1
|
Forgia M, Vallino M, Marra M, Mussano P, Lanteri AP, Accotto GP, Ciuffo M. Characterization of mint virus C, a new member of the genus Carlavirus. Arch Virol 2025; 170:35. [PMID: 39792272 DOI: 10.1007/s00705-025-06222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
Here, we report the complete genome sequence of a new carlavirus causing mosaic on mint plants in Italy, which we have tentatively named "mint virus C" (MVC). Flexuous particles of around 600 nm were observed using transmission electron microscopy, and next-generation sequencing was performed to determine the nucleotide sequence of the MVC genome, which was found to be 8558 nt long, excluding the poly(A) tail, and shows the typical organization of a carlavirus. The putative proteins encoded by MVC are 44-56% identical to the closest matches in the NCBI database, suggesting that MVC should be considered a member of a new species in the genus Carlavirus. MVC was detected in independent mint samples from different regions of Italy, collected in 2023 and 2024. Two MVC isolates, identified in 2023 (Me1) and in 2024 (Me2), have been included in the Plant Virus Italy (PLAVIT) collection.
Collapse
Affiliation(s)
- M Forgia
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - M Vallino
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - M Marra
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - P Mussano
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - A P Lanteri
- CeRSAA Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031, Albenga, Italy
| | - G P Accotto
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - M Ciuffo
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy.
| |
Collapse
|
2
|
Sierra-Mejia A, Villamor DEV, Tzanetakis IE. Development and application of an infectious clone and gene silencing vector derived from blackberry chlorotic ringspot virus. Virus Res 2024; 350:199460. [PMID: 39233279 PMCID: PMC11736394 DOI: 10.1016/j.virusres.2024.199460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Blackberry chlorotic ringspot virus (BCRV) was described about 20 years ago and since then there have been several publications of the virus infecting rosaceous hosts including blackberry, raspberry, rose and apple at high rates. Still the effect of the virus on disease development is poorly understood. Aiming to bridge this knowledge gap, we developed a BCRV infectious clone and virus-induced gene silencing vector (VIGS). The infectious clone can induce systemic infection with the transmissibility of the recombinant virus evaluated through mechanical transmission. The VIGS induced silencing using two different inserts, proving the versatility of the construct. The products of this work can be used to study disease development and control as well as functional genomics studies of BCRV hosts.
Collapse
Affiliation(s)
- Andrea Sierra-Mejia
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System Fayetteville, AR, 72701, USA
| | - Dan E V Villamor
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System Fayetteville, AR, 72701, USA
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System Fayetteville, AR, 72701, USA.
| |
Collapse
|
3
|
Li D, Sujata S, Kang K, Pang H, Li Y, Hou C, Jelkmann W, Wu Y, Zhao L. Polysaccharide Peptide Treatment Eliminates Strawberry Viruses and Promotes Strawberry Plant Growth and Rooting in Tissue Culture Media. PLANT DISEASE 2024; 108:2027-2033. [PMID: 38319628 DOI: 10.1094/pdis-10-23-2226-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Based on our previous finding that polysaccharide peptide (PSP) has substantial antiviral activity, we cultured strawberry plants infected with strawberry mild yellow edge virus (SMYEV) or strawberry vein banding virus (SVBV) in Murashige and Skoog (MS) media supplemented with PSP to test its ability to eliminate these viruses. PSP not only improved the elimination of SMYEV and SVBV but also promoted the growth and rooting of strawberry plants in tissue culture. On the 45th day, the average height of the 'Ningyu' strawberry plants in the 1-mg/ml PSP treatment group was 1.91 cm, whereas that of the plants in the control group was 1.51 cm. After the same time point, the number of new leaves on the tissue culture media supplemented with 1 mg/ml and 500 μg/ml of PSP and without PSP were 4.92, 4.41, and 3.53, respectively. PSP also promoted strawberry rooting and significantly increased both the length and number of roots. In addition, after treatment with the 1-mg/ml PSP treatment in tissue culture for 45 days followed by meristem-shoot-tip culture, the elimination rates of SMYEV and SVBV in regenerated 'Ningyu' strawberry plants ranged from 60 to 100%. This study investigated the use of the antiviral agent PSP for virus elimination. PSP has a low production cost and thus has great application potential for virus elimination in crop plants.
Collapse
Affiliation(s)
- Danyang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shrestha Sujata
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kun Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hanyu Pang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Caiting Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wilhelm Jelkmann
- Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, 69221 Dossenheim, Germany
| | - Yunfeng Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lei Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Reyes-Proaño E, Knerr AJ, Karasev AV. Molecular characterization of birch toti-like virus, a plant-associated member of the new family Orthototiviridae. Arch Virol 2024; 169:140. [PMID: 38850451 DOI: 10.1007/s00705-024-06067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/02/2024] [Indexed: 06/10/2024]
Abstract
A novel totivirus, named "birch toti-like virus" (BTLV), was discovered in European white birch (Betula pendula) plants. The genome of BTLV is 4,967 nucleotides long and contains two overlapping open reading frames (ORFs) coding for the capsid protein (CP) and an RNA-dependent RNA-polymerase (RdRP). The encoded CP and RdRP proteins shared 46.9% and 60.2% amino acid sequence identity, respectively, with those of Panax notoginseng virus B. The presence of a putative slippery heptamer signal 82 nt upstream of the stop codon of ORF1 suggests that a -1 translational frameshifting strategy is involved in the expression of ORF2, like in other totiviruses. Phylogenetic analysis based on the CP and RdRP amino acid sequences placed this virus within a clade of plant-associated totiviruses, with taro-associated virus as its closest relative. Hence, based on its distinct host and the amino acid sequence similarity between BTLV and its relatives, we conclude that birch toti-like virus is a new member of the genus Totivirus.
Collapse
Affiliation(s)
- Edison Reyes-Proaño
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - A Jenny Knerr
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
5
|
Espinoza-Lozano L, Sumba M, Cañada-Bautista MG, Quito-Avila DF. Occurrence, Distribution, and Population Structure of Schlumbergera Virus X in Dragon Fruit in Ecuador. PLANT DISEASE 2024; 108:587-591. [PMID: 37743588 DOI: 10.1094/pdis-03-23-0445-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The occurrence of Schlumbergera virus X (SchVX) in commercial dragon fruit fields in three provinces of Ecuador has been identified in this study. The virus was found in symptomatic and asymptomatic cladodes of the two major species (Hylocereus undatus and H. megalanthus) cultivated in the country. Symptoms in H. undatus included irregular and ring-shaped chlorotic spots that coalesce into large chlorotic patches along the cladodes, whereas small chlorotic spot symptoms on the cladodes were observed in H. megalanthus. Phylogenetic inferences based on 27 partial nucleotide sequences of the RNA-dependent RNA polymerase (RdRp) and three whole genome comparisons showed that Ecuadorean isolates from H. undatus and H. megalanthus share a most recent ancestor with isolates from Spain and Portugal. In addition, an SchVX isolate with a distinct genomic lineage was found in symptomatic H. polyrhizus plants from a single location, suggesting two independent virus introductions into the country.
Collapse
Affiliation(s)
- Lisbeth Espinoza-Lozano
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Martha Sumba
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Maria G Cañada-Bautista
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Diego F Quito-Avila
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
- Centro de Investigaciones Biotecnológicas del Ecuador, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| |
Collapse
|
6
|
Singh S, Stainton D, Tzanetakis IE. Development of Rapid and Affordable Virus-Mimicking Artificial Positive Controls. PLANT DISEASE 2024; 108:30-34. [PMID: 37578360 DOI: 10.1094/pdis-06-23-1072-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A major bottleneck in the development of detection assays is the availability of positive controls. Their acquisition can be problematic, their maintenance is expensive, and without them, assays cannot be validated. Herein, we present a novel strategy for the development of virus-mimicking artificial positive controls (ViMAPCs). The time between design and application is less than 5 days, unlike alternatives which normally take several weeks to obtain and implement. The ViMAPCs provide a realistic representation of natural infection unlike alternatives and allow for an effortless recognition of laboratory-based contamination. The feasibility and adaptability of the strategy was evaluated using several RNA and DNA plant viruses. ViMAPCs can be used in diagnostics laboratories but also in the monitoring of pathogen outbreaks where rapid response is of utmost importance.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - Daisy Stainton
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
7
|
Schönegger D, Marais A, Babalola BM, Faure C, Lefebvre M, Svanella-Dumas L, Brázdová S, Candresse T. Carrot populations in France and Spain host a complex virome rich in previously uncharacterized viruses. PLoS One 2023; 18:e0290108. [PMID: 37585477 PMCID: PMC10431682 DOI: 10.1371/journal.pone.0290108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
High-throughput sequencing (HTS) has proven a powerful tool to uncover the virome of cultivated and wild plants and offers the opportunity to study virus movements across the agroecological interface. The carrot model consisting of cultivated (Daucus carota ssp. sativus) and wild carrot (Daucus carota ssp. carota) populations, is particularly interesting with respect to comparisons of virus communities due to the low genetic barrier to virus flow since both population types belong to the same plant species. Using a highly purified double-stranded RNA-based HTS approach, we analyzed on a large scale the virome of 45 carrot populations including cultivated, wild and off-type carrots (carrots growing within the field and likely representing hybrids between cultivated and wild carrots) in France and six additional carrot populations from central Spain. Globally, we identified a very rich virome comprising 45 viruses of which 25 are novel or tentatively novel. Most of the identified novel viruses showed preferential associations with wild carrots, either occurring exclusively in wild populations or infecting only a small proportion of cultivated populations, indicating the role of wild carrots as reservoir of viral diversity. The carrot virome proved particularly rich in viruses involved in complex mutual interdependencies for aphid transmission such as poleroviruses, umbraviruses and associated satellites, which can be the basis for further investigations of synergistic or antagonistic virus-vector-host relationships.
Collapse
Affiliation(s)
- Deborah Schönegger
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Armelle Marais
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Bisola Mercy Babalola
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Madrid, Spain
| | - Chantal Faure
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Marie Lefebvre
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Laurence Svanella-Dumas
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Sára Brázdová
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Thierry Candresse
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| |
Collapse
|
8
|
Stainton D, Villamor DEV, Sierra Mejia A, Srivastava A, Mollov D, Martin RR, Tzanetakis IE. Genomic analyses of a widespread blueberry virus in the United States. Virus Res 2023; 333:199143. [PMID: 37271421 PMCID: PMC10352716 DOI: 10.1016/j.virusres.2023.199143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Screening of blueberry accessions using high throughput sequencing revealed the presence of a new virus. Genomic structure and sequence are similar to that of nectarine stem pitting associated virus (NSPaV), a member of the genus Luteovirus, family Tombusviridae. The full genome of the new luteovirus, tentatively named blueberry virus L (BlVL), was characterized and analyzed. Similar to NSPaV, BlVL does not contain readily identifiable movement proteins in any of the seven isolates sequenced. More than 600 samples collected from five states were screened and 79% were found infected, making BlVL the most widespread blueberry virus in the United States.
Collapse
Affiliation(s)
- Daisy Stainton
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA
| | - Dan E V Villamor
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA
| | - Andrea Sierra Mejia
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA
| | - Ashish Srivastava
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA
| | - Dimitre Mollov
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, 3420 NW Orchard Ave, Corvallis, OR 97330; Oregon State University, Corvallis, OR 97330, USA
| | | | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| |
Collapse
|
9
|
Druciarek T, Lewandowski M, Tzanetakis I. Identification of a Second Vector for Rose Rosette Virus. PLANT DISEASE 2023; 107:2313-2315. [PMID: 36724024 DOI: 10.1094/pdis-11-22-2686-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rose rosette devastates the ornamentals industry in the United States. The disease, caused by rose rosette emaravirus (RRV), is vectored by the eriophyoid mite Phyllocoptes fructiphilus (Acari: Eriophyoidea). In this communication, we investigate two other Phyllocoptes species, P. adalius and P. arcani, for their vector competency and transmission efficiencies in single and multiple mite transfer experiments. P. arcani was identified as a second vector of RRV, a finding of significance for the epidemiology of the disease, as the second vector may be present in plants where P. fructiphilus is absent.
Collapse
Affiliation(s)
- Tobiasz Druciarek
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System Fayetteville, Fayetteville, AR 72701, U.S.A
| | - Mariusz Lewandowski
- Department of Applied Entomology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland
| | - Ioannis Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System Fayetteville, Fayetteville, AR 72701, U.S.A
| |
Collapse
|
10
|
Reyes-Proaño EG, Cañada-Bautista MG, Cornejo-Franco JF, Alvarez-Quinto RA, Mollov D, Sanchez-Timm E, Quito-Avila DF. The Virome of Babaco ( Vasconcellea × heilbornii) Expands to Include New Members of the Rhabdoviridae and Bromoviridae. Viruses 2023; 15:1380. [PMID: 37376679 DOI: 10.3390/v15061380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Babaco (Vasconcellea × heilbornii) is a subtropical species in the Caricaceae family. The plant is native to Ecuador and represents an important crop for hundreds of families. The objective of this study was to characterize, at the genomic level, two new babaco viruses identified by high-throughput sequencing. The viruses, an ilarvirus and a nucleorhabdovirus, were found in a symptomatic babaco plant from a commercial nursery in the Azuay province of Ecuador. The tripartite genome of the new ilarvirus, provisionally named babaco ilarvirus 1 (BabIV-1), is related to subgroup 3 ilarviruses, including apple mosaic virus, apple necrotic mosaic virus, and prunus necrotic ringspot virus as the closest relatives. The genome of the nucleorhabdovirus, provisionally named babaco nucleorhabdovirus 1 (BabRV-1), showed the closest relation with joa yellow blotch-associated virus and potato yellow dwarf nucleorhabdovirus. Molecular-based detection methods found BabIV-1 and BabRV-1 in 21% and 36%, respectively, of plants surveyed in a commercial babaco nursery, highlighting the importance of enforcing virus testing and nursery certification programs for babaco.
Collapse
Affiliation(s)
- Edison G Reyes-Proaño
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Km 30.5 Vía Perimetral Campus Gustavo Galindo, Guayaquil 090902, Ecuador
- Department of Entomology and Plant Pathology, University of Idaho, Moscow, ID 83843, USA
| | - Maria G Cañada-Bautista
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Km 30.5 Vía Perimetral Campus Gustavo Galindo, Guayaquil 090902, Ecuador
| | - Juan F Cornejo-Franco
- Centro de Investigaciones Biotecnológicas del Ecuador, Escuela Superior Politécnica del Litoral, CIBE-ESPOL, Km 30.5 Vía Perimetral Campus Gustavo Galindo, Guayaquil 090902, Ecuador
| | | | | | - Eduardo Sanchez-Timm
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Km 30.5 Vía Perimetral Campus Gustavo Galindo, Guayaquil 090902, Ecuador
- Centro de Investigaciones Biotecnológicas del Ecuador, Escuela Superior Politécnica del Litoral, CIBE-ESPOL, Km 30.5 Vía Perimetral Campus Gustavo Galindo, Guayaquil 090902, Ecuador
| | - Diego F Quito-Avila
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Km 30.5 Vía Perimetral Campus Gustavo Galindo, Guayaquil 090902, Ecuador
- Centro de Investigaciones Biotecnológicas del Ecuador, Escuela Superior Politécnica del Litoral, CIBE-ESPOL, Km 30.5 Vía Perimetral Campus Gustavo Galindo, Guayaquil 090902, Ecuador
| |
Collapse
|
11
|
Medberry AN, Srivastava A, Diaz-Lara A, Rwahnih MA, Villamor DEV, Tzanetakis IE. A Novel, Divergent Member of the Rhabdoviridae Family Infects Strawberry. PLANT DISEASE 2023; 107:620-623. [PMID: 35857372 DOI: 10.1094/pdis-05-22-1078-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strawberry (Fragaria × ananassa) is the most important berry crop worldwide and viruses pose a constant threat to the industry. In this communication, we describe a novel virus in the family Rhabdoviridae referred to as strawberry virus 3 (StrV-3). The virus does not show significant homology when compared with recognized rhabdoviruses and, therefore, the establishment of a new genus should be considered. A triplex reverse-transcription PCR test was developed and successfully employed in a survey of the National Clonal Germplasm Repository Fragaria collection. A CRISPR-Cas-based protocol was also developed and shown to detect the virus in as little as 1 fg of total RNA, a protocol to be used in the detection of the virus in candidate G1 plants. The strawberry aphid (Chaetosiphon fragaefolii) was evaluated-alas, unsuccessfully-as a potential vector of the virus. This work broadens our understanding of the family Rhabdoviridae and assists in the quest of releasing plant material free of viruses.
Collapse
Affiliation(s)
- Ava N Medberry
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, U.S.A
| | - Ashish Srivastava
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, U.S.A
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, UP 284403, India
| | - Alfredo Diaz-Lara
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Queretaro 76130, Mexico
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616, U.S.A
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616, U.S.A
| | - Dan E V Villamor
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, U.S.A
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, U.S.A
| |
Collapse
|
12
|
Reyes-Proaño E, Alvarez-Quinto R, Delgado-Jiménez JA, Cornejo-Franco JF, Mollov D, Bejerman N, Quito-Avila DF. Genome Characterization and Pathogenicity of Two New Hyptis pectinata Viruses Transmitted by Distinct Insect Vectors. PHYTOPATHOLOGY 2022; 112:2440-2448. [PMID: 35694887 DOI: 10.1094/phyto-04-22-0130-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two newly described viruses belonging to distinct families, Rhabdoviridae and Geminiviridae, were discovered co-infecting Hyptis pectinata from a tropical dry forest of Ecuador. The negative-sense RNA genome of the rhabdovirus, tentatively named Hyptis latent virus (HpLV), comprises 13,765 nucleotides with seven open reading frames separated by the conserved intergenic region 3'-AAUUAUUUUGAU-5'. Sequence analyses showed identities as high as 56% for the polymerase and 38% for the nucleocapsid to members of the genus Cytorhabdovirus. Efficient transmission of HpLV was mediated by the pea aphid (Acyrthosiphon pisum) in a persistent replicative manner. The single-stranded DNA genome of the virus tentatively named Hyptis golden mosaic virus (HpGMV) shared homology with members of the genus Begomovirus with bipartite genomes. The DNA-A component consists of 2,716 nucleotides (nt), whereas the DNA-B component contains 2,666 nt. Pairwise alignments using the complete genomic sequence of DNA-A of HpGMV and closest relatives showed identities below the cutoff (<91% shared nt) established by the ICTV as species demarcation, indicating that HpGMV should be classified in a distinct begomovirus species. Transmission experiments confirmed that the whitefly Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) is a vector of HpGMV.
Collapse
Affiliation(s)
- Edison Reyes-Proaño
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Guayas, Ecuador
| | - Robert Alvarez-Quinto
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - José A Delgado-Jiménez
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Guayas, Ecuador
| | - Juan F Cornejo-Franco
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Guayas, Ecuador
| | - Dimitre Mollov
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, U.S.A
| | - Nicolás Bejerman
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Fitopatología y Modelización Agrícola, Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina
| | - Diego F Quito-Avila
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Guayas, Ecuador
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Guayas, Ecuador
| |
Collapse
|
13
|
Medberry A, Tzanetakis IE. Identification, Characterization, and Detection of a Novel Strawberry Cytorhabdovirus. PLANT DISEASE 2022; 106:2784-2787. [PMID: 36176214 DOI: 10.1094/pdis-11-21-2449-sc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In 2020, a novel agent was discovered in strawberry, a rhabdovirus closely related to lettuce necrotic yellows virus. The new virus, named strawberry virus 2 (StrV-2), was discovered in an accession of the Fragaria virus collection of the National Clonal Germplasm Repository (NCGR), and for this reason, it was studied in-depth. The complete StrV-2 genome was obtained and investigated in silico. Transmission was assessed using two aphid species whereas a multiplex RT-PCR test targeting plant and virus genes was developed and used to screen the NCGR Fragaria virus collection.
Collapse
Affiliation(s)
- Ava Medberry
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
14
|
Vakić M, Stainton D, Delić D, Tzanetakis IE. Characterization of the first Rubus yellow net virus genome from blackberry. Virus Genes 2022; 58:594-597. [PMID: 35941271 DOI: 10.1007/s11262-022-01926-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022]
Abstract
Rubus yellow net virus (RYNV) is a badnavirus that infects Rubus spp. Mixed infections with black raspberry necrosis virus and raspberry leaf mottle virus cause raspberry mosaic, a disease that leads to significant losses and even plant death. RYNV has been reported in several European countries and the Americas yet there is substantial lack of knowledge, especially when it comes to virus diversity and the evolutionary forces that affect virus fitness outside its primary host, raspberry. Herein, we report the first RYNV episomal genome isolated from blackberry and this is the first report of the virus in Bosnia and Herzegovina. The isolate has five open reading frames (ORFs) and, when compared with other fully sequenced counterparts, showed 82-97% nucleotide pairwise identity. This communication adds to our limited knowledge on RYNV and addresses some of the gaps in RYNV genetics when it comes to the coding capacity of episomal isolates and the probability of the first fully sequenced isolate of the virus being integrated in the raspberry genome.
Collapse
Affiliation(s)
- Mišaela Vakić
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Daisy Stainton
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA
| | - Duška Delić
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA.
| |
Collapse
|
15
|
Villamor DEV, Keller KE, Martin RR, Tzanetakis IE. Comparison of High Throughput Sequencing to Standard Protocols for Virus Detection in Berry Crops. PLANT DISEASE 2022; 106:518-525. [PMID: 34282931 DOI: 10.1094/pdis-05-21-0949-re] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We completed a comprehensive study comparing virus detection between high throughput sequencing (HTS) and standard protocols in 30 berry selections (12 Fragaria, 10 Vaccinium, and eight Rubus) with known virus profiles. The study examined temporal detection of viruses at four sampling times encompassing two growing seasons. Within the standard protocols, reverse transcription (RT) PCR proved better than biological indexing. Detection of known viruses by HTS and RT-PCR nearly mirrored each other. HTS provided superior detection compared with RT-PCR on a wide spectrum of variants and discovery of novel viruses. More importantly, in most cases in which the two protocols showed parallel virus detection, 11 viruses in 16 selections were not consistently detected by both methods at all sampling points. Based on these data, we propose a testing requirement of four sampling times over two growing seasons for berry and potentially other crops, to ensure that no virus remains undetected independent of titer, distribution, or other virus-virus or virus-host interactions.
Collapse
Affiliation(s)
- D E V Villamor
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - K E Keller
- U.S. Department of Agriculture Agricultural Research Service, Corvallis, OR 97330
| | - R R Martin
- U.S. Department of Agriculture Agricultural Research Service, Corvallis, OR 97330
| | - I E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
16
|
Shaffer CM, Michener DC, Vlasava NB, Chotkowski H, Tzanetakis IE. Population genetics of cycas necrotic stunt virus and the development of multiplex RT-PCR diagnostics. Virus Res 2021; 309:198655. [PMID: 34906655 DOI: 10.1016/j.virusres.2021.198655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
Cycas necrotic stunt virus (CNSV) has an extensive host range and is detected in an accelerated pace around the globe in several agricultural crops. One of the plant species affected is peony (Paeonia lactiflora Pall.). The virus is asymptomatic in most peony cultivars, but there have been reports of symptoms in others. It is thus important to study CNSV and its population structure to gain insights into its evolution and epidemiology. The outputs of this study, in addition to the in-depth analysis of the virus population structure, include the development of a multiplex RT-PCR detection protocol that can amplify all published CNSV isolate sequences; allowing for accurate, reliable detection of the virus and safeguarding its susceptible, clonally-propagated hosts.
Collapse
Affiliation(s)
- Cullen M Shaffer
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, United States
| | - David C Michener
- University of Michigan Matthaei Botanical Gardens & Nichols Arboretum, Ann Arbor, MI 48105, United States
| | | | | | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, United States.
| |
Collapse
|
17
|
Diaz-Lara A, Erickson TM, Golino D, Al Rwahnih M. Development of a universal RT-PCR assay for grapevine vitiviruses. PLoS One 2020; 15:e0239522. [PMID: 32960934 PMCID: PMC7508359 DOI: 10.1371/journal.pone.0239522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022] Open
Abstract
The genus Vitivirus in the family Betaflexiviridae includes eleven viruses known to infect grapevine: grapevine vitiviruses A, B, D, E, F, G, H, I, J, L and M (GVA-GVM). Three of these viruses, GVA, GVB and GVD, have been associated with the etiology of rugose wood disease in grapevine and cause agronomically significant losses. The other vitiviruses were more recently discovered and their effects on grapevine are undetermined. To certify grape material for propagation as virus tested, an updated reverse transcription PCR (RT-PCR) assay to detect all known vitiviruses is desirable. To accomplish this, multiple grapevine vitivirus sequences were aligned at the amino acid level to search for conserved motifs. Two highly conserved motifs were found at an ideal distance for RT-PCR detection in the RNA-dependent RNA polymerase region of the replicase protein. The amino acid motifs were back translated to create degenerate primers and used to successfully amplify all eleven grapevine vitiviruses. The RT-PCR primers were used to test a panel of vitivirus-infected vines for inclusivity as well as vines infected with closely related viruses in the Betaflexiviridae family (i.e. grapevine pinot gris virus and grapevine rupestris stem pitting-associated virus) for exclusivity. Broader use of these primers to detect vitiviruses in other plant hosts was investigated. In summary, an end-point RT-PCR assay that detects all the known grapevine vitiviruses and potentially other members of the genus Vitivirus has been developed. The universal assay represents an alternative to individual assays to reduce the work associated with the diagnosis of vitiviruses, including for regulatory purposes.
Collapse
Affiliation(s)
- Alfredo Diaz-Lara
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
| | - Teresa M. Erickson
- Foundation Plant Services, University of California-Davis, Davis, California, United States of America
| | - Deborah Golino
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Maree HJ, Blouin AG, Diaz-Lara A, Mostert I, Al Rwahnih M, Candresse T. Status of the current vitivirus taxonomy. Arch Virol 2019; 165:451-458. [PMID: 31845154 DOI: 10.1007/s00705-019-04500-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 11/12/2019] [Indexed: 11/25/2022]
Abstract
Since the establishment of the genus Vitivirus, several additional viruses have been sequenced and proposed to represent new species of this genus. Currently, the International Committee on Taxonomy of Viruses recognizes 15 vitivirus species. The report of new vitiviruses that fail to completely adhere to the species demarcation criteria, the incorporation of non-vitivirus grapevine viruses in the unofficial "naming system", and the existence of non-grapevine vitiviruses lead to inconsistencies in classification. In this report, we give a brief overview of vitiviruses and use currently available information to clarify the present status of the vitivirus taxonomy.
Collapse
Affiliation(s)
- H J Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
- Citrus Research International, P.O. Box 2201, Matieland, 7602, South Africa.
| | - A G Blouin
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - A Diaz-Lara
- Department of Plant Pathology, University of California-Davis, Davis, CA, 95616, USA
| | - I Mostert
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - M Al Rwahnih
- Department of Plant Pathology, University of California-Davis, Davis, CA, 95616, USA
| | - T Candresse
- INRAE, Univ. Bordeaux, UMR BFP, 33882, Villenave d'Ornon Cedex, France
| |
Collapse
|
19
|
Bragard C, Dehnen-Schmutz K, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Finelli F, Martelli GP, Winter S, Bosco D, Chiumenti M, Di Serio F, Kaluski T, Minafra A, Rubino L. Pest categorisation of non-EU viruses and viroids of Vitis L. EFSA J 2019; 17:e05669. [PMID: 32626420 PMCID: PMC7009087 DOI: 10.2903/j.efsa.2019.5669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following a request from the EU Commission, the Panel on Plant Health addressed the pest categorisation of the viruses and viroids of Vitis L. determined as being either non-EU or of undetermined standing in a previous EFSA opinion. These infectious agents belong to different genera and are heterogeneous in their biology. With the exclusion of grapevine virus 101-14.N.23.9.1/South Africa/2009 for which very limited information exists, the pest categorisation was completed for 30 viruses or viroids having acknowledged identities and available detection methods. All these viruses are efficiently transmitted by vegetative propagation techniques, with plants for planting representing the major pathway for long-distance dispersal and thus considered as the major pathway for potential entry. Depending on the virus, additional pathway(s) can also be seeds, pollen and/or vector(s). Most of the viruses categorised here are known to infect only one or few plant genera, but some of them have a wide host range, thus extending the possible entry pathways. Grapevine yellow speckle viroid 2, blueberry leaf mottle virus, grapevine Ajinashika virus, grapevine Anatolian ringspot virus, grapevine berry inner necrosis virus, grapevine deformation virus, grapevine fabavirus, grapevine red blotch virus, grapevine stunt virus, grapevine Tunisian ringspot virus, grapevine vein-clearing virus, temperate fruit decay-associated virus, peach rosette mosaic virus, tobacco ringspot virus, tomato ringspot virus meet all the criteria evaluated by EFSA to qualify as potential Union quarantine pests (QPs). With the exception of impact for the EU territory, on which the Panel was unable to conclude, blackberry virus S, grapevine geminivirus A, grapevine leafroll-associated virus 7, grapevine leafroll-associated virus 13, grapevine satellite virus, grapevine virus E, grapevine virus I, grapevine virus J, grapevine virus S, summer grape enamovirus, summer grape latent virus satisfy all the other criteria to be considered as potential Union QPs. Australian grapevine viroid, grapevine cryptic virus 1, grapevine endophyte endornavirus and wild vitis virus 1 do not meet all the criteria evaluated by EFSA to be regarded as potential Union QPs because they are not known to cause an impact on Vitis. For several viruses, especially those recently discovered, the categorisation is associated with high uncertainties mainly because of the absence of data on their biology, distribution and impact. Since this opinion addresses specifically non-EU viruses, in general these viruses do not meet the criteria assessed by EFSA to qualify as a potential Union regulated non-quarantine pests.
Collapse
|
20
|
Alabi OJ, McBride S, Appel DN, Al Rwahnih M, Pontasch FM. Grapevine virus M, a novel vitivirus discovered in the American hybrid bunch grape cultivar Blanc du Bois in Texas. Arch Virol 2019; 164:1739-1741. [PMID: 30989381 DOI: 10.1007/s00705-019-04252-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
Abstract
A novel ssRNA (+) virus with molecular properties typical of members of the genus Vitivirus (family Betaflexiviridae; subfamily Trivirinae) was discovered by high-throughput sequencing in samples of the American hybrid bunch grape cultivar Blanc du Bois in Texas. The results were independently confirmed by Sanger sequencing of the virus isolate, whose genome length is 7,387 nt, excluding the polyA tail. The genome sequence contains five ORFs that are homologous and phylogenetically related to ORFs of grapevine-infecting vitiviruses. The name "grapevine virus M" is proposed for this new virus, whose sequence divergence exceeds the current ICTV species demarcation threshold for the genus Vitivirus.
Collapse
Affiliation(s)
- Olufemi J Alabi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Experiment Station, Weslaco, TX, 78596, USA.
| | - Sheila McBride
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - David N Appel
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California, Davis, 95616, USA
| | - Fran M Pontasch
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
21
|
Molecular characterization and detection of a novel vitivirus infecting blackberry. Arch Virol 2018; 163:2889-2893. [DOI: 10.1007/s00705-018-3931-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/07/2018] [Indexed: 10/28/2022]
|
22
|
Martin RR, Tzanetakis IE. High Risk Blueberry Viruses by Region in North America; Implications for Certification, Nurseries, and Fruit Production. Viruses 2018; 10:E342. [PMID: 29949859 PMCID: PMC6070900 DOI: 10.3390/v10070342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 11/23/2022] Open
Abstract
There is limited information on the distribution of blueberry viruses in the U.S. or around the world other than where the viruses were first discovered and characterized. A survey for blueberry viruses was carried out in the U.S. in 2015⁻2017. Most blueberry viruses have been characterized to the point that sensitive diagnostic assays have been developed. These assays are based on ELISA or variations of PCR, which were employed here to determine the presence of blueberry viruses in major blueberry production and nursery areas of the U.S. The viruses included in this study were: blueberry fruit drop (BFDaV), blueberry latent (BlLV), blueberry leaf mottle (BLMoV), blueberry mosaic (BlMaV), blueberry red ringspot (BRRV), blueberry scorch (BlScV), blueberry shock (BlShV), blueberry shoestring (BlSSV), blueberry virus A (BVA), peach rosette mosaic (PRMV), tobacco ringspot (TRSV), and tomato ringspot (ToRSV). In the Pacific Northwest BlShV was the most widespread virus, with BlScV and ToRSV detected in a limited number of fields in Oregon and Washington, but BlScV was widespread in British Columbia. In the upper midwest, the nematode-borne (ToRSV, TRSV), aphid-transmitted (BlSSV and BVA) and pollen-borne (BLMoV) viruses were most widespread. In the northeast, TRSV, ToRSV, and BlScV, were detected most frequently. In the southeast, BRRV and BNRBV were the most widespread viruses. BlLV, a cryptic virus with no known symptoms or effect on plant growth or yield was present in all regions. There are other viruses present at low levels in each of the areas, but with the lower incidence they pose minimal threat to nursery systems or fruit production. These results indicate that there are hotspots for individual virus groups that normally coincide with the presence of the vectors. The information presented highlights the high risk viruses for nursery and fruit production each pose a different challenge for control.
Collapse
Affiliation(s)
- Robert R Martin
- United States Department of Agriculture⁻Agricultural Research Service, Horticultural Crops Research Unit, Corvallis, OR 97331, USA.
| | - Ioannis E Tzanetakis
- Department of Plant Pathology and Cell and Molecular Biology Program, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| |
Collapse
|
23
|
Blouin AG, Chooi KM, Warren B, Napier KR, Barrero RA, MacDiarmid RM. Grapevine virus I, a putative new vitivirus detected in co-infection with grapevine virus G in New Zealand. Arch Virol 2018; 163:1371-1374. [DOI: 10.1007/s00705-018-3738-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/23/2017] [Indexed: 02/06/2023]
|
24
|
Identification of a novel vitivirus from grapevines in New Zealand. Arch Virol 2017; 163:281-284. [DOI: 10.1007/s00705-017-3581-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
25
|
Candresse T, Theil S, Faure C, Marais A. Determination of the complete genomic sequence of grapevine virus H, a novel vitivirus infecting grapevine. Arch Virol 2017; 163:277-280. [DOI: 10.1007/s00705-017-3587-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
26
|
Thekke-Veetil T, Tzanetakis IE. Development of reliable detection assays for blueberry mosaic- and blackberry vein banding- associated viruses based on their population structures. J Virol Methods 2017; 248:191-194. [PMID: 28754569 DOI: 10.1016/j.jviromet.2017.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/19/2017] [Accepted: 07/24/2017] [Indexed: 02/05/2023]
Abstract
Blueberry mosaic associated virus (BlMaV), the presumed causal agent of the homonymous disease and blackberry vein banding associated virus (BVBaV), a component of the blackberry yellow vein disease complex, are recently characterized RNA viruses. There is a need for efficient and sensitive detection protocols for the two viruses, not only for screening during the nursery propagation process but also in commercial fields to better understand virus epidemiology and minimize disease spread. RNA viruses display significant nucleotide variation forming quasi-species. Therefore, sequence-based detection methodologies, even though sensitive, may lead to false negative results. For this reason, information on the genetic diversity of virus populations is essential to develop diagnostic assays that have the potential to detect all variants. Detection assays for BlMaV and BVBaV were developed based on existing genetic diversity data and were validated by screening samples from different geographical areas in the United States. These detection tests provide sensitivity and specificity and will serve as the protocols of choice for virus screening in Vaccinium and Rubus certification programs in the United States and elsewhere. Given the increasing global trade of both blueberry and blackberry these tests will be valuable in avoiding virus introductions to new areas.
Collapse
Affiliation(s)
- Thanuja Thekke-Veetil
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
27
|
Shahid MS, Aboughanem-Sabanadzovic N, Sabanadzovic S, Tzanetakis IE. Genomic Characterization and Population Structure of a Badnavirus Infecting Blackberry. PLANT DISEASE 2017; 101:110-115. [PMID: 30682310 DOI: 10.1094/pdis-04-16-0527-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Blackberry viruses are pervasive, decreasing growth, yield, and plant longevity. In a quest to identify viruses associated with blackberry yellow vein, a disease caused by virus complexes, a new double-stranded DNA virus, referred to as blackberry virus F (BVF), a putative member of the genus Badnavirus, family Caulimoviridae, was identified. The virus was found in both cultivated and wild blackberry samples collected from several states in the southern United States. Population structure, host range, and association with disease symptoms were assessed. As BVF integrates into the plant genome, it affects the production of virus-free propagation material, the cornerstone for certification programs.
Collapse
Affiliation(s)
- Muhammad Shafiq Shahid
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville 72701
| | | | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State 39762
| | | |
Collapse
|
28
|
Thekke Veetil T, Ho T, Moyer C, Whitaker VM, Tzanetakis IE. Detection of Strawberry necrotic shock virus using conventional and TaqMan(®) quantitative RT-PCR. J Virol Methods 2016; 235:176-181. [PMID: 27283883 DOI: 10.1016/j.jviromet.2016.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 11/28/2022]
Abstract
Graft-indexing of an advanced selection from the University of Florida strawberry breeding program produced virus-like symptoms on Fragaria vesca. However; RT-PCR testing of the material did not detect the presence of any of 16 strawberry virus species or members of virus groups for which strawberries are routinely indexed. Large scale sequencing of the material revealed the presence of an isolate of Strawberry necrotic shock virus. The nucleotide sequence of this isolate from Florida shows a significant number of base changes in the annealing sites of the primers compared to the primers currently in use for the detection of SNSV thereby explaining the most probable reason for the inability to detect the virus in the original screening. RT-PCR and Taqman(®) qPCR assays were developed based on conserved virus sequences identified in this isolate from Florida and other sequences for SNSV currently present in GenBank. The two assays were applied successfully on multiple samples collected from several areas across the United States as well as isolates from around the world. Comparison between the RT-PCR and the qPCR assays revealed that the qPCR assay is at least 100 times more sensitive than conventional PCR.
Collapse
Affiliation(s)
- Thanuja Thekke Veetil
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, United States
| | - Thien Ho
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, United States
| | - Catalina Moyer
- Gulf Coast Research and Education Center, IFAS, University of Florida, Wimauma, FL 33598, United States
| | - Vance M Whitaker
- Gulf Coast Research and Education Center, IFAS, University of Florida, Wimauma, FL 33598, United States
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, United States.
| |
Collapse
|
29
|
Poudel B, Ho T, Laney A, Khadgi A, Tzanetakis IE. Epidemiology of Blackberry chlorotic ringspot virus. PLANT DISEASE 2014; 98:547-550. [PMID: 30708728 DOI: 10.1094/pdis-08-13-0866-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The pollen- and seed-borne ilarviruses pose a substantial threat to many specialty crops, including berries, rose, and tree fruit, because there are no efficient control measures other than avoidance. The case of Blackberry chlorotic ringspot virus (BCRV) is of particular interest because the virus has been found to be an integral part of blackberry yellow vein disease and is widespread in rose plants affected by rose rosette disease. This study provides insight into the epidemiology of BCRV, including incidence in blackberry and rose; host range, with the addition of apple as a host of the virus; and seed transmission that exceeded 50% in rose. Sensitive detection protocols that can be used to avoid dissemination of infected material through nurseries and breeding programs were also developed.
Collapse
Affiliation(s)
- Bindu Poudel
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville 72701
| | - Thien Ho
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville 72701
| | - Alma Laney
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville 72701
| | - Archana Khadgi
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville 72701
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville 72701
| |
Collapse
|
30
|
Lightle DM, Quito-Avila D, Martin RR, Lee JC. Seasonal phenology of Amphorophora agathonica (Hemiptera: Aphididae) and spread of viruses in red raspberry in Washington. ENVIRONMENTAL ENTOMOLOGY 2014; 43:467-473. [PMID: 24763099 DOI: 10.1603/en13213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Amphorophora agathonica (Hottes) is the primary vector of aphid-transmitted viruses in red raspberry in the Pacific Northwest region of the United States. To better understand the biology of the aphid, we estimated the lower developmental threshold and studied the seasonal activity of A. agathonica in commercial fields in northern Washington state. In addition, we monitored the spread of raspberry viruses (raspberry latent virus and raspberry leaf mottle virus, RLMV) to determine how rapidly fields became infected and whether there was a relationship between aphid presence and infection. The lower developmental threshold of A. agathonica was estimated to be 2.7°C. In the field, apterous and alate aphid populations began rapidly increasing at ≍800 growing degree-days and peaked at 1,050 growing degree-days. RLMV spread rapidly, with 30-60% of plants in four different commercial fields testing positive after three growing seasons. There was no discernible relationship between the presence or abundance of aphids based on 10 leaves sampled per plant location, and the odds of that plant becoming infected with RLMV.
Collapse
Affiliation(s)
- D M Lightle
- Entomology Program, Oregon State University, 4017 Ag and Life Sciences Bldg., Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
31
|
Poudel B, Wintermantel WM, Cortez AA, Ho T, Khadgi A, Tzanetakis IE. Epidemiology of Blackberry yellow vein associated virus. PLANT DISEASE 2013; 97:1352-1357. [PMID: 30722181 DOI: 10.1094/pdis-01-13-0018-re] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Blackberry yellow vein disease is one of the most important diseases of blackberry in the United States. Several viruses are found associated with the symptomology but Blackberry yellow vein associated virus (BYVaV) appears to be the most prevalent of all, leading to the need for a better understanding of its epidemiology. Efficient detection protocols were developed using end-point and quantitative reverse-transcription polymerase chain reaction. A multi-state survey was performed on wild and cultivated blackberry to assess the geographical distribution of the virus. Two whitefly species, Trialeurodes abutilonea and T. vaporariorum, were identified as vectors and 25 plant species were tested as potential BYVaV hosts. The information obtained in this study can be used at multiple levels to better understand and control blackberry yellow vein disease.
Collapse
Affiliation(s)
- Bindu Poudel
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville 72701
| | - William M Wintermantel
- United States Department of Agriculture-Agricultural Research Service, Salinas, CA 93905
| | - Arturo A Cortez
- United States Department of Agriculture-Agricultural Research Service, Salinas, CA 93905
| | - Thien Ho
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System
| | - Archana Khadgi
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System
| |
Collapse
|
32
|
Martin RR, Tzanetakis IE. High Risk Strawberry Viruses by Region in the United States and Canada: Implications for Certification, Nurseries, and Fruit Production. PLANT DISEASE 2013; 97:1358-1362. [PMID: 30722134 DOI: 10.1094/pdis-09-12-0842-re] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is limited information about the distribution of strawberry viruses in North America and around the world. Since the turn of the century, there has been a concerted effort to develop sensitive tests for many of the previously uncharacterized, graft-transmissible agents infecting strawberry. These tests were employed to determine the presence of strawberry viruses in major strawberry production and nursery areas of North America. The viruses evaluated in this study were Apple mosaic, Beet pseudo-yellows, Fragaria chiloensis latent, Strawberry chlorotic fleck, Strawberry crinkle, Strawberry latent ring spot, Strawberry mild yellow edge, Strawberry mottle, Strawberry necrotic shock, Strawberry pallidosis, Strawberry vein banding, and Tobacco streak. The aphid-borne viruses were predominant in the Pacific Northwest whereas the whitefly-borne viruses were prevalent in California, the Midwest, and the Southeast. In the Northeast, the aphid-transmitted Strawberry mottle and Strawberry mild yellow edge viruses along with the whitefly-transmitted viruses were most common. The incidence of pollen-borne viruses was low in most areas, with Strawberry necrotic shock being the most prevalent virus of this group. These results indicate that there are hotspots for individual virus groups that normally coincide with the presence of the vectors. The information presented highlights the high-risk viruses for nursery production, where efforts are made to control all viruses, and fruit production, where efforts are made to control virus diseases.
Collapse
Affiliation(s)
- Robert R Martin
- Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| | - Ioannis E Tzanetakis
- Department of Plant Pathology and Cell and Molecular Biology Program, Division of Agriculture, University of Arkansas, Fayetteville 72701
| |
Collapse
|
33
|
Laney AG, Hassan M, Tzanetakis IE. An integrated badnavirus is prevalent in fig germplasm. PHYTOPATHOLOGY 2012; 102:1182-9. [PMID: 22992110 DOI: 10.1094/phyto-12-11-0351] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fig mosaic occurs worldwide and is the most common and important viral disease of fig. In the quest to identify the causal agent of the disease, several new viruses have been identified, including a new DNA virus, the subject of this communication. Phylogenetic analysis placed the virus, provisionally named Fig badnavirus-1 (FBV-1), in the genus Badnavirus, family Caulimoviridae. The experimental host range of FBV-1 was evaluated and the virus was mechanically transmitted to several herbaceous hosts. FBV-1 was detected in the National Clonal Germplasm Repository fig collection and additional samples from Arkansas, California, Florida, Michigan, Ohio, Oregon, and South Carolina, suggesting its wide distribution in the United States. Further tests revealed the presence of FBV-1 in seedlings and meristem tissue culture plants. Forty-four isolates were used in a study evaluating the population structure of the virus in the United States. Evidence that FBV-1 is integrated in the fig genome is presented and discussed.
Collapse
Affiliation(s)
- Alma G Laney
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville 72701, USA
| | | | | |
Collapse
|
34
|
Quito-Avila DF, Lightle D, Lee J, Martin RR. Transmission biology of Raspberry latent virus, the first aphid-borne reovirus. PHYTOPATHOLOGY 2012; 102:547-553. [PMID: 22352304 DOI: 10.1094/phyto-12-11-0331] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Raspberry latent virus (RpLV) is a newly characterized reovirus found in commercial raspberry fields in the Pacific Northwest (PNW). Thus far, all members of the plant reoviruses are transmitted in a replicative, persistent manner by several species of leafhoppers or planthoppers. After several failed attempts to transmit RpLV using leafhoppers, the large raspberry aphid, commonly found in the PNW, was tested as a vector of the virus. The virus was transmitted to new, healthy raspberry plants when inoculated with groups of at least 50 viruliferous aphids, suggesting that aphids are vectors of RpLV, albeit inefficient ones. Using absolute and relative quantification methods, it was shown that the virus titer in aphids continued to increase after the acquisition period even when aphids were serially transferred onto fresh, healthy plants on a daily basis. Transmission experiments determined that RpLV has a 6-day latent period in the aphid before it becomes transmissible; however, it was not transmitted transovarially to the next generation. To our knowledge, this is the first report of a plant reovirus transmitted by an aphid. Phylogenetic analyses showed that RpLV is related most closely to but distinct from Rice ragged stunt virus (RRSV), the type member of the genus Oryzavirus. Moreover, the conserved nucleotide termini of the genomic segments of RpLV did not match those of RRSV or other plant reoviruses, allowing us to suggest that RpLV is probably the type member of a new genus in the Reoviridae comprising aphid-transmitted reoviruses.
Collapse
Affiliation(s)
- Diego F Quito-Avila
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
| | | | | | | |
Collapse
|
35
|
Valverde RA, Sabanadzovic S, Hammond J. Viruses that Enhance the Aesthetics of Some Ornamental Plants: Beauty or Beast? PLANT DISEASE 2012; 96:600-611. [PMID: 30727518 DOI: 10.1094/pdis-11-11-0928-fe] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
| | | | - John Hammond
- Floral and Nursery Plants Research Unit, USDA-ARS, U.S. National Arboretum, Beltsville, MD 20705
| |
Collapse
|
36
|
Blouin AG, Chavan RR, Pearson MN, MacDiarmid RM, Cohen D. Detection and characterisation of two novel vitiviruses infecting Actinidia. Arch Virol 2012; 157:713-22. [PMID: 22274622 DOI: 10.1007/s00705-011-1219-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
Two co-infecting novel vitiviruses from Actinidia chinensis were identified from mechanically inoculated Nicotiana occidentalis. Both virus genomes were sequenced and share 64% nucleotide identity. Their overall structure is typical of vitiviruses, with five open reading frames (ORFs) and a polyadenylated 3' end. Open reading frame 4 (ORF4) encodes the coat protein, the most conserved gene of the vitiviruses, in which they share 75% amino acid identity, 61-68% with grapevine virus B, 55-59% with grapevine virus A, and 37-42% with grapevine virus E. Based on the molecular criteria for species demarcation in the family Betaflexiviridae, these are two novel viruses, tentatively named Actinidia virus A and Actinidia virus B.
Collapse
Affiliation(s)
- Arnaud G Blouin
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
37
|
Haviv S, Moskovitz Y, Mawassi M. The ORF3-encoded proteins of vitiviruses GVA and GVB induce tubule-like and punctate structures during virus infection and localize to the plasmodesmata. Virus Res 2012; 163:291-301. [PMID: 22051060 DOI: 10.1016/j.virusres.2011.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/11/2011] [Accepted: 10/18/2011] [Indexed: 10/16/2022]
Abstract
The genomic RNA of vitiviruses contains 5 open reading frames (ORF). ORF3 encodes a protein to which the function of a movement protein (MP) was assigned, based on sequence homology with other viral proteins. The aim of the research described in this paper was to gain further insight in distribution profile of the ORF3 product encoded by the vitiviruses Grapevine virus A (GVA) and Grapevine virus B (GVB). Expression of the GVA MP-GFP fusion protein via the virus genome in Nicotiana benthamiana leaves resulted in the formation of irregular spots and fibrous network structures on the outermost periphery of epidermal cells. Expression of GVA MP-GFP and GVB MP-GFP was involved in the formation of the tubule-like and punctate structures on the periphery of N. benthamiana and Vitis vinifera protoplasts. Co-expression of the GVA MP-GFP and GVA MP-RFP in protoplasts resulted in co-localization of these proteins into the same punctate structures, indicating that the MP is not accumulated randomly onto the cell surface, but targeted to particular sites at the cell periphery, where punctate and tubule-like structures are likely formed. With the use of cytoskeleton and secretory pathway inhibitors, we showed that the cytoskeletal elements are not likely to be involved in targeting of the MP-GFP to the punctate cellular structures. In addition to MP, a functional coat protein was found to be essential for virus spread within inoculated leaves.
Collapse
Affiliation(s)
- Sabrina Haviv
- The S. Tolkowsky Laboratory, Department of Plant Pathology - The Virology Unit, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | | | | |
Collapse
|
38
|
Quito-Avila DF, Martin RR. Real-time RT-PCR for detection of Raspberry bushy dwarf virus, Raspberry leaf mottle virus and characterizing synergistic interactions in mixed infections. J Virol Methods 2011; 179:38-44. [PMID: 21968094 DOI: 10.1016/j.jviromet.2011.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/14/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
Two TaqMan-based real-time One-Step RT-PCR assays were developed for the rapid and efficient detection of Raspberry bushy dwarf virus (RBDV) and Raspberry leaf mottle virus (RLMV), two of the most common raspberry viruses in North America and Europe. The primers and probes were designed from conserved fragments of the polymerase region of each virus and were effective for the detection of different isolates tested in this study. The RBDV assay amplified a 94bp amplicon and was able to detect as few as 30 viral copies. Whereas the RLMV assay amplified a 180bp amplicon and detected as few as 300 viral copies from plant and aphid RNA extracts. Both assays were significantly more sensitive than their corresponding conventional RT-PCR methods. The sensitivity of the RLMV assay was also tested on single aphids after a fixed acquisition access period (AAP). In addition, the assays revealed a novel synergistic interaction between the two viruses, where the concentration of RBDV was enhanced ∼400-fold when it occurred in combination with RLMV compared to its concentration in single infections. The significance of this finding and the importance of the development of real-time RT-PCR assays for the detection of RBDV and RLMV are discussed.
Collapse
Affiliation(s)
- Diego F Quito-Avila
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|
39
|
du Preez J, Stephan D, Mawassi M, Burger JT. The grapevine-infecting vitiviruses, with particular reference to grapevine virus A. Arch Virol 2011; 156:1495-503. [DOI: 10.1007/s00705-011-1071-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/01/2011] [Indexed: 11/29/2022]
|
40
|
Borah BK, Cheema GS, Gill CK, Dasgupta I. A Geminivirus-Satellite Complex is Associated with Leaf Deformity of Mentha (Mint) Plants in Punjab. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2010; 21:103-9. [PMID: 23637488 PMCID: PMC3550711 DOI: 10.1007/s13337-010-0018-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
A widespread leaf deformity disease of mentha (mint), accompanied by whiteflies, the vectors of begomoviruses, was observed in Punjab in the last few years. The presence of begomovirus was indicated by DNA dot-blot analysis using the conserved coat protein and replication-associated protein genes of another begomovirus, Sri Lankan cassava mosaic virus (SLCMV). A DNA fragment (2.0 kb), representing a partial genomic DNA of a begomovirus, amplified from the symptomatic mentha leaves was used to design end-primers and further amplify an additional 0.9 kb fragment, representing the remaining portion of the resident viral DNA. The two sequences, assembled together (2.7 kb), showed that they represented the complete sequence of an isolate of Tomato leaf curl Karnataka virus (ToLCKV) DNA. Using universal betasatellite primers, a 1.4 kb fragment was amplified from the same sample. This cloned DNA fragment showed complete sequence identity with the previously reported Cotton leaf curl Multan betasatellite (CLCuMB). Majority of the symptomatic mentha leaf samples, collected from four districts of Punjab, showed cross-hybridization in DNA dot-blot using cloned SLCMV and CLCuMB DNA, indicating the presence of one or more begomoviruses related to SLCMV and the betasatellite, CLCuMB. The begomovirus and betasatellite could be mechanically transmitted to Nicotiana benthamiana. Whitefly transmission of the resident begomovirus could also be demonstrated on mentha. The evidence indicates the association of ToLCKV and CLCuMB, a hitherto new combination of a begomovirus and a betasatellite associated with a leaf deformity disease in mentha in Punjab.
Collapse
Affiliation(s)
- B. K. Borah
- />South Campus, Department of Plant Molecular Biology, University of Delhi, Benito Juarez Road, New Delhi, 110021 India
| | - G. S. Cheema
- />Department of Agronomy, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - C. K. Gill
- />Department of Entomology, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - I. Dasgupta
- />South Campus, Department of Plant Molecular Biology, University of Delhi, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
41
|
Blueberry latent virus: an amalgam of the Partitiviridae and Totiviridae. Virus Res 2010; 155:175-80. [PMID: 20888379 DOI: 10.1016/j.virusres.2010.09.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/20/2010] [Accepted: 09/21/2010] [Indexed: 11/24/2022]
Abstract
A new, symptomless virus was identified in blueberry. The dsRNA genome of the virus, provisionally named Blueberry latent virus (BBLV), codes for two putative proteins, one without any similarities to virus proteins and an RNA-dependent RNA polymerase. More than 35 isolates of the virus from different cultivars and geographic regions were partially or completely sequenced. BBLV, found in more than 50% of the material tested, has high degree of homogeneity as isolates show more than 99% nucleotide identity between them. Phylogenetic analysis clearly shows a close relationship between BBLV and members of the Partitiviridae, although its genome organization is related more closely to members of the Totiviridae. Transmission studies from three separate crosses showed that the virus is transmitted very efficiently by seed. These properties suggest that BBLV belongs to a new family of plant viruses with unique genome organization for a plant virus but signature properties of cryptic viruses including symptomless infection and very efficient vertical transmission.
Collapse
|
42
|
Kraus J, Cleveland S, Putnam ML, Keller KE, Martin RR, Tzanetakis IE. A New Potyvirus sp. Infects Verbena Exhibiting Leaf Mottling Symptoms. PLANT DISEASE 2010; 94:1132-1136. [PMID: 30743723 DOI: 10.1094/pdis-94-9-1132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Verbena 'Taylortown Red' plants showed virus-like mottling symptoms. Virus purifications disclosed the presence of elongated and spherical particles, evidence of mixed virus infections, whereas double-stranded RNA analysis revealed the presence of several bands absent in healthy plants. After shotgun cloning, three viruses were identified in 'Taylortown Red': Broad bean wilt virus-1, Coleus vein necrosis virus, and a previously undescribed potyvirus. Given the importance of verbena to the ornamental industry, we studied the viruses found in 'Taylortown Red' and, in this article, we present our findings on the new potyvirus, provisionally named Verbena virus Y (VVY). VVY belongs to the Potato virus Y subgroup in the genus Potyvirus, has solanaceous plants, including potato, as alternative hosts, and can be transmitted by a ubiquitous pest in the ornamental industry, the green peach aphid.
Collapse
Affiliation(s)
- Jennifer Kraus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331
| | - Stephanie Cleveland
- Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331
| | - Melodie L Putnam
- Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331
| | - Karen E Keller
- Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| | - Robert R Martin
- Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| | - Ioannis E Tzanetakis
- Department of Plant Pathology and Cell and Molecular Biology Program, Division of Agriculture, University of Arkansas, Fayetteville 72701
| |
Collapse
|
43
|
Tzanetakis IE, Postman JD, Samad A, Martin RR. Mint Viruses: Beauty, Stealth, and Disease. PLANT DISEASE 2010; 94:4-12. [PMID: 30754397 DOI: 10.1094/pdis-94-1-0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
| | | | - A Samad
- Central Institute of Medicinal and Aromatic Plants, CSIR, Lucknow, India
| | | |
Collapse
|
44
|
Wintermantel WM, Cortez AA, Anchieta AG, Gulati-Sakhuja A, Hladky LL. Co-infection by two criniviruses alters accumulation of each virus in a host-specific manner and influences efficiency of virus transmission. PHYTOPATHOLOGY 2008; 98:1340-5. [PMID: 19000010 DOI: 10.1094/phyto-98-12-1340] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tomato chlorosis virus (ToCV), and Tomato infectious chlorosis virus (TICV), family Closteroviridae, genus Crinivirus, cause interveinal chlorosis, leaf brittleness, and limited necrotic flecking or bronzing on tomato leaves. Both viruses cause a decline in plant vigor and reduce fruit yield, and are emerging as serious production problems for field and greenhouse tomato growers in many parts of the world. The viruses have been found together in tomato, indicating that infection by one Crinivirus sp. does not prevent infection by a second. Transmission efficiency and virus persistence in the vector varies significantly among the four different whitefly vectors of ToCV; Bemisia tabaci biotypes A and B, Trialeurodes abutilonea, and T. vaporariorum. Only T. vaporariorum can transmit TICV. In order to elucidate the effects of co-infection on Crinivirus sp. accumulation and transmission efficiency, we established Physalis wrightii and Nicotiana benthamiana source plants, containing either TICV or ToCV alone or both viruses together. Vectors were allowed to feed separately on all virus sources, as well as virus-free plants, then were transferred to young plants of both host species. Plants were tested by quantitative reverse-transcription polymerase chain reaction, and results indicated host-specific differences in accumulation by TICV and ToCV and alteration of accumulation patterns during co-infection compared with single infection. In N. benthamiana, TICV titers increased during co-infection compared with levels in single infection, while ToCV titers decreased. However, in P. wrightii, titers of both TICV and ToCV decreased during mixed infection compared with single infection, although to different degrees. Vector transmission efficiency of both viruses corresponded with virus concentration in the host in both single and mixed infections. This illustrates that Crinivirus epidemiology is impacted not only by vector transmission specificity and incidence of hosts but also by interactions between viruses and efficiency of accumulation in host plants.
Collapse
Affiliation(s)
- William M Wintermantel
- United States Department of Agriculture-Agricultural Research Service, Salinas, CA, USA.
| | | | | | | | | |
Collapse
|
45
|
Identification and characterization of a new vitivirus from grapevine. Arch Virol 2008; 153:1827-32. [DOI: 10.1007/s00705-008-0188-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
|
46
|
Tzanetakis IE, Price R, Martin RR. Nucleotide sequence of the tripartite Fragaria chiloensis cryptic virus and presence of the virus in the Americas. Virus Genes 2007; 36:267-72. [DOI: 10.1007/s11262-007-0186-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 12/05/2007] [Indexed: 12/01/2022]
|