1
|
Bekker S, Potgieter CA, van Staden V, Theron J. Investigating the Role of African Horse Sickness Virus VP7 Protein Crystalline Particles on Virus Replication and Release. Viruses 2022; 14:2193. [PMID: 36298748 PMCID: PMC9608501 DOI: 10.3390/v14102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
African horse sickness is a deadly and highly infectious disease of equids, caused by African horse sickness virus (AHSV). AHSV is one of the most economically important members of the Orbivirus genus. AHSV is transmitted by the biting midge, Culicoides, and therefore replicates in both insect and mammalian cell types. Structural protein VP7 is a highly conserved major core protein of orbiviruses. Unlike any other orbivirus VP7, AHSV VP7 is highly insoluble and forms flat hexagonal crystalline particles of unknown function in AHSV-infected cells and when expressed in mammalian or insect cells. To examine the role of AHSV VP7 in virus replication, a plasmid-based reverse genetics system was used to generate a recombinant AHSV that does not form crystalline particles. We characterised the role of VP7 crystalline particle formation in AHSV replication in vitro and found that soluble VP7 interacted with viral proteins VP2 and NS2 similarly to wild-type VP7 during infection. Interestingly, soluble VP7 was found to form uncharacteristic tubule-like structures in infected cells which were confirmed to be as a result of unique VP7-NS1 colocalisation. Furthermore, it was found that VP7 crystalline particles play a role in AHSV release and yield. This work provides insight into the role of VP7 aggregation in AHSV cellular pathogenesis and contributes toward the understanding of the possible effects of viral protein aggregation in other human virus-borne diseases.
Collapse
Affiliation(s)
- Shani Bekker
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0083, South Africa
| | - Christiaan A. Potgieter
- Deltamune (Pty) Ltd., 3 Bauhinia Street, Unit 34 Oxford Office Park, Highveld Techno Park, Centurion 0169, South Africa
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Vida van Staden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0083, South Africa
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0083, South Africa
| |
Collapse
|
2
|
Stokstad M, Coetzee P, Myrmel M, Mutowembwa P, Venter EH, Larsen S. Refined experimental design may increase the value of murine models for estimation of bluetongue virus virulence. Lab Anim 2020; 55:53-64. [PMID: 32588735 DOI: 10.1177/0023677220930056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bluetongue is a serious non-contagious vector-borne viral disease in ruminants, causing poor animal welfare and economic consequences globally. Concern has been raised about the development of novel bluetongue virus (BTV) strains and their possibly altered virulence through the process of viral reassortment. Virulence is traditionally estimated in lethal dose 50 (LD50) studies in murine models, but agreement with both in vitro and virulence in ruminants is questionable, and a refined experimental design is needed. Specific reassortants between wild-type and vaccine strains of BTV-1, -6 and -8 have previously been developed by reverse genetics. The aim of the present study was to rank the in vivo virulence of these parental and reassortant BTV strains by calculating LD50 in a murine model by using an experimental design that is new to virology: a between-patient optimised three-level response surface pathway design. The inoculation procedure was intracranial. Fifteen suckling mice were used to establish LD50 for each strain. Three parental and five reassortant virus strains were included. The LD50s varied from of 0.1 (95% confidence interval (CI) 0-0.20) to 3.3 (95% CI 2.96-3.72) tissue culture infectious dose 50/ml. The results support the hypothesis that reassortment in BTV may lead to increased virulence in mice with potential negative consequences for the natural ruminant host. The ranking showed low agreement with in vitro properties and virulence in ruminants according to existing literature. Refined design such as response surface pathway design was found suitable for use in virology, and it introduces significant ethical and scientific improvements.
Collapse
Affiliation(s)
- Maria Stokstad
- Department of Production Animal Clinical Sciences, 56625Norwegian University of Life Sciences, Norway
| | - Peter Coetzee
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, 56410University of Pretoria, South Africa
| | - Mette Myrmel
- Virology Unit, Faculty of Veterinary Medicine, 56625Norwegian University of Life Sciences, Norway
| | - Paidamwoyo Mutowembwa
- Agricultural Research Council - 71909Onderstepoort Veterinary Institute (Transboundary Animal Diseases), South Africa
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, 56410University of Pretoria, South Africa.,College of Public Health, Medical and Veterinary Sciences, 8001James Cook University, Australia
| | - Stig Larsen
- Department of Production Animal Clinical Sciences, 56625Norwegian University of Life Sciences, Norway
| |
Collapse
|
3
|
Ferreira-Venter L, Venter E, Theron J, van Staden V. Targeted mutational analysis to unravel the complexity of African horse sickness virus NS3 function in mammalian cells. Virology 2019; 531:149-161. [DOI: 10.1016/j.virol.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
|
4
|
Schade-Weskott ML, van Schalkwyk A, Koekemoer JJO. A correlation between capsid protein VP2 and the plaque morphology of African horse sickness virus in cell culture. Virus Genes 2018; 54:527-535. [PMID: 29730763 DOI: 10.1007/s11262-018-1567-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/30/2018] [Indexed: 12/29/2022]
Abstract
The attenuated live virus vaccine that is used in South Africa to protect against African horse sickness infection was developed more than 50 years ago. With the selection of the vaccine strains by cell culture passage, a correlation between the size of plaques formed in monolayer Vero cultures and attenuation of virus virulence in horses was found. The large plaque phenotype was used as an indication of cell culture adaptation and strongly correlated with attenuation of virulence in horses. There was never any investigation into the genetic causes of either the variation in plaque size, or the loss of virulence. An understanding of the underlying mechanisms of attenuation would benefit the production of a safer AHSV vaccine. To this end, the genomes of different strains of two African horse sickness isolates, producing varying plaque sizes, were compared and the differences between them identified. This comparison suggested that proteins VP2, VP3, VP5 and NS3 were most likely involved in the determination of the plaque phenotype. Comparison between genome sequences (obtained from GenBank) of low and high passage strains from two additional serotypes indicated that VP2 was the only protein with amino acid substitutions in all four serotypes. The amino acid substitutions all occurred within the same hydrophilic area, resulting in increased hydrophilicity of VP2 in the large plaque strains.
Collapse
Affiliation(s)
- Mathilde L Schade-Weskott
- Agricultural Research Council - Onderstepoort Veterinary Institute, 100 Old Soutpan Rd, Pretoria, South Africa.
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.
| | - Antoinette van Schalkwyk
- Agricultural Research Council - Onderstepoort Veterinary Institute, 100 Old Soutpan Rd, Pretoria, South Africa
| | - J J O Koekemoer
- Agricultural Research Council - Onderstepoort Veterinary Institute, 100 Old Soutpan Rd, Pretoria, South Africa
| |
Collapse
|
5
|
African horse sickness virus infects BSR cells through macropinocytosis. Virology 2016; 497:217-232. [PMID: 27497184 DOI: 10.1016/j.virol.2016.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/23/2022]
Abstract
Cellular pathways involved in cell entry by African horse sickness virus (AHSV), a member of the Orbivirus genus within the Reoviridae family, have not yet been determined. Here, we show that acidic pH is required for productive infection of BSR cells by AHSV-4, suggesting that the virus is likely internalized by an endocytic pathway. We subsequently analyzed the major endocytic routes using specific inhibitors and determined the consequences for AHSV-4 entry into BSR cells. The results indicated that virus entry is dynamin dependent, but clathrin- and lipid raft/caveolae-mediated endocytic pathways were not used by AHSV-4 to enter and infect BSR cells. Instead, binding of AHSV-4 to BSR cells stimulated uptake of a macropinocytosis-specific cargo and inhibition of Na(+)/H(+) exchangers, actin polymerization and cellular GTPases and kinases involved in macropinocytosis significantly inhibited AHSV-4 infection. Altogether, the data suggest that AHSV-4 infects BSR cells by utilizing macropinocytosis as the primary entry pathway.
Collapse
|
6
|
Feenstra F, van Gennip RGP, Schreuder M, van Rijn PA. Balance of RNA sequence requirement and NS3/NS3a expression of segment 10 of orbiviruses. J Gen Virol 2015; 97:411-421. [PMID: 26644214 DOI: 10.1099/jgv.0.000359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Orbiviruses are insect-transmitted, non-enveloped viruses with a ten-segmented dsRNA genome of which the bluetongue virus (BTV) is the prototype. Viral non-structural protein NS3/NS3a is encoded by genome segment 10 (Seg-10), and is involved in different virus release mechanisms. This protein induces specific release via membrane disruptions and budding in both insect and mammalian cells, but also the cytopathogenic release that is only seen in mammalian cells. NS3/NS3a is not essential for virus replication in vitro with BTV Seg-10 containing RNA elements essential for virus replication, even if protein is not expressed. Recently, new BTV serotypes with distinct NS3/NS3a sequence and cell tropism have been identified. Multiple studies have hinted at the importance of Seg-10 in orbivirus replication, but the exact prerequisites are still unknown. Here, more insight is obtained with regard to the needs for orbivirus Seg-10 and the balance between protein expression and RNA elements. Multiple silent mutations in the BTV NS3a ORF destabilized Seg-10, resulting in deletions and sequences originating from other viral segments being inserted, indicating strong selection at the level of RNA during replication in mammalian cells in vitro. The NS3a ORFs of other orbiviruses were successfully exchanged in BTV1 Seg-10, resulting in viable chimeric viruses. NS3/NS3a proteins in these chimeric viruses were generally functional in mammalian cells, but not in insect cells. NS3/NS3a of the novel BTV serotypes 25 and 26 affected virus release from Culicoides cells, which might be one of the reasons for their distinct cell tropism.
Collapse
Affiliation(s)
- Femke Feenstra
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - René G P van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Myrte Schreuder
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Piet A van Rijn
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, South Africa
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| |
Collapse
|
7
|
Coetzee P, Van Vuuren M, Stokstad M, Myrmel M, van Gennip RGP, van Rijn PA, Venter EH. Viral replication kinetics and in vitro cytopathogenicity of parental and reassortant strains of bluetongue virus serotype 1, 6 and 8. Vet Microbiol 2014; 171:53-65. [PMID: 24685608 DOI: 10.1016/j.vetmic.2014.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/19/2014] [Accepted: 03/03/2014] [Indexed: 01/16/2023]
Abstract
Bluetongue virus (BTV), a segmented dsRNA virus, is the causative agent of bluetongue (BT), an economically important viral haemorrhagic disease of ruminants. Bluetongue virus can exchange its genome segments in mammalian or insect cells that have been co-infected with more than one strain of the virus. This process, may potentially give rise to the generation of novel reassortant strains that may differ from parental strains in regards to their phenotypic characteristics. To investigate the potential effects of reassortment on the virus' phenotype, parental as well as reassortant strains of BTV serotype 1, 6, 8, that were derived from attenuated and wild type strains by reverse genetics, were studied in vitro for their virus replication kinetics and cytopathogenicity in mammalian (Vero) cell cultures. The results indicate that genetic reassortment can affect viral replication kinetics, the cytopathogenicity and extent/mechanism of cell death in infected cell cultures. In particular, some reassortants of non-virulent vaccine (BTV-1 and BTV-6) and virulent field origin (BTV-8) demonstrate more pronounced cytopathic effects compared to their parental strains. Some reassortant strains in addition replicated to high titres in vitro despite being composed of genome segments from slow and fast replicating parental strains. The latter result may have implications for the level of viraemia in the mammalian host and subsequent uptake and transmission of reassortant strains (and their genome segments) by Culicoides vectors. Increased rates of CPE induction could further suggest a higher virulence for reassortant strains in vivo. Overall, these findings raise questions in regards to the use of modified-live virus (MLV) vaccines and risk of reassortment in the field. To further address these questions, additional experimental infection studies using insects and/or animal models should be conducted, to determine whether these results have significant implications in vivo.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146, 0033 Oslo, Norway.
| | - Moritz Van Vuuren
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| | - Maria Stokstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146, 0033 Oslo, Norway.
| | - Mette Myrmel
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, P.O. Box 8146, 0033 Oslo, Norway.
| | - René G P van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen University, P.O. Box 65, 8200 AB, Lelystad, The Netherlands.
| | - Piet A van Rijn
- Department of Virology, Central Veterinary Institute of Wageningen University, P.O. Box 65, 8200 AB, Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabonomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| |
Collapse
|
8
|
Venter E, van der Merwe CF, Buys AV, Huismans H, van Staden V. Comparative ultrastructural characterization of African horse sickness virus-infected mammalian and insect cells reveals a novel potential virus release mechanism from insect cells. J Gen Virol 2014; 95:642-651. [PMID: 24347494 DOI: 10.1099/vir.0.060400-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
African horse sickness virus (AHSV) is an arbovirus capable of successfully replicating in both its mammalian host and insect vector. Where mammalian cells show a severe cytopathic effect (CPE) following AHSV infection, insect cells display no CPE. These differences in cell death could be linked to the method of viral release, i.e. lytic or non-lytic, that predominates in a specific cell type. Active release of AHSV, or any related orbivirus, has, however, not yet been documented from insect cells. We applied an integrated microscopy approach to compare the nanomechanical and morphological response of mammalian and insect cells to AHSV infection. Atomic force microscopy revealed plasma membrane destabilization, integrity loss and structural deformation of the entire surface of infected mammalian cells. Infected insect cells, in contrast, showed no morphological differences from mock-infected cells other than an increased incidence of circular cavities present on the cell surface. Transmission electron microscopy imaging identified a novel large vesicle-like compartment within infected insect cells, not present in mammalian cells, containing viral proteins and virus particles. Extracellular clusters of aggregated virus particles were visualized adjacent to infected insect cells with intact plasma membranes. We propose that foreign material is accumulated within these vesicles and that their subsequent fusion with the cell membrane releases entrapped viruses, thereby facilitating a non-lytic virus release mechanism different from the budding previously observed in mammalian cells. This insect cell-specific defence mechanism contributes to the lack of cell damage observed in AHSV-infected insect cells.
Collapse
Affiliation(s)
- E. Venter
- Department of Genetics, University of Pretoria, Pretoria 0002, South Africa
| | - C. F. van der Merwe
- Laboratory for Microscopy and Microanalysis, University of Pretoria, South Africa
| | - A. V. Buys
- Laboratory for Microscopy and Microanalysis, University of Pretoria, South Africa
| | - H. Huismans
- Department of Genetics, University of Pretoria, Pretoria 0002, South Africa
| | - V. van Staden
- Department of Genetics, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
9
|
van Gennip RGP, van de Water SGP, van Rijn PA. Bluetongue virus nonstructural protein NS3/NS3a is not essential for virus replication. PLoS One 2014; 9:e85788. [PMID: 24465709 PMCID: PMC3896414 DOI: 10.1371/journal.pone.0085788] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/03/2013] [Indexed: 12/27/2022] Open
Abstract
Orbiviruses form the largest genus of the family Reoviridae consisting of at least 23 different virus species. One of these is the bluetongue virus (BTV) and causes severe hemorrhagic disease in ruminants, and is transmitted by bites of Culicoides midges. BTV is a non-enveloped virus which is released from infected cells by cell lysis and/or a unique budding process induced by nonstructural protein NS3/NS3a encoded by genome segment 10 (Seg-10). Presence of both NS3 and NS3a is highly conserved in Culicoides borne orbiviruses which is suggesting an essential role in virus replication. We used reverse genetics to generate BTV mutants to study the function of NS3/NS3a in virus replication. Initially, BTV with small insertions in Seg-10 showed no CPE but after several passages these BTV mutants reverted to CPE phenotype comparable to wtBTV, and NS3/NS3a expression returned by repair of the ORF. These results show that there is a strong selection for functional NS3/NS3a. To abolish NS3 and/or NS3a expression, Seg-10 with one or two mutated start codons (mutAUG1, mutAUG2 and mutAUG1+2) were used to generate BTV mutants. Surprisingly, all three BTV mutants were generated and the respective AUGMet→GCCAla mutations were maintained. The lack of expression of NS3, NS3a, or both proteins was confirmed by westernblot analysis and immunostaining of infected cells with NS3/NS3a Mabs. Growth of mutAUG1 and mutAUG1+2 virus in BSR cells was retarded in both insect and mammalian cells, and particularly virus release from insect cells was strongly reduced. Our findings now enable research on the role of RNA sequences of Seg-10 independent of known gene products, and on the function of NS3/NS3a proteins in both types of cells as well as in the host and insect vector.
Collapse
Affiliation(s)
- René G. P. van Gennip
- Central Veterinary Institute of Wageningen UR (CVI), Department of Virology, Lelystad, The Netherlands
- * E-mail:
| | - Sandra G. P. van de Water
- Central Veterinary Institute of Wageningen UR (CVI), Department of Virology, Lelystad, The Netherlands
| | - Piet A. van Rijn
- Central Veterinary Institute of Wageningen UR (CVI), Department of Virology, Lelystad, The Netherlands
| |
Collapse
|
10
|
Shaw AE, Ratinier M, Nunes SF, Nomikou K, Caporale M, Golder M, Allan K, Hamers C, Hudelet P, Zientara S, Breard E, Mertens P, Palmarini M. Reassortment between two serologically unrelated bluetongue virus strains is flexible and can involve any genome segment. J Virol 2013; 87:543-57. [PMID: 23097432 PMCID: PMC3536370 DOI: 10.1128/jvi.02266-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/16/2012] [Indexed: 11/20/2022] Open
Abstract
Coinfection of a cell by two different strains of a segmented virus can give rise to a "reassortant" with phenotypic characteristics that might differ from those of the parental strains. Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) segmented virus and the cause of bluetongue, a major infectious disease of livestock. BTV exists as at least 26 different serotypes (BTV-1 to BTV-26). Prompted by the isolation of a field reassortant between BTV-1 and BTV-8, we systematically characterized the process of BTV reassortment. Using a reverse genetics approach, our study clearly indicates that any BTV-1 or BTV-8 genome segment can be rescued in the heterologous "backbone." To assess phenotypic variation as a result of reassortment, we examined viral growth kinetics and plaque sizes in in vitro experiments and virulence in an experimental mouse model of bluetongue disease. The monoreassortants generated had phenotypes that were very similar to those of the parental wild-type strains both in vitro and in vivo. Using a forward genetics approach in cells coinfected with BTV-1 and BTV-8, we have shown that reassortants between BTV-1 and BTV-8 are generated very readily. After only four passages in cell culture, we could not detect wild-type BTV-1 or BTV-8 in any of 140 isolated viral plaques. In addition, most of the isolated reassortants contained heterologous VP2 and VP5 structural proteins, while only 17% had homologous VP2 and VP5 proteins. Our study has shown that reassortment in BTV is very flexible, and there is no fundamental barrier to the reassortment of any genome segment. Given the propensity of BTV to reassort, it is increasingly important to have an alternative classification system for orbiviruses.
Collapse
Affiliation(s)
- Andrew E. Shaw
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maxime Ratinier
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sandro Filipe Nunes
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Marco Caporale
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Istituto G. Caporale, Teramo, Italy
| | - Matthew Golder
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn Allan
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Stéphan Zientara
- French Agency for Food, Environment and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Emmanuel Breard
- French Agency for Food, Environment and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | | | - Massimo Palmarini
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Venter E, Van Der Merwe CF, Van Staden V. Utilization of cellulose microcapillary tubes as a model system for culturing and viral infection of mammalian cells. Microsc Res Tech 2012; 75:1452-9. [PMID: 22865476 DOI: 10.1002/jemt.22111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/10/2012] [Indexed: 11/10/2022]
Abstract
Cryofixation by high-pressure freezing (HPF) and freeze substitution (FS) gives excellent preservation of intracellular membranous structures, ideal for ultrastructural investigations of virus infected cells. Conventional sample preparation methods of tissue cultured cells can however disrupt the association between neighboring cells or of viruses with the plasma membrane, which impacts upon the effectiveness whereby virus release from cells can be studied. We established a system for virus infection and transmission electron microscopy preparation of mammalian cells that allowed optimal visualization of membrane release events. African horse sickness virus (AHSV) is a nonenveloped virus that employs two different release mechanisms from mammalian cells, i.e., lytic release through a disrupted plasma membrane and a nonlytic budding-type release. Cellulose microcapillary tubes were used as support layer for culturing Vero cells. The cells grew to a confluent monolayer along the inside of the tubes and could readily be infected with AHSV. Sections of the microcapillary tubes proved easy to manipulate during the HPF procedure, showed no distortion or compression, and yielded well preserved cells in their native state. There was ample cell surface area available for visualization, which allowed detection of both types of virus release at the plasma membrane at a significantly higher frequency than when utilizing other methods. The consecutive culturing, virus infection and processing of cells within microcapillary tubes therefore represent a novel model system for monitoring intracellular virus life cycle and membrane release events, specifically suited to viruses that do not grow to high titers in tissue culture.
Collapse
Affiliation(s)
- Eudri Venter
- Department of Genetics, University of Pretoria, Pretoria 0002, South Africa
| | | | | |
Collapse
|
12
|
Coetzee P, Van Vuuren M, Stokstad M, Myrmel M, Venter EH. Bluetongue virus genetic and phenotypic diversity: towards identifying the molecular determinants that influence virulence and transmission potential. Vet Microbiol 2012; 161:1-12. [PMID: 22835527 DOI: 10.1016/j.vetmic.2012.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 06/22/2012] [Accepted: 07/02/2012] [Indexed: 12/23/2022]
Abstract
Bluetongue virus (BTV) is the prototype member of the Orbivirus genus in the family Reoviridae and is the aetiological agent of the arthropod transmitted disease bluetongue (BT) that affects both ruminant and camelid species. The disease is of significant global importance due to its economic impact and effect on animal welfare. Bluetongue virus, a dsRNA virus, evolves through a process of quasispecies evolution that is driven by genetic drift and shift as well as intragenic recombination. Quasispecies evolution coupled with founder effect and evolutionary selective pressures has over time led to the establishment of genetically distinct strains of the virus in different epidemiological systems throughout the world. Bluetongue virus field strains may differ substantially from each other with regards to their phenotypic properties (i.e. virulence and/or transmission potential). The intrinsic molecular determinants that influence the phenotype of BTV have not clearly been characterized. It is currently unclear what contribution each of the viral genome segments have in determining the phenotypic properties of the virus and it is also unknown how genetic variability in the individual viral genes and their functional domains relate to differences in phenotype. In order to understand how genetic variation in particular viral genes could potentially influence the phenotypic properties of the virus; a closer understanding of the BTV virion, its encoded proteins and the evolutionary mechanisms that shape the diversity of the virus is required. This review provides a synopsis of these issues and highlights some of the studies that have been conducted on BTV and the closely related African horse sickness virus (AHSV) that have contributed to ongoing attempts to identify the molecular determinants that influence the virus' phenotype. Different strategies that can be used to generate BTV mutants in vitro and methods through which the causality between particular genetic modifications and changes in phenotype may be determined are also described. Finally examples are highlighted where a clear understanding of the molecular determinants that influence the phenotype of the virus may have contributed to risk assessment and mitigation strategies during recent outbreaks of BT in Europe.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
| | | | | | | | | |
Collapse
|