1
|
Hu J, Wu J, Cao H, Luan N, Lin K, Zhang H, Gao D, Lei Z, Li H, Liu C. Effects of Rotavirus NSP4 on the Immune Response and Protection of Rotavirus-Norovirus Recombinant Subunit Vaccines in Different Immune Pathways. Vaccines (Basel) 2024; 12:1025. [PMID: 39340055 PMCID: PMC11436106 DOI: 10.3390/vaccines12091025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Diarrheal disease continues to be a major cause of global morbidity and mortality among children under 5 years of age. To address the current issues associated with oral attenuated rotavirus vaccines, the study of parenteral rotavirus vaccines has promising prospects. In our previous study, we reported that rotavirus nonstructural protein 4 (NSP4) did not increase the IgG antibody titer of co-immune antigen but did have a protective effect against diarrhea via the intramuscular injection method. Here, we explored whether NSP4 can exert adjuvant effects on mucosal immune pathways. In this study, we immunized mice via muscle and nasal routes, gavaged them with the rotavirus Wa strain or the rotavirus SA11 strain, and then tested the protective effects of immune sera against both viruses. The results revealed that the serum-specific VP8* IgG antibody titers of the mice immunized via the nasal route were much lower than those of the mice immunized by intramuscular injection, and the specific IgA antibodies were almost undetectable in the bronchoalveolar lavage fluid (BALF). NSP4 did not increase the titer of specific VP8* antibodies in either immune pathway. Therefore, in the two vaccines (PP-NSP4-VP8* and PP-VP8*+NSP4) used in this study, NSP4 was unable to perform its potential adjuvant role through the mucosal immune pathway. Instead, NSP4 was used as a co-immunized antigen to stimulate the mice to produce specific binding antibodies that play a protective role against diarrhea.
Collapse
Affiliation(s)
- Jingping Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jinyuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Han Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Ning Luan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kangyang Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Haihao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Dandan Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Zhentao Lei
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
2
|
Motayo BO, Faneye AO, Adeniji JA. VP7, VP4, and NSP4 genes of species a rotaviruses isolated from sewage in Nigeria, 2014/2015: partial sequence characterization and biophysical analysis of NSP4 (enterotoxin). Virus Genes 2022; 58:180-187. [PMID: 35303217 DOI: 10.1007/s11262-022-01895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Species A rotavirus are an important cause of childhood gastroenteritis, and the main contributor to its pathogenicity is the enterotoxin (NSP4) protein. Some biophysical properties of partial NSP4 genes of RVAs isolated from sewage in Nigeria during 2014/2015 were investigated. Samples were typed by RT-PCR and Sanger sequencing of partial VP4, VP7 and NSP4 genes. Phylogeny identified lineages within genotypes, predicted glycosylation sites; hydrophobicity profiles and amino acid alignments were employed to determine some biophysical properties of the NSP4 protein. The VP7 sequences of our isolates were the most diversified, the majority of the isolates carried NSP4 genes of the E1 genotype. Genotype specific variations both in hydrophobicity and potential glycosylation were identified, mutations were highest within the H3 hydrophobic domain and VP4 binding domain. The study of RVA NSP4 genes from non-clinical samples revealed that there were structural consistencies with those of reference genes.
Collapse
Affiliation(s)
- Babatunde O Motayo
- Department of Medical Microbiology, Federal Medical Center, Abeokuta, Nigeria.
| | | | | |
Collapse
|
3
|
Kumar D, Singh A, Kumar P, Uversky VN, Rao CD, Giri R. Understanding the penetrance of intrinsic protein disorder in rotavirus proteome. Int J Biol Macromol 2020; 144:892-908. [PMID: 31739058 PMCID: PMC7112477 DOI: 10.1016/j.ijbiomac.2019.09.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major cause of severe acute gastroenteritis in the infants and young children. The past decade has evidenced the role of intrinsically disordered proteins/regions (IDPs)/(IDPRs) in viral and other diseases. In general, (IDPs)/(IDPRs) are considered as dynamic conformational ensembles that devoid of a specific 3D structure, being associated with various important biological phenomena. Viruses utilize IDPs/IDPRs to survive in harsh environments, to evade the host immune system, and to highjack and manipulate host cellular proteins. The role of IDPs/IDPRs in Rotavirus biology and pathogenicity are not assessed so far, therefore, we have designed this study to deeply look at the penetrance of intrinsic disorder in rotavirus proteome consisting 12 proteins encoded by 11 segments of viral genome. Also, for all human rotaviral proteins, we have deciphered molecular recognition features (MoRFs), which are disorder based binding sites in proteins. Our study shows the wide spread of intrinsic disorder in several rotavirus proteins, primarily the nonstructural proteins NSP3, NSP4, and NSP5 that are involved in viral replication, translation, viroplasm formation and/or maturation. This study may serve as a primer for understanding the role of IDPs/MoRFs in rotavirus biology, design of alternative therapeutic strategies, and development of disorder-based drugs.
Collapse
Affiliation(s)
- Deepak Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Ankur Singh
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Prateek Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - C Durga Rao
- SRM University, AP - Amaravati, Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522502, India.
| | - Rajanish Giri
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; BioX Center, Indian Institute of Technology Mandi, Himachal Pradesh, India.
| |
Collapse
|
4
|
Kumar S, Ramappa R, Pamidimukkala K, Rao CD, Suguna K. New tetrameric forms of the rotavirus NSP4 with antiparallel helices. Arch Virol 2018; 163:1531-1547. [DOI: 10.1007/s00705-018-3753-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/13/2018] [Indexed: 01/05/2023]
|
5
|
Saurabh S, Sircar S, Kattoor JJ, Ghosh S, Kobayashi N, Banyai K, VinodhKumar OR, De UK, Sahoo NR, Dhama K, Malik YS. Analysis of structure-function relationship in porcine rotavirus A enterotoxin gene. J Vet Sci 2018; 19:35-43. [PMID: 28057906 PMCID: PMC5799398 DOI: 10.4142/jvs.2018.19.1.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/29/2016] [Accepted: 11/23/2016] [Indexed: 11/28/2022] Open
Abstract
Rotavirus (RV)-infected piglets are presumed to be latent sources of heterologous RV infection in humans and other animals. In RVs, non-structural protein 4 (NSP4) is the major virulence factor with pleiotropic properties. In this study, we analyzed the nsp4 gene from porcine RVs isolated from diarrheic and non-diarrheic cases at different levels of protein folding to explore correlations to diarrhea-inducing capabilities and evolution of nsp4 in the porcine population. Full-length nsp4 genes were amplified, cloned, sequenced, and then analyzed for antigenic epitopes, RotaC classification, homology, genetic relationship, modeling of NSP4 protein, and prediction of post-translational modification. RV presence was observed in both diarrheic and non-diarrheic piglets. All nsp4 genes possessed the E1 genotype. Comparison of primary, secondary, and tertiary structure and the prediction of post-translational modifications of NSP4 from diarrheic and non-diarrheic piglets revealed no apparent differences. Sequence analysis indicated that nsp4 genes have a multi-phyletic evolutionary origin and exhibit species independent genetic diversity. The results emphasize the evolution of the E9 nsp4 genotype from the E1 genotype and suggest that the diarrhea-inducing capability of porcine RVs may not be exclusively linked to its enterotoxin gene.
Collapse
Affiliation(s)
- Sharad Saurabh
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| | - Shubhankar Sircar
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| | - Jobin J Kattoor
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| | - Souvik Ghosh
- Department of Biomedical Sciences, One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, Federation of Saint Kitts and Nevis
| | | | - Krisztian Banyai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest 1143, Hungary
| | - Obli R VinodhKumar
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| | - Ujjwal K De
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| | - Nihar R Sahoo
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| | - Kuldeep Dhama
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| | - Yashpal S Malik
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| |
Collapse
|
6
|
Sahmani M, Azari S, Tebianian M, Gheibi N, Pourasgari F. Higher Expression Level and Lower Toxicity of Genetically Spliced Rotavirus NSP4 in Comparison to the Full-Length Protein in E. coli. IRANIAN JOURNAL OF BIOTECHNOLOGY 2016; 14:50-57. [PMID: 28959326 DOI: 10.15171/ijb.1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Rotavirus group A (RVA) is recognized as a major cause of severe gastroenteritis in children and new-born animals. Nonstructural protein 4 (NSP4) is responsible for the enterotoxic activity of these viruses in the villus epithelial cells. Amino acids 114-135 of NSP4 are known to form the diarrhea-inducing region of this viral enterotoxin. Therefore, developing an NSP4 lacking the enterotoxin domain could result in the introduction of a new subunit vaccine against rotaviruses in both humans and animals. OBJECTIVES The aim of this study is the evaluation of rotavirus A NSP4 expression in E. coli expression system before and after removal of the diarrhea-inducing domain, which is the first step towards further immunological studies of the resulting protein. MATERIALS AND METHODS Splicing by overlap extension (SOEing) PCR was used to remove the diarrhea-inducing sequence from the NSP4 cDNA. Both the full-length (FL-NSP4) and the spliced (S-NSP4) cDNA amplicons were cloned into pET-32c and pGEX-6P-2. Expression levels of the recombinant proteins were evaluated in E. coli BL21 (DE3) by Western blot analysis. In addition, the toxicity of pET plasmids bearing the S-NSP4 and FL-NSP4 fragments was investigated by plasmid stability test. RESULTS For FL-NSP4, protein expression was detected for the strain containing the pGEX:FL-NSP4 plasmid, but not for the strain carrying pET:FL-NSP4. Hourly sampling up to 3 h showed that the protein production decreased by time. In contrast, expression of S-NSP4 was detected for pET:S-NSP4 strain, but not for pGEX:S-NSP4. Plasmid stability test showed that pET:S-NSP4 recombinant plasmid was almost stable, while pET:FL-NSP4 was unstable. CONCLUSIONS This is the first report of production of rotavirus NSP4 lacking the diarrhea-inducing domain (S-NSP4). SNSP4 shows less toxicity in this expression system and potentially could be a promising goal for rotavirus immunological and vaccine studies in the future.
Collapse
Affiliation(s)
- Mehdi Sahmani
- Department of Clinical Biochemistry and Genetics, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Siavash Azari
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farzaneh Pourasgari
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| |
Collapse
|
7
|
Bertol JW, Fregolente MCD, Caruzo TAR, Silva MJD, Munford V, Sáfadi MAP, Rácz ML, Gatti MSV. Molecular characterisation of the NSP4 gene of group A human rotavirus G2P[4] strains circulating in São Paulo, Brazil, from 1994 and 2006 to 2010. Mem Inst Oswaldo Cruz 2015; 110:786-92. [PMID: 26517658 PMCID: PMC4667582 DOI: 10.1590/0074-02760150199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/20/2015] [Indexed: 11/22/2022] Open
Abstract
Group A human rotaviruses (HuRVA) are causative agents of acute gastroenteritis. Six viral structural proteins (VPs) and six nonstructural proteins (NSPs) are produced in RV-infected cells. NSP4 is a diarrhoea-inducing viral enterotoxin and NSP4 gene analysis revealed at least 15 (E1-E15) genotypes. This study analysed the NSP4 genetic diversity of HuRVA G2P[4] strains collected in the state of São Paulo (SP) from 1994 and 2006-2010 using reverse transcription-polymerase chain reaction, sequencing and phylogenetic analysis. Forty (97.6%) G2P[4] strains displayed genotype E2; one strain (2.4%) displayed genotype E1. These results are consistent with the proposed linkage between VP4/VP7 (G2P[4]) and the NSP4 (E2) genotype of HuRVA. NSP4 phylogenetic analysis showed distinct clusters, with grouping of most strains by their genotype and collection year, and most strains from SP were clustered together with strains from other Brazilian states. A deduced amino acid sequence alignment for E2 showed many variations in the C-terminal region, including the VP4-binding domain. Considering the ability of NSP4 to generate host immunity, monitoring NSP4 variations, along with those in the VP4 or VP7 protein, is important for evaluating the circulation and pathogenesis of RV. Finally, the presence of one G2P[4]E1 strain reinforces the idea that new genotype combinations emerge through reassortment and independent segregation.
Collapse
Affiliation(s)
- Jéssica Wildgrube Bertol
- Departamento de Genética, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | - Márcio José da Silva
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Veridiana Munford
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Maria Lucia Rácz
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Maria Silvia Viccari Gatti
- Departamento de Genética, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
8
|
Scott C, Griffin S. Viroporins: structure, function and potential as antiviral targets. J Gen Virol 2015; 96:2000-2027. [PMID: 26023149 DOI: 10.1099/vir.0.000201] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The channel-forming activity of a family of small, hydrophobic integral membrane proteins termed 'viroporins' is essential to the life cycles of an increasingly diverse range of RNA and DNA viruses, generating significant interest in targeting these proteins for antiviral development. Viroporins vary greatly in terms of their atomic structure and can perform multiple functions during the virus life cycle, including those distinct from their role as oligomeric membrane channels. Recent progress has seen an explosion in both the identification and understanding of many such proteins encoded by highly significant pathogens, yet the prototypic M2 proton channel of influenza A virus remains the only example of a viroporin with provenance as an antiviral drug target. This review attempts to summarize our current understanding of the channel-forming functions for key members of this growing family, including recent progress in structural studies and drug discovery research, as well as novel insights into the life cycles of many viruses revealed by a requirement for viroporin activity. Ultimately, given the successes of drugs targeting ion channels in other areas of medicine, unlocking the therapeutic potential of viroporins represents a valuable goal for many of the most significant viral challenges to human and animal health.
Collapse
Affiliation(s)
- Claire Scott
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
9
|
Abstract
UNLABELLED Rotavirus (RV) nonstructural protein 4 (NSP4) is a virulence factor that disrupts cellular Ca(2+) homeostasis and plays multiple roles regulating RV replication and the pathophysiology of RV-induced diarrhea. Although its native oligomeric state is unclear, crystallographic studies of the coiled-coil domain (CCD) of NSP4 from two different strains suggest that it functions as a tetramer or a pentamer. While the CCD of simian strain SA11 NSP4 forms a tetramer that binds Ca(2+) at its core, the CCD of human strain ST3 forms a pentamer lacking the bound Ca(2+) despite the residues (E120 and Q123) that coordinate Ca(2+) binding being conserved. In these previous studies, while the tetramer crystallized at neutral pH, the pentamer crystallized at low pH, suggesting that preference for a particular oligomeric state is pH dependent and that pH could influence Ca(2+) binding. Here, we sought to examine if the CCD of NSP4 from a single RV strain can exist in two oligomeric states regulated by Ca(2+) or pH. Biochemical, biophysical, and crystallographic studies show that while the CCD of SA11 NSP4 exhibits high-affinity binding to Ca(2+) at neutral pH and forms a tetramer, it does not bind Ca(2+) at low pH and forms a pentamer, and the transition from tetramer to pentamer is reversible with pH. Mutational analysis shows that Ca(2+) binding is necessary for the tetramer formation, as an E120A mutant forms a pentamer. We propose that the structural plasticity of NSP4 regulated by pH and Ca(2+) may form a basis for its pleiotropic functions during RV replication. IMPORTANCE The nonstructural protein NSP4 of rotavirus is a multifunctional protein that plays an important role in virus replication, morphogenesis, and pathogenesis. Previous crystallography studies of the coiled-coil domain (CCD) of NSP4 from two different rotavirus strains showed two distinct oligomeric states, a Ca(2+)-bound tetrameric state and a Ca(2+)-free pentameric state. Whether NSP4 CCD from the same strain can exist in different oligomeric states and what factors might regulate its oligomeric preferences are not known. This study used a combination of biochemical, biophysical, and crystallography techniques and found that the NSP4 CCD can undergo a reversible transition from a Ca(2+)-bound tetramer to a Ca(2+)-free pentamer in response to changes in pH. From these studies, we hypothesize that this remarkable structural adaptability of the CCD forms a basis for the pleiotropic functional properties of NSP4.
Collapse
|
10
|
Ben Hadj Fredj M, Ben Hamida-Rebaï M, Zeller M, Heylen E, Van Ranst M, Matthijnssens J, Trabelsi A. Sequence and structural analyses of NSP4 proteins from human group A rotavirus strains detected in Tunisia. ACTA ACUST UNITED AC 2014; 62:146-51. [PMID: 24679587 DOI: 10.1016/j.patbio.2013.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/08/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND The NSP4 protein of group A rotavirus (RVA) has been recognized as a viral enterotoxin and plays important roles in viral pathogenesis and morphogenesis. Domains involved in structural and functional interactions have been proposed mainly based on the simian SA11 strain. METHODS NSP4 has been classified into 15 different genotypes (E1-E15), and the aim of this study was to analyze the sequences of 46 RVA strains in order to determine the aminoacid (aa) differences between E1 and E2 genotypes. Another aspect was to characterize the structural and physicochemical properties of these strains. RESULTS Comparison of deduced aa sequences of the NSP4 protein showed that divergences between NSP4 genotypes E1 and E2 were mostly observed in the VP4-binding, the interspecies variable domain (ISVD) and the double-layered particle (DLP) binding domains. Interestingly, uncommon variations in residues 131 and 138, which are known to be important aa in pathogenesis, were found in one unusual animal derived strain belonging to the E2 genotype. Concerning the structural aspect, no significant differences were noted. CONCLUSION The presence of punctual aa variations in the NSP4 genotypes may indicate that NSP4 mutates mainly via accumulation of point mutations.
Collapse
Affiliation(s)
- M Ben Hadj Fredj
- UR06SP20, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia; Faculty of Pharmacy, University of Monastir, avenue Avicenne, 5019 Monastir, Tunisia
| | - M Ben Hamida-Rebaï
- UR06SP20, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia; Faculty of Pharmacy, University of Monastir, avenue Avicenne, 5019 Monastir, Tunisia
| | - M Zeller
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 1, place de l'Université, 1348 Louvain-La-Neuve, Belgium
| | - E Heylen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 1, place de l'Université, 1348 Louvain-La-Neuve, Belgium
| | - M Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 1, place de l'Université, 1348 Louvain-La-Neuve, Belgium
| | - J Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 1, place de l'Université, 1348 Louvain-La-Neuve, Belgium
| | - A Trabelsi
- UR06SP20, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia; Faculty of Pharmacy, University of Monastir, avenue Avicenne, 5019 Monastir, Tunisia.
| |
Collapse
|
11
|
Vincent TL, Woolfson DN, Adams JC. Prediction and analysis of higher-order coiled-coils: insights from proteins of the extracellular matrix, tenascins and thrombospondins. Int J Biochem Cell Biol 2013; 45:2392-401. [PMID: 23891848 DOI: 10.1016/j.biocel.2013.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/14/2013] [Accepted: 07/09/2013] [Indexed: 12/27/2022]
Abstract
α-Helical coiled-coil domains (CCDs) direct protein oligomerisation in many biological processes and are of great interest as tools in protein engineering. Although CCDs are recognizable from protein sequences, prediction of oligomer state remains challenging especially for trimeric states and above. Here we evaluate LOGICOIL, a new multi-state predictor for CCDs, with regard to families of extracellular matrix proteins. Tenascins, which are known to assemble as trimers, were the first test case. LOGICOIL out-performed other algorithms in predicting trimerisation of these proteins and sequence analyses identified features associated with many other trimerising CCDs. The thrombospondins are a larger and more ancient family that includes sub-groups that assemble as trimers or pentamers. LOGICOIL predicted the pentamerising CCDs accurately. However, prediction of TSP trimerisation was relatively poor, although accuracy was improved by analyzing only the central regions of the CCDs. Sequence clustering and phylogenetic analyses grouped the TSP CCDs into three clades comprising trimers and pentamers from vertebrates, and TSPs from invertebrates. Sequence analyses revealed distinctive, conserved features that distinguish trimerising and pentamerising CCDs. Together, these analyses provide insight into the specification of higher-order CCDs that should direct improved CCD predictions and future experimental investigations of sequence-to-structure functional relationships.
Collapse
Affiliation(s)
- Thomas L Vincent
- Bristol Centre for Complexity Sciences, University of Bristol, Queen's Building, University Walk, Bristol BS8 1TR, UK; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | | | | |
Collapse
|
12
|
Chacko AR, Zwart PH, Read RJ, Dodson EJ, Rao CD, Suguna K. Severe diffraction anisotropy, rotational pseudosymmetry and twinning complicate the refinement of a pentameric coiled-coil structure of NSP4 of rotavirus. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1541-8. [DOI: 10.1107/s090744491203836x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 09/07/2012] [Indexed: 11/10/2022]
Abstract
The crystal structure of the region spanning residues 95–146 of the rotavirus nonstructural protein NSP4 from the asymptomatic human strain ST3 was determined at a resolution of 2.5 Å. Severe diffraction anisotropy, rotational pseudosymmetry and twinning complicated the refinement of this structure. A systematic explanation confirming the crystal pathologies and describing how the structure was successfully refined is given in this report.
Collapse
|
13
|
Chacko AR, Jeyakanthan J, Ueno G, Sekar K, Rao CD, Dodson EJ, Suguna K, Read RJ. A new pentameric structure of rotavirus NSP4 revealed by molecular replacement. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 68:57-61. [DOI: 10.1107/s0907444911049705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/21/2011] [Indexed: 11/10/2022]
|
14
|
Sastri NP, Pamidimukkala K, Marathahalli JR, Kaza S, Rao CD. Conformational Differences Unfold a Wide Range of Enterotoxigenic Abilities Exhibited by rNSP4 Peptides from Different Rotavirus Strains. Open Virol J 2011; 5:124-35. [PMID: 22253650 PMCID: PMC3256577 DOI: 10.2174/1874357901105010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/28/2022] Open
Abstract
NSP4 has been recognized as the rotavirus-encoded enterotoxin. However, a few studies failed to support its diarrheagenic activity. As recombinant NSP4 (rNSP4) peptides of different lengths were used in the limited number of studies, a comparison of relative diarrheagenic potential of NSP4 from different strains could not be possible. To better understand the diarrheagenic potential of NSP4 from different strains, in this report we have evaluated the enterotoxigenic activity of the deletion mutant ΔN72 that lacks the N-terminal 72 residues and the biologically relevant ΔN112 peptide which when derived from SA11 rotavirus strain were previously shown to be highly diarrheagenic in newborn mice. Detailed comparative analysis of biochemical and biophysical properties and diarrheagenic activity of the recombinant ΔN72 peptides from seventeen different strains under identical conditions revealed wide differences among themselves in their resistance to trypsin cleavage, thioflavin T (ThT) binding, multimerization and conformation without any correlation with their diarrhea inducing abilities. These results support our previously proposed concept for the requirement of a unique conformation for optimal biological functions conferred by cooperation between the N- and C-terminal regions of the cytoplasmic tail.
Collapse
|
15
|
Novel pentameric structure of the diarrhea-inducing region of the rotavirus enterotoxigenic protein NSP4. J Virol 2011; 85:12721-32. [PMID: 21917949 DOI: 10.1128/jvi.00349-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A novel pentameric structure which differs from the previously reported tetrameric form of the diarrhea-inducing region of the rotavirus enterotoxin NSP4 is reported here. A significant feature of this pentameric form is the absence of the calcium ion located in the core region of the tetrameric structures. The lysis of cells, the crystallization of the region spanning residues 95 to 146 of NSP4 (NSP4(95-146)) of strain ST3 (ST3:NSP4(95-146)) at acidic pH, and comparative studies of the recombinant purified peptide under different conditions by size-exclusion chromatography (SEC) and of the crystal structures suggested pH-, Ca(2+)-, and protein concentration-dependent oligomeric transitions in the peptide. Since the NSP4(95-146) mutant lacks the N-terminal amphipathic domain (AD) and most of the C-terminal flexible region (FR), to demonstrate that the pentameric transition is not a consequence of the lack of the N- and C-terminal regions, glutaraldehyde cross-linking of the ΔN72 and ΔN94 mutant proteins, which contain or lack the AD, respectively, but possess the complete C-terminal FR, was carried out. The results indicate the presence of pentamers in preparations of these longer mutants. Detailed SEC analyses of ΔN94 prepared under different conditions, however, revealed protein concentration-dependent but metal ion- and pH-independent pentamer accumulation at high concentrations which dissociated into tetramers and lower oligomers at low protein concentrations. While calcium appeared to stabilize the tetramer, magnesium in particular stabilized the dimer. ΔN72 existed primarily in the multimeric form under all conditions. These findings of a calcium-free NSP4 pentamer and its concentration-dependent and largely calcium-independent oligomeric transitions open up a new dimension in an understanding of the structural basis of its multitude of functions.
Collapse
|
16
|
Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. mBio 2010; 1. [PMID: 21151776 PMCID: PMC2999940 DOI: 10.1128/mbio.00265-10] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/27/2010] [Indexed: 12/22/2022] Open
Abstract
Many viruses alter intracellular calcium homeostasis. The rotavirus nonstructural protein 4 (NSP4), an endoplasmic reticulum (ER) transmembrane glycoprotein, increases intracellular levels of cytoplasmic Ca2+ ([Ca2+]cyto) through a phospholipase C-independent pathway, which is required for virus replication and morphogenesis. However, the NSP4 domain and mechanism that increases [Ca2+]cyto are unknown. We identified an NSP4 domain (amino acids [aa] 47 to 90) that inserts into membranes and has structural characteristics of viroporins, a class of small hydrophobic viral proteins that disrupt membrane integrity and ion homeostasis to facilitate virus entry, assembly, or release. Mutational analysis showed that NSP4 viroporin activity was mediated by an amphipathic α-helical domain downstream of a conserved lysine cluster. The lysine cluster directed integral membrane insertion of the viroporin domain and was critical for viroporin activity. In epithelial cells, expression of wild-type NSP4 increased the levels of free cytoplasmic Ca2+ by 3.7-fold, but NSP4 viroporin mutants maintained low levels of [Ca2+]cyto, were retained in the ER, and failed to form cytoplasmic vesicular structures, called puncta, which surround viral replication and assembly sites in rotavirus-infected cells. When [Ca2+]cyto was increased pharmacologically with thapsigargin, viroporin mutants formed puncta, showing that elevation of calcium levels and puncta formation are distinct functions of NSP4 and indicating that NSP4 directly or indirectly responds to elevated cytoplasmic calcium levels. NSP4 viroporin activity establishes the mechanism for NSP4-mediated elevation of [Ca2+]cyto, a critical event that regulates rotavirus replication and virion assembly. Rotavirus is the leading cause of viral gastroenteritis in children and young animals. Rotavirus infection and expression of nonstructural protein 4 (NSP4) alone dramatically increase cytosolic calcium, which is essential for replication and assembly of infectious virions. This work identifies the intracellular mechanism by which NSP4 disrupts calcium homeostasis by showing that NSP4 is a viroporin, a class of virus-encoded transmembrane pores. Mutational analyses identified residues critical for viroporin activity. Viroporin mutants did not elevate the levels of cytoplasmic calcium in mammalian cells and were maintained in the endoplasmic reticulum rather than forming punctate vesicular structures that are critical for virus replication and morphogenesis. Pharmacological elevation of cytoplasmic calcium levels rescued puncta formation in viroporin mutants, demonstrating that elevation of calcium levels and puncta formation are distinct NSP4 functions. While viroporins typically function in virus entry or release, elevation of calcium levels by NSP4 viroporin activity may serve as a regulatory function to facilitate virus replication and assembly.
Collapse
|
17
|
Desselberger U. Towards achieving a high-resolution structure of rotavirus particles. Future Virol 2009. [DOI: 10.2217/fvl.09.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of: Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR: Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science 324 (5993), 1444–1447 (2009). The determination of the molecular structure of the trimer of VP7, one of the outer layer proteins of rotaviruses, has significantly contributed to the knowledge of the overall structure of rotavirus particles. The molecular mechanism of rotavirus neutralization has been clarified and a topological explanation been found for the emergence of antibody escape mutants. Furthermore, translational work was enabled by engineering VP7 mutants, which form stable trimers by means of novel disulfide bridges linking the different subunits together; such a construct could become an attractive and safe vaccine candidate.
Collapse
Affiliation(s)
- Ulrich Desselberger
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Rotaviruses cause life-threatening gastroenteritis in children throughout the world. The burden of disease has resulted in the development of two live, attenuated vaccines that are now licensed in many countries. This review summarizes new data on these vaccines, their effectiveness, and remaining challenges including new data on the rotavirus enterotoxin, a potential antiviral target. RECENT FINDINGS Live attenuated rotavirus vaccines are used to protect infants against severe rotavirus-induced gastroenteritis and, RotaTeq, a pentavalent bovine-based vaccine, and, Rotarix, a monovalent human rotavirus, are now currently licensed in many countries. Initial results of the licensed RotaTeq vaccine have been promising in the USA and results of immunogenicity and efficacy in developing countries are expected soon. However, universal vaccine implementation is challenging due to age limitations on administration of these vaccines. Chronic rotavirus infections in immunocompromised children may remain a problem and require the development of new treatments including antiviral drugs. Increasing data on the mechanisms of action of the rotavirus enterotoxin highlight this pleiotropic protein as a good target as well as a unique calcium agonist. SUMMARY Rotavirus is now a commonly occurring vaccine-preventable disease among children in developed countries and hopefully this also will soon be true for developing countries. Future studies will determine whether other methods of prevention, such as nonreplicating vaccines and antiviral drugs, will be needed to treat disease in immunocompromised children.
Collapse
Affiliation(s)
- Joseph M. Hyser
- Department of Molecular Virology and Microbiology and Medicine —Gastroenterology Baylor College of Medicine Houston, Texas 77030 -3498
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology and Medicine —Gastroenterology Baylor College of Medicine Houston, Texas 77030 -3498
| |
Collapse
|
19
|
Rajasekaran D, Sastri NP, Marathahalli JR, Indi SS, Pamidimukkala K, Suguna K, Rao CD. The flexible C terminus of the rotavirus non-structural protein NSP4 is an important determinant of its biological properties. J Gen Virol 2008; 89:1485-1496. [PMID: 18474565 DOI: 10.1099/vir.0.83617-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The rotavirus non-structural protein NSP4 functions as the viral enterotoxin and intracellular receptor for the double-layered particles (DLP). The full-length protein cannot be expressed and/or purified to homogeneity from bacterial or insect cells. However, a bacterially expressed and purified mutant lacking the N-terminal 72 aa (DeltaN72) was recently obtained from strains Hg18 and SA11 exhibiting approximately 17-20-, 150-200- and 13166-15800-fold lower DD50 (50% diarrhoea-inducing dose) values in suckling mice compared with that reported for the partially pure, full-length protein, a C-terminal M175I mutant and a synthetic peptide comprising aa 114-135, respectively, suggesting the requirement for a unique conformation for optimal functions of the purified protein. The stretch of approximately 40 aa from the C terminus of the cytoplasmic tail of the endoplasmic reticulum-anchored NSP4 is highly flexible and exhibits high sequence variation compared with the other regions, the significance of which in diarrhoea induction remain unresolved. Here, it was shown that every amino acid substitution or deletion in the flexible C terminus resulted in altered conformation, multimerization, trypsin resistance and thioflavin T (ThT) binding, and affected DLP binding and the diarrhoea-inducing ability of the highly diarrhoeagenic SA11 and Hg18 DeltaN72 in suckling mice. These studies further revealed that high ThT fluorescence correlated with efficient diarrhoea induction, suggesting the importance of an optimal ThT-recognizable conformation in diarrhoea induction by purified NSP4. These results based on biological properties provide a possible conformational basis for understanding the influence of primary sequence variations on diarrhoea induction in newborn mice by purified NSP4s that cannot be explained by extensive sequence analyses.
Collapse
Affiliation(s)
- Deepa Rajasekaran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.,Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Narayan P Sastri
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | - Shanthinath S Indi
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | - Kaza Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - C Durga Rao
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
20
|
Hyser JM, Zeng CQY, Beharry Z, Palzkill T, Estes MK. Epitope mapping and use of epitope-specific antisera to characterize the VP5* binding site in rotavirus SA11 NSP4. Virology 2007; 373:211-28. [PMID: 18164740 DOI: 10.1016/j.virol.2007.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/14/2007] [Accepted: 11/20/2007] [Indexed: 12/30/2022]
Abstract
Rotavirus (RV) is the leading cause of infantile gastroenteritis worldwide. RV nonstructural protein 4 (NSP4), the first characterized viral enterotoxin, is a 28-kDa glycoprotein that has pleiotropic functions in RV infection and pathogenesis. NSP4 has multiple forms enabling it to perform its different functions. Dissecting such functions could be facilitated by use of epitope-specific antibodies. This work mapped the epitopes for the monoclonal antibody B4-2/55 and three polyclonal antisera generated against synthetic SA11 NSP4 peptides corresponding to residues 114-135, 120-147, and 150-175. The epitope for B4-2/55 mapped to residues 100-118, wherein residues E105, R108 and E111 are critical for antibody binding. Antiserum generated to two peptides (aa114-135 and aa120-147) with enterotoxin activity each recognize a single but distinct epitope. The epitope for the peptide antiserum to aa114-135 was mapped to residues 114-125 with highly conserved residues T117/T118, E120, and E122 being critical for antibody binding. The peptide antiserum to aa120-147 binds to NSP4 at residues 130-140 and residues Q137-T138 are critical for this epitope. Finally, the epitope for the antiserum to peptide aa150-175 mapped to residues 155-170, wherein residues E160 and E170 are critical for antibody binding. Knowledge of the binding sites of domain-specific antibodies can aid in further characterizing different functions of NSP4. To demonstrate this, we characterized the interaction between NSP4 and VP5() [K(D)=0.47 microM] and show that binding of NSP4 to VP5* is blocked by antibody to NSP4 aa114-135 and aa120-147, but not aa150-175. The use of single epitope-specific antibodies to differentially block functions of NSP4 is a feasible approach to determine the functional domain structure of this important RV virulence factor.
Collapse
Affiliation(s)
- Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|