks to derive new quantitative measures of in silico potential for human gut and environmental soil metagenomes to process a panel of major compound classes (e.g., lipids, carbohydrates) and selected biomolecules (e.g., vitamins, short-chain fatty acids) linked to human health. Metagenome functional potential profile data were translated into a universal compound mapping 'landscape' based on bioenergetic van Krevelen mapping of function-level meta-compounds and corresponding functional relative abundances, reflecting imprinted genetic capacity of microbiomes to metabolize an array of different compounds. We show that measures of 'compound processing potential' associated with human health and disease (examining atherosclerotic cardiovascular disease, colorectal cancer, type 2 diabetes and anxious-depressive behavior case studies), and displayed seemingly predictable shifts along gradients of ecological disturbance in plant-soil ecosystems (three case studies). Ecosystem quality explained 60-92 % of variation in soil metagenome compound processing potential measures in a post-mining restoration case study dataset. With growing knowledge of the varying proficiency of environmental microbiota to process human health associated compounds, we might design environmental interventions or nature prescriptions to modulate our exposures, thereby advancing microbiota-oriented approaches to human health. Compound processing potential offers a simplified, integrative approach for applying metagenomics in ongoing efforts to understand and quantify the role of microbiota in environmental- and human-health.
Collapse
Affiliation(s)
- Craig Liddicoat
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia.
| | - Robert A Edwards
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Michael Roach
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Kiri Joy Wallace
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand
| | - Andrew D Barnes
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand
| | - Joel Brame
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Anna Heintz-Buschart
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Timothy R Cavagnaro
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Elizabeth A Dinsdale
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Michael P Doane
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), 04103 Leipzig, Germany; Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Grace Mitchell
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand; Manaaki Whenua - Landcare Research, Hamilton, Aotearoa, New Zealand
| | - Bibishan Rai
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand
| | - Sunita A Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|