1
|
Ruan QZ, Pak DJ, Gulati A, Dominguez M, Diwan S, Hasoon J, Deer TR, Yong RJ, Albilali A, Macone A, Ashina S, Robinson CL. Scoping Review: The Effects of Interrupted Onabotulinumtoxin A Treatment for Chronic Migraine Prevention During the COVID-19 Pandemic. J Pain Res 2024; 17:4163-4176. [PMID: 39679430 PMCID: PMC11645906 DOI: 10.2147/jpr.s485548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Objective To systematically examine the literature on the clinical consequences of inadvertent delays in scheduled onabotulinumtoxin A (OTA) therapy for chronic migraine during the COVID-19 pandemic and assess recommendations when access to OTA is limited. Background The coronavirus (COVID-19) pandemic was unprecedented in its impact on the global medical community. Most healthcare institutions in the United States (US) and the world had begun significantly limiting elective procedures, undermining management of many debilitating chronic conditions. OTA injections, were similarly involuntarily postponed, leading to significant setbacks in symptom control. Methods A comprehensive literature search was conducted on databases of Medline and Embase with search timeframe defined as the point of database inception to March 1st, 2024, and the search was performed on March 2nd, 2024. The search strategy was independently formulated by two authors (QR and CR) and was reviewed and approved by all authors of the article after appropriate amendments. Results A total of nine articles met the defined inclusion criteria. They collectively demonstrated marked delays in OTA treatment with decline in migraine symptom control measured in the form of migraine intensity, frequency, as well as patient satisfaction in disease management. Quality of care in the form of follow-ups also appeared compromised. Alternative strategies of telemedicine and the administration of calcitonin gene-related peptide monoclonal antibodies (CGRP mAb) were adopted in place of conventional treatment. Conclusion The COVID-19 pandemic had caused marked clinical deterioration in the migraine patient populations across US, Europe, and the Middle East. Strategies employed to circumvent this limitation included the adoption of remote consultation via telemedicine as well as the use of pharmacological agents such as CGRP antagonists. In the event of a reoccurrence of a worldwide pandemic, strategies should be implemented to prevent the cessation of needed treatment for those suffering from chronic migraine.
Collapse
Affiliation(s)
- Qing Zhao Ruan
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Daniel J Pak
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Amitabh Gulati
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Moises Dominguez
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Sudhir Diwan
- Manhattan Spine and Pain Medicine, Lenox Hill Hospital, New York, NY, USA
| | - Jamal Hasoon
- Department of Anesthesia and Pain Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Timothy R Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - R Jason Yong
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Abdulrazaq Albilali
- Department of Medicine, Neurology Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Amanda Macone
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sait Ashina
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christopher L Robinson
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Ayala JC, Rizzatti-Barbosa CM, Custodio W. Influence of botulinum toxin A in pain perception and condyle-fossa relationship after the management of temporomandibular dysfunction: a randomized controlled clinical trial. Oral Maxillofac Surg 2024; 28:269-277. [PMID: 36729315 DOI: 10.1007/s10006-023-01141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To investigate the pain perception (PP) and condyle-fossa relationship (CFR) after botulinum toxin A (BoNTA) injection in the masseter muscles of painful muscular temporomandibular dysfunction (TMD) patients. MATERIALS AND METHODS Fourteen women (aged 29.7 ± 5.4 years) diagnosed with myogenic TMD were randomized in the BoNTA-treated group (TG) and control group (CG). TG masseter muscles (n = 7) were bilaterally injected with 30 U. The CG (n = 7) were injected with saline injections. Condyle-fossa relationship (CFR) spaces were measured in sagittal (SP) and frontal planes (FP) of images of cone-beam computed tomography (CBCT) done before (T0) and after 30 days' interventions (T1). Visual analogue scale (VAS) measured the patients' TMD pain perception (PP). Data were compared by generalized linear models considering the results over time (α = .05). RESULTS There were no statistical differences in CFR in the SP or FP for TG and CG over time (p ˃ .05), except for frontal lateral space CFR (p < .05). In both groups, the condyle was positioned medially after interventions. Frontal lateral space increased in TG for both, left and right sides, over time (p < .05), as well as PP decreased over time (p < .05) for TG and CG. CONCLUSIONS The results depicted that there was no significant association with BoNTA injection in TMD masseter muscles in PP and CFR, except considering the frontal lateral space of CFR. CLINICAL RELEVANCE BoNTA injection in the masseter muscles may not promote clinically significant shifts in the condyle-fossa relationships of muscular TMD patients.
Collapse
Affiliation(s)
- Julian Calegari Ayala
- University Center of the Hermínio Ometto Foundation -FHO, Avenida Dr Maximiliano Baruto, Araras, SP, 50013607-339, Brazil
| | | | - William Custodio
- University Center of the Hermínio Ometto Foundation -FHO, Avenida Dr Maximiliano Baruto, Araras, SP, 50013607-339, Brazil.
| |
Collapse
|
3
|
Nemanić D, Mustapić M, Matak I, Bach-Rojecky L. Botulinum toxin type a antinociceptive activity in trigeminal regions involves central transcytosis. Eur J Pharmacol 2024; 963:176279. [PMID: 38123005 DOI: 10.1016/j.ejphar.2023.176279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Botulinum toxin type A (BoNT-A) provides lasting pain relief in patients with craniofacial pain conditions but the mechanisms of its antinociceptive activity remain unclear. Preclinical research revealed toxin axonal transport to the central afferent terminals, but it is unknown if its central effects involve transsynaptic traffic to the higher-order synapses. To answer this, we examined the contribution of central BoNT-A transcytosis to its action in experimental orofacial pain. MATERIAL AND METHODS Male Wistar rats, 3-4 months old, were injected with BoNT-A (7 U/kg) unilaterally into the vibrissal pad. To investigate the possible contribution of toxin's transcytosis, BoNT-A-neutralizing antiserum (5 IU) was applied intracisternally. Antinocicepive BoNT-A action was assessed by duration of nocifensive behaviors and c-Fos activation in the trigeminal nucleus caudalis (TNC) following bilateral or unilateral formalin (2.5%) application into the vibrissal pad. Additionally, cleaved synaptosomal-associated protein of 25 kDa (cl-SNAP-25) immunoreactivity was analyzed in the bilateral TNC. RESULTS Unilaterally injected BoNT-A reduced the nocifensive behaviors and bilateral c-Fos activation induced by formalin, which was accompanied by the toxin's enzymatic activity on both sides of the TNC. BoNT-A antinociceptive or enzymatic activities were prevented by the specific neutralizing antitoxin. BoNT-A contralateral action occurred independently from ipsilateral side nociception or contralateral trigeminal nerve-mediated axonal traffic. CONCLUSION Herein, we demonstrate that antinociceptive action of pericranially administered BoNT-A involves transsynaptic transport to second order synapses and contralateral trigeminal nociceptive nuclei. These results reveal more complex central toxin activity, necessary to explain its clinical effectiveness in the trigeminal region-related pain states.
Collapse
Affiliation(s)
- Dalia Nemanić
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000, Zagreb, Croatia
| | - Matej Mustapić
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000, Zagreb, Croatia
| | - Ivica Matak
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10 000, Zagreb, Croatia
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000, Zagreb, Croatia.
| |
Collapse
|
4
|
Safarpour D, Jabbari B. Botulinum Toxin Treatment for Cancer-Related Disorders: A Systematic Review. Toxins (Basel) 2023; 15:689. [PMID: 38133193 PMCID: PMC10748363 DOI: 10.3390/toxins15120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
This systematic review investigates the effect of botulinum neurotoxin (BoNT) therapy on cancer-related disorders. A major bulk of the literature is focused on BoNT's effect on pain at the site of surgery or radiation. All 13 published studies on this issue indicated reduction or cessation of pain at these sites after local injection of BoNTs. Twelve studies addressed the effect of BoNT injection into the pylorus (sphincter between the stomach and the first part of the gut) for the prevention of gastroparesis after local resection of esophageal cancer. In eight studies, BoNT injection was superior to no intervention; three studies found no difference between the two approaches. One study compared the result of intra-pyloric BoNT injection with preventive pyloromyotomy (resection of pyloric muscle fibers). Both approaches reduced gastroparesis, but the surgical approach had more serious side effects. BoNT injection was superior to saline injection in the prevention of esophageal stricture after surgery (34% versus 6%, respectively, p = 0.02) and produced better results (30% versus 40% stricture) compared to steroid (triamcinolone) injection close to the surgical region. All 12 reported studies on the effect of BoNT injection into the parotid region for the reduction in facial sweating during eating (gustatory hyperhidrosis) found that BoNT injections stopped or significantly reduced facial sweating that developed after parotid gland surgery. Six studies showed that BoNT injection into the parotid region prevented the development of or healed the fistulas that developed after parotid gland resection-parotidectomy gustatory hyperhidrosis (Frey syndrome), post-surgical parotid fistula, and sialocele. Eight studies suggested that BoNT injection into masseter muscle reduced or stopped severe jaw pain after the first bite (first bite syndrome) that may develop as a complication of parotidectomy.
Collapse
Affiliation(s)
- Delaram Safarpour
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Okroša AD, Munoz-Lora V, Matak I, Bach-Rojecky L, Kalinichev M, Lacković Z. The safety of botulinum neurotoxin type A's intraarticular application in experimental animals. Toxicon X 2023; 18:100155. [PMID: 37096009 PMCID: PMC10121478 DOI: 10.1016/j.toxcx.2023.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
In vivo studies of botulinum neurotoxin type A (BoNT-A) enabled characterization of its activity in the nociceptive sensory system separate from its preferred action in motor and autonomic nerve terminals. However, in the recent rodent studies of arthritic pain which employed high intra-articular (i.a.) doses (expressed as a total number of units (U) per animal or U/kg), possible systemic effects have not been conclusively excluded. Herein we assessed the effect of two pharmaceutical preparations, abobotulinumtoxinA (aboBoNT-A, 10, 20, and 40 U/kg corresponding to 0.05, 0.11, and 0.22 ng/kg neurotoxin) and onabotulinumtoxinA (onaBoNT-A, 10 and 20 U/kg corresponding to 0.09 and 0.18 ng/kg, respectively) injected into the rat knee, on safety-relevant readouts: digit abduction, motor performance and weight gain during 14 days post-treatment. The i. a. toxin produced dose-dependent impairment of the toe spreading reflex and rotarod performance, which was moderate and transient after 10 U/kg onaBoNT-A and ≤20 U/kg aboBoNT-A doses, and severe and long-lasting (examined up to 14 days) after ≥20 U/kg of onaBoNT-A and 40 U/kg aboBoNT-A. In addition, lower toxin doses prevented the normal weight gain compared to controls, while higher doses induced marked weight loss (≥20 U/kg of onaBoNT-A and 40 U/kg aboBoNT-A). Commonly employed BoNT-A formulations, depending on the doses, cause local relaxation of the surrounding muscles and systemic adverse effects in rats. Thus, to evade possible toxin unwanted local or systemic spread, careful dosing and motor testing should be mandatory in preclinical behavioral studies, irrespective of the sites and doses of toxin application.
Collapse
|
6
|
Feng X, Xiong D, Li J, Xiao L, Xie W, Qiu Y. Direct Inhibition of Microglia Activation by Pretreatment With Botulinum Neurotoxin A for the Prevention of Neuropathic Pain. Front Neurosci 2021; 15:760403. [PMID: 34949981 PMCID: PMC8688716 DOI: 10.3389/fnins.2021.760403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Peripheral injection of botulinum neurotoxin A (BoNT/A) has been demonstrated to have a long-term analgesic effect in treating neuropathic pain. Around peripheral nerves, BoNT/A is taken up by primary afferent neurons and inhibits neuropeptide release. Moreover, BoNT/A could also be retrogradely transported to the spinal cord. Recent studies have suggested that BoNT/A could attenuates neuropathic pain by inhibiting the activation of spinal glial cells. However, it remains unclear whether BoNT/A directly interacts with these glial cells or via their interaction with neurons. Our aim here is to determine the direct effect of BoNT/A on primary microglia and astrocytes. We show that BoNT/A pretreatment significantly inhibits lipopolysaccharide (LPS) -induced activation and pro-inflammatory cytokine release in primary microglia (1 U/mL BoNT/A in medium), while it has no effect on the activation of astrocytes (2 U/mL BoNT/A in medium). Moreover, a single intrathecal pre-administration of a low dose of BoNT/A (1 U/kg) significantly prohibited the partial sciatic nerve ligation (PSNL)- induced upregulation of pro-inflammatory cytokines in both the spinal cord dorsal horn and dorsal root ganglions (DRGs), which in turn prevented the PSNL-induced mechanical allodynia and thermal hyperalgesia. In conclusion, our results indicate that BoNT/A pretreatment prevents PSNL-induced neuropathic pain by direct inhibition of spinal microglia activation.
Collapse
Affiliation(s)
- Xiaona Feng
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Donglin Xiong
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Jie Li
- Department of Anesthesiology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lizu Xiao
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Weijiao Xie
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yunhai Qiu
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
7
|
Luvisetto S. Botulinum Neurotoxins in Central Nervous System: An Overview from Animal Models to Human Therapy. Toxins (Basel) 2021; 13:toxins13110751. [PMID: 34822535 PMCID: PMC8622321 DOI: 10.3390/toxins13110751] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are potent inhibitors of synaptic vesicle fusion and transmitter release. The natural target of BoNTs is the peripheral neuromuscular junction (NMJ) where, by blocking the release of acetylcholine (ACh), they functionally denervate muscles and alter muscle tone. This leads them to be an excellent drug for the therapy of muscle hyperactivity disorders, such as dystonia, spasticity, and many other movement disorders. BoNTs are also effective in inhibiting both the release of ACh at sites other than NMJ and the release of neurotransmitters other than ACh. Furthermore, much evidence shows that BoNTs can act not only on the peripheral nervous system (PNS), but also on the central nervous system (CNS). Under this view, central changes may result either from sensory input from the PNS, from retrograde transport of BoNTs, or from direct injection of BoNTs into the CNS. The aim of this review is to give an update on available data, both from animal models or human studies, which suggest or confirm central alterations induced by peripheral or central BoNTs treatment. The data will be discussed with particular attention to the possible therapeutic applications to pathological conditions and degenerative diseases of the CNS.
Collapse
Affiliation(s)
- Siro Luvisetto
- National Research Council of Italy-CNR, Institute of Biochemistry and Cell Biology (IBBC), Via Ercole Ramarini 32, Monterotondo Scalo, 00015 Roma, Italy
| |
Collapse
|
8
|
First bite syndrome treated with onabotulinumtoxin A injections. J Am Dent Assoc 2021; 153:284-289. [PMID: 34144804 DOI: 10.1016/j.adaj.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OVERVIEW First bite syndrome (FBS) is an orofacial pain condition characterized by moderate to severe unilateral facial pain associated with the first bite or taste of food. It is important that dentists and physicians be aware of patient history and examination findings commonly associated with FBS, as well as treatment options available for managing this condition. CASE DESCRIPTION Described here is a case of FBS arising in a 43-year-old man after partial parotidectomy for the treatment of a mucoepidermoid carcinoma. His orofacial pain was being successfully treated by injection of onabotulinumtoxin A into the residual parotid tissue. CONCLUSIONS AND PRACTICAL IMPLICATIONS Onabotulinumtoxin A is a promising therapeutic option for FBS owing to its profound relief of pain and minimal reported adverse effects. Therefore, oral health care providers treating FBS should be aware of this option.
Collapse
|
9
|
Drinovac Vlah V, Bach-Rojecky L. What have we learned about antinociceptive effect of botulinum toxin type A from mirror-image pain models? Toxicon 2020; 185:164-173. [DOI: 10.1016/j.toxicon.2020.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
|
10
|
Urits I, Gress K, Charipova K, Zamarripa AM, Patel PM, Lassiter G, Jung JW, Kaye AD, Viswanath O. Pharmacological options for the treatment of chronic migraine pain. Best Pract Res Clin Anaesthesiol 2020; 34:383-407. [PMID: 33004155 DOI: 10.1016/j.bpa.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022]
Abstract
Migraine is a debilitating neurological condition with symptoms typically consisting of unilateral and pulsating headache, sensitivity to sensory stimuli, nausea, and vomiting. The World Health Organization (WHO) reports that migraine is the third most prevalent medical disorder and second most disabling neurological condition in the world. There are several options for preventive migraine treatments that include, but are not limited to, anticonvulsants, antidepressants, beta blockers, calcium channel blockers, botulinum toxins, NSAIDs, riboflavin, and magnesium. Patients may also benefit from adjunct nonpharmacological options in the comprehensive prevention of migraines, such as cognitive behavior therapy, relaxation therapies, biofeedback, lifestyle guidance, and education. Preventative therapies are an essential component of the overall approach to the pharmacological treatment of migraine. Comparative studies of newer therapies are needed to help patients receive the best treatment option for chronic migraine pain.
Collapse
Affiliation(s)
- Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - Kyle Gress
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Alec M Zamarripa
- University of Arizona College of Medicine-Phoenix, Department of Anesthesiology, Phoenix, AZ, USA
| | - Parth M Patel
- University of Arizona College of Medicine-Phoenix, Department of Anesthesiology, Phoenix, AZ, USA
| | - Grace Lassiter
- Georgetown University School of Medicine, Washington, DC, USA
| | - Jai Won Jung
- Georgetown University School of Medicine, Washington, DC, USA
| | - Alan D Kaye
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
| | - Omar Viswanath
- University of Arizona College of Medicine-Phoenix, Department of Anesthesiology, Phoenix, AZ, USA; Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, USA; Valley Pain Consultants - Envision Physician Services, Phoenix, AZ, USA
| |
Collapse
|
11
|
New analgesic: Focus on botulinum toxin. Toxicon 2020; 179:1-7. [PMID: 32174507 DOI: 10.1016/j.toxicon.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 01/17/2023]
Abstract
In 2010, Kissin concluded pessimistically that of the 59 new drugs introduced in the fifty-year period between 1960 and 2009 and still in use, only seven had new molecular targets. Of these, only one, sumatriptan, was effective enough to lead to the introduction of multiple drugs targeting the same target molecules (triptans) (Kissin, 2010). Morphine and acetylsalicylic acid (aspirin), introduced for the treatment of pain more than a century ago, continue to dominate biomedical publications despite their limited effectiveness in many areas (e.g., neuropathic pain) and serious adverse effects. Today, are we really closer to ideal analgesics that would work hard enough, long enough, and did not have unwanted side effects? The purpose of the present article is to analyze where we are now. Several drugs, like long-acting opioids or botulinum toxins open some hope. Advantage of botulinum toxin A is unique duration of action (months). New discoveries showed that after peripheral application botulinum toxin by axonal transport reaches the CNS. Major analgesic mechanism of action seems to be of central origin. Will botulinum toxin in the CNS bring new indications and or/adverse effects? Much more basic and clinical research should be in front of us. Although relatively safe as a drug, botulinum toxin is not without adverse effect. Policy makers, clinicians and all those applying botulinum toxin should be aware of that. Unfortunately the life without the pain is still not possible.
Collapse
|
12
|
Yuan H, Silberstein SD. The Use of Botulinum Toxin in the Management of Headache Disorders. Handb Exp Pharmacol 2020; 263:227-249. [PMID: 32562057 DOI: 10.1007/164_2020_365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tremendous progress has been made in the past decades for the treatment of headache disorders. Chronic migraine is the most disabling type of headache and requires the use of acute and preventive medications, many of which are associated with adverse events that limit patient adherence. Botulinum toxin (BoNT) serotype A, a neurotoxin derived from certain strains of Clostridium, disrupts neuropeptide secretion and receptor translocation related to trigeminal nociception, thereby preventing pain sensitization through peripheral and possibly central mechanisms. Ever since the first randomized controlled trial on onabotulinumtoxinA (onabotA) for migraine was published two decades ago, onabotA has been the only BoNT formulation approved for use in the prevention of chronic migraine. Superior tolerability and efficacy have been demonstrated on multiple migraine endpoints in many controlled trials and real-life studies. OnabotA is a safe and efficacious treatment for chronic migraine and possibly high-frequency episodic migraine. Further research is still needed to understand its mechanism of action to fully develop its therapeutic potential.
Collapse
Affiliation(s)
- Hsiangkuo Yuan
- Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
13
|
Matak I, Bölcskei K, Bach-Rojecky L, Helyes Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins (Basel) 2019; 11:E459. [PMID: 31387301 PMCID: PMC6723487 DOI: 10.3390/toxins11080459] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Already a well-established treatment for different autonomic and movement disorders, the use of botulinum toxin type A (BoNT/A) in pain conditions is now continuously expanding. Currently, the only approved use of BoNT/A in relation to pain is the treatment of chronic migraines. However, controlled clinical studies show promising results in neuropathic and other chronic pain disorders. In comparison with other conventional and non-conventional analgesic drugs, the greatest advantages of BoNT/A use are its sustained effect after a single application and its safety. Its efficacy in certain therapy-resistant pain conditions is of special importance. Novel results in recent years has led to a better understanding of its actions, although further experimental and clinical research is warranted. Here, we summarize the effects contributing to these advantageous properties of BoNT/A in pain therapy, specific actions along the nociceptive pathway, consequences of its central activities, the molecular mechanisms of actions in neurons, and general pharmacokinetic parameters.
Collapse
Affiliation(s)
- Ivica Matak
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
- János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10000 Zagreb, Croatia
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
- János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
14
|
Marciniec M, Szczepańska-Szerej A, Kulczyński M, Sapko K, Popek-Marciniec S, Rejdak K. Pain in cervical dystonia and the antinociceptive effects of botulinum toxin: what is currently known? Rev Neurosci 2019; 30:771-779. [DOI: 10.1515/revneuro-2018-0119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Pain is the most common and disabling non-motor symptom in cervical dystonia (CD). Up to 88.9% of patients report pain at some point in the course of the disease. It is still a matter of debate whether CD-related pain originates only from prolonged muscle contraction. Recent data suggest that the alterations of transmission and processing of nociceptive stimuli play a crucial role in pain development. Botulinum toxin (BT) is the first-line therapy for CD. Despite fully elucidated muscle relaxant action, the antinociceptive effect of BT remains unclear and probably exceeds a simple decompression of the nerve fibers due to the reduction in muscle tone. The proposed mechanisms of the antinociceptive action of BT include inhibition of pain mediator release, inhibition of membrane sodium channels, retrograde axonal transport and impact on the other pain pathways. This article summarizes the current knowledge about the antinociceptive properties of BT and the clinical analgesic efficacy in the treatment of CD patients.
Collapse
Affiliation(s)
- Michał Marciniec
- Chair and Department of Neurology , Medical University of Lublin , Independent Public Clinical Hospital , No. 4, ul. Jaczewskiego 8 , 20-954 Lublin , Poland
| | | | - Marcin Kulczyński
- Chair and Department of Neurology , Medical University of Lublin , Lublin , Poland
| | - Klaudia Sapko
- Chair and Department of Neurology , Medical University of Lublin , Lublin , Poland
| | - Sylwia Popek-Marciniec
- Department of Cancer Genetics with Cytogenetics Laboratory , Medical University of Lublin , Lublin , Poland
| | - Konrad Rejdak
- Chair and Department of Neurology , Medical University of Lublin , Lublin , Poland
| |
Collapse
|
15
|
Do TP, Hvedstrup J, Schytz HW. Botulinum toxin: A review of the mode of action in migraine. Acta Neurol Scand 2018; 137:442-451. [PMID: 29405250 DOI: 10.1111/ane.12906] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 12/30/2022]
Abstract
Botulinum toxin serotype A (BoNT/A) was originally used in neurology for the treatment of dystonia and blepharospasms, but is now clinically used worldwide for the treatment of chronic migraine. Still, the possible mode of action of BoNT/A in migraine is not fully known. However, the mode of action of BoNT/A has been investigated in experimental pain as well as migraine models, which may elucidate the underlying mechanisms in migraine. The aim of this study was to review studies on the possible mode of action of BoNT/A in relation to chronic migraine treatment. Observations suggest that the mode of action of BoNT/A may not be limited to the injection site, but also includes anatomically connected sites due to axonal transport. The mechanisms behind the effect of BoNT/A in chronic migraine may also include modulation of neurotransmitter release, changes in surface expression of receptors and cytokines as well as enhancement of opioidergic transmission. Clinical and experimental studies with botulinum toxin in the last decade have advanced our understanding of headache and other pain states. More research into botulinum toxin as treatment for headache is warranted as it can be an attractive alternative for patients who do not respond positively to other drugs.
Collapse
Affiliation(s)
- T. P. Do
- Headache Diagnostic Laboratory; Danish Headache Center and Department of Neurology; Rigshospitalet-Glostrup; Faculty of Health Sciences, University of Copenhagen; Glostrup Denmark
| | - J. Hvedstrup
- Headache Diagnostic Laboratory; Danish Headache Center and Department of Neurology; Rigshospitalet-Glostrup; Faculty of Health Sciences, University of Copenhagen; Glostrup Denmark
| | - H. W. Schytz
- Headache Diagnostic Laboratory; Danish Headache Center and Department of Neurology; Rigshospitalet-Glostrup; Faculty of Health Sciences, University of Copenhagen; Glostrup Denmark
| |
Collapse
|
16
|
Safarpour Y, Jabbari B. Botulinum toxin treatment of pain syndromes -an evidence based review. Toxicon 2018; 147:120-128. [PMID: 29409817 DOI: 10.1016/j.toxicon.2018.01.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/18/2017] [Accepted: 01/28/2018] [Indexed: 02/07/2023]
Abstract
This review evaluates the existing level of evidence for efficacy of BoNTs in different pain syndromes using the recommended efficacy criteria from the Assessment and Therapeutic Subcommittee of the American Academy of Neurology. There is a level A evidence (effective) for BoNT therapy in post-herpetic neuralgia, trigeminal neuralgia, and posttraumatic neuralgia. There is a level B evidence (probably effective) for diabetic neuropathy, plantar fasciitis, piriformis syndrome, pain associated with total knee arthroplasty, male pelvic pain syndrome, chronic low back pain, male pelvic pain, and neuropathic pain secondary to traumatic spinal cord injury. BoNTs are possibly effective (Level C -one class II study) for female pelvic pain, painful knee osteoarthritis, post-operative pain in children with cerebral palsy after adductor release surgery, anterior knee pain with vastus lateralis imbalance. There is a level B evidence (one class I study) that BoNT treatment is probably ineffective in carpal tunnel syndrome. For myofascial pain syndrome, the level of evidence is U (undetermined) due to contradicting results. More high quality (Class I) studies and studies with different types of BoNTs are needed for better understanding of the role of BoNTs in pain syndromes.
Collapse
Affiliation(s)
- Yasaman Safarpour
- Department of Medicine, Division of Nephrology, University of California, Irvine (UCI), CA, USA
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Drinovac Vlah V, Filipović B, Bach-Rojecky L, Lacković Z. Role of central versus peripheral opioid system in antinociceptive and anti-inflammatory effect of botulinum toxin type A in trigeminal region. Eur J Pain 2017; 22:583-591. [PMID: 29134730 DOI: 10.1002/ejp.1146] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although botulinum toxin type A (BT-A) is approved for chronic migraine treatment, its site and mechanism of action are still elusive. Recently our group discovered that suppression of CGRP release from dural nerve endings might account for antimigraine action of pericranially injected BT-A. We demonstrated that central antinociceptive effect of BT-A in sciatic region involves endogenous opioid system as well. Here we investigated possible interaction of BT-A with endogenous opioid system within the trigeminal region. METHODS In orofacial formalin test we investigated the influence of centrally acting opioid antagonist naltrexone (2 mg/kg, s.c.) versus peripherally acting methylnaltrexone (2 mg/kg, s.c.) on BT-A's (5 U/kg, s.c. into whisker pad) or morphine's (6 mg/kg, s.c.) antinociceptive effect and the effect on dural neurogenic inflammation (DNI). DNI was assessed by Evans blue-plasma protein extravasation. RESULTS Naltrexone abolished the effect of BT-A on pain and dural plasma protein extravasation, whereas peripherally acting methylnaltrexone did not change either BT-A's effect on pain or its effect on dural extravasation. Naltrexone abolished the antinociceptive and anti-inflammatory effects of morphine, as well. However, methylnaltrexone decreased the antinociceptive effect of morphine only partially in the second phase of the test and had no significant effect on morphine-mediated reduction in DNI. CONCLUSIONS Morphine acts on pain in trigeminal region both peripherally and centrally, whereas the effect on dural plasma protein extravasation seems to be only centrally mediated. However, the interaction of BT-A with endogenous opioid system, with consequent inhibition of nociceptive transmission as well as the DNI, occurs primarily centrally. SIGNIFICANCE Botulinum toxin type A (BT-A)'s axonal transport and potential transcytosis suggest that its antinociceptive effect might involve diverse neurotransmitters at different sites of trigeminal system. Here we discovered that the reduction in pain and accompanying DNI involves the interaction of BT-A with central endogenous opioid system (probably at the level of trigeminal nucleus caudalis).
Collapse
Affiliation(s)
- V Drinovac Vlah
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Croatia
| | - B Filipović
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, University of Zagreb School of Medicine, Croatia.,Department of Otorhinolaryngology & Head and Neck Surgery, University Hospital Sveti Duh, Zagreb, Croatia
| | - L Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Croatia
| | - Z Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, University of Zagreb School of Medicine, Croatia
| |
Collapse
|
18
|
[Modern non-cosmetic treatment with botulinum toxins]. Internist (Berl) 2017; 58:1332-1340. [PMID: 29030680 DOI: 10.1007/s00108-017-0323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Botulinum toxin has been known in medical history for a long time. The first scientific investigations and thoughts on possible indications in the treatment of muscular disorders were published by the German physician and poet Justinus Kerner in 1822. The physiological effect of botulinum toxin was identified in the middle of the twentieth century and the first clinical use was reported in 1977. It was first used in ophthalmology for the correction of strabismus and some years later the therapy of blepharospasm and cervical dystonia was established. Further indications, all supported by randomized controlled studies, are spastic tone increase of the limbs after lesions of the central nervous system, idiopathic axillar hyperhidrosis, chronic migraine and neurogenic or idiopathic bladder hyperactivity. In addition to these indications, a large number of further possible options have been published in the literature. Beside its effect on transmission at the neuromuscular synapses, botulinum toxin has also been shown to affect the sensory transmission of nociceptive fibers.
Collapse
|
19
|
Matak I, Lacković Z, Relja M. Botulinum toxin type A in motor nervous system: unexplained observations and new challenges. J Neural Transm (Vienna) 2016; 123:1415-1421. [PMID: 27586162 DOI: 10.1007/s00702-016-1611-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022]
Abstract
In the motor system, botulinum toxin type A (BoNT/A) actions were classically attributed to its well-known peripheral anticholinergic actions in neuromuscular junctions. However, the enzymatic activity of BoNT/A, assessed by the detection of cleaved synaptosomal-associated protein 25 (SNAP-25), was recently detected in motor and sensory regions of the brainstem and spinal cord after toxin peripheral injection in rodents. In sensory regions, the function of BoNT/A activity is associated with its antinociceptive effects, while in motor regions we only know that BoNT/A activity is present. Is it possible that BoNT/A presence in central motor nuclei is without any function? In this brief review, we analyze this question. Limited data available in the literature warrant further investigations of BoNT/A actions in motor nervous system.
Collapse
Affiliation(s)
- I Matak
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10000, Zagreb, Croatia.
| | - Z Lacković
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10000, Zagreb, Croatia
| | - M Relja
- Department of Neurology, Movement Disorders Centre, Clinical Medical Centre, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|