1
|
Porcelli S, Heckmann A, Deshuillers PL, Wu-Chuang A, Galon C, Mateos-Hernandez L, Rakotobe S, Canini L, Rego ROM, Simo L, Lagrée AC, Cabezas-Cruz A, Moutailler S. Co-infection dynamics of B. afzelii and TBEV in C3H mice: insights and implications for future research. Infect Immun 2024; 92:e0024924. [PMID: 38990046 PMCID: PMC11320977 DOI: 10.1128/iai.00249-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Ticks are important vectors of disease, particularly in the context of One Health, where tick-borne diseases (TBDs) are increasingly prevalent worldwide. TBDs often involve co-infections, where multiple pathogens co-exist in a single host. Patients with chronic Lyme disease often have co-infections with other bacteria or parasites. This study aimed to create a co-infection model with Borrelia afzelii and tick-borne encephalitis virus (TBEV) in C3H mice and to evaluate symptoms, mortality, and pathogen level compared to single infections. Successful co-infection of C3H mice with B. afzelii and TBEV was achieved. Outcomes varied, depending on the timing of infection. When TBEV infection followed B. afzelii infection by 9 days, TBEV symptoms worsened and virus levels increased. Conversely, mice infected 21 days apart with TBEV showed milder symptoms and lower mortality. Simultaneous infection resulted in mild symptoms and no deaths. However, our model did not effectively infect ticks with TBEV, possibly due to suboptimal dosing, highlighting the challenges of replicating natural conditions. Understanding the consequences of co-infection is crucial, given the increasing prevalence of TBD. Co-infected individuals may experience exacerbated symptoms, highlighting the need for a comprehensive understanding through refined animal models. This study advances knowledge of TBD and highlights the importance of exploring co-infection dynamics in host-pathogen interactions.
Collapse
Affiliation(s)
- Stefania Porcelli
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Aurélie Heckmann
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Pierre Lucien Deshuillers
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Cleménce Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Lourdes Mateos-Hernandez
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sabine Rakotobe
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Laetitia Canini
- EPIMIM, Laboratoire de Santé Animale, Anses, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Ryan O. M. Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Ladislav Simo
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Anne-Claire Lagrée
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
2
|
Porcelli S, Heckmann A, Lagrée AC, Galon C, Moutailler S, Deshuillers PL. Exploring the Susceptibility of C3H Mice to Tick-Borne Encephalitis Virus Infection: Implications for Co-Infection Models and Understanding of the Disease. Viruses 2023; 15:2270. [PMID: 38005946 PMCID: PMC10674427 DOI: 10.3390/v15112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Ticks and tick-borne diseases (TBDs) are increasingly recognized as a critical One Health concern. Tick-borne encephalitis (TBE), a severe neuro infection caused by the tick-borne encephalitis virus (TBEV), has emerged as a significant global public health threat. Laboratory animals, particularly mice, have played a pivotal role in advancing our understanding of TBD pathogenesis. Notably, BALB/c mice have been employed as models due to their heightened susceptibility to TBEV. However, the use of C3H mice, valued for other tick-borne pathogens, has remained unexplored for TBEV until now. This study aimed to assess the susceptibility of C3H mice to TBEV infection, laying the groundwork for future co-infection models involving TBEV and Borrelia. Experiments revealed that C3H mice are susceptible to TBEV infection through subcutaneous inoculation. While 102 PFU/mouse appeared necessary for full infection, 103 PFU/mouse induced consistent symptoms. However, subsequent assessment of ticks' acquisition of TBEV from infected mice met with limited success, raising questions about optimal infectious doses for natural infection. These findings suggest the potential of C3H mice for studying TBEV and co-infections with other pathogens, particularly Borrelia. Further exploration of the interplay between these pathogens, their transmission dynamics, and disease severity could enhance prevention and control strategies.
Collapse
Affiliation(s)
| | | | | | | | - Sara Moutailler
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, F-94700 Maisons-Alfort, France; (S.P.); (A.H.); (A.-C.L.); (C.G.)
| | - Pierre Lucien Deshuillers
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, F-94700 Maisons-Alfort, France; (S.P.); (A.H.); (A.-C.L.); (C.G.)
| |
Collapse
|
3
|
Frank JC, Song BH, Lee YM. Mice as an Animal Model for Japanese Encephalitis Virus Research: Mouse Susceptibility, Infection Route, and Viral Pathogenesis. Pathogens 2023; 12:pathogens12050715. [PMID: 37242385 DOI: 10.3390/pathogens12050715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Japanese encephalitis virus (JEV), a zoonotic flavivirus, is principally transmitted by hematophagous mosquitoes, continually between susceptible animals and incidentally from those animals to humans. For almost a century since its discovery, JEV was geographically confined to the Asia-Pacific region with recurrent sizable outbreaks involving wildlife, livestock, and people. However, over the past decade, it has been detected for the first time in Europe (Italy) and Africa (Angola) but has yet to cause any recognizable outbreaks in humans. JEV infection leads to a broad spectrum of clinical outcomes, ranging from asymptomatic conditions to self-limiting febrile illnesses to life-threatening neurological complications, particularly Japanese encephalitis (JE). No clinically proven antiviral drugs are available to treat the development and progression of JE. There are, however, several live and killed vaccines that have been commercialized to prevent the infection and transmission of JEV, yet this virus remains the main cause of acute encephalitis syndrome with high morbidity and mortality among children in the endemic regions. Therefore, significant research efforts have been directed toward understanding the neuropathogenesis of JE to facilitate the development of effective treatments for the disease. Thus far, multiple laboratory animal models have been established for the study of JEV infection. In this review, we focus on mice, the most extensively used animal model for JEV research, and summarize the major findings on mouse susceptibility, infection route, and viral pathogenesis reported in the past and present, and discuss some unanswered key questions for future studies.
Collapse
Affiliation(s)
- Jordan C Frank
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
4
|
Benzarti E, Murray KO, Ronca SE. Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection. Viruses 2023; 15:v15030806. [PMID: 36992514 PMCID: PMC10053297 DOI: 10.3390/v15030806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can lead to encephalitis and death in susceptible hosts. Cytokines play a critical role in inflammation and immunity in response to WNV infection. Murine models provide evidence that some cytokines offer protection against acute WNV infection and assist with viral clearance, while others play a multifaceted role WNV neuropathogenesis and immune-mediated tissue damage. This article aims to provide an up-to-date review of cytokine expression patterns in human and experimental animal models of WNV infections. Here, we outline the interleukins, chemokines, and tumor necrosis factor superfamily ligands associated with WNV infection and pathogenesis and describe the complex roles they play in mediating both protection and pathology of the central nervous system during or after virus clearance. By understanding of the role of these cytokines during WNV neuroinvasive infection, we can develop treatment options aimed at modulating these immune molecules in order to reduce neuroinflammation and improve patient outcomes.
Collapse
Affiliation(s)
- Emna Benzarti
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kristy O Murray
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shannon E Ronca
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Siddqui G, Yadav N, Vishwakarma P, Thomas J, Khatri R, Kumar A, Tripathi A, Pramod RK, Vrati S, Samal S. Japanese encephalitis virus induces vasodilation and severe lethality in adult and aged AG129 mice lacking alpha, beta and gamma interferon receptors. Virus Res 2022; 319:198884. [PMID: 35931226 DOI: 10.1016/j.virusres.2022.198884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 10/16/2022]
Abstract
Japanese encephalitis virus (JEV) is a single-stranded positive-sense RNA virus belonging to the Flaviviridae family. The JEV is the leading cause of viral encephalitis in children and the elderly which is spread by mosquitoes. JEV infection has been established in different animal models such as mouse, hamster, guinea pig, swine, rat, monkey, rabbit by using the different routes of inoculations. Here, we have shown that the alpha/beta and gamma -receptor deficient AG129 mouse induces fatal encephalitis in both young and aged old mice, when challenged with high titer JEV Indian clinical isolate by both intraperitoneal and intradermal route. The JEV infected AG129 mouse have shown neurological symptoms, JEV-induced pathological features and supported high level viral replication. Additionally, administration of JEV in AG129 mice resulted in the induction of severe peripheral vascular permeability, which is a major hall mark of Dengue infection but not shown in JEV. Taken together, our results demonstrate interferon α/β and γ receptors knock out AG129 mouse does not need adaptation of JEV clinical isolates and could be is a promising JEV challenge mouse model by mimicking the natural intradermal route of administration for rapid screening of novel antivirals and vaccines.
Collapse
Affiliation(s)
- Gazala Siddqui
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Naveen Yadav
- Laboratory of Medicine and Pathology, School of Medicine, University of Washington, South Lake Union, 850 Republican St., Seattle, Washington 98109
| | - Preeti Vishwakarma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Jolly Thomas
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Amit Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Aarti Tripathi
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ravindran Kumar Pramod
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | | | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
6
|
Park SL, Huang YJS, Vanlandingham DL. Re-Examining the Importance of Pigs in the Transmission of Japanese Encephalitis Virus. Pathogens 2022; 11:575. [PMID: 35631096 PMCID: PMC9146973 DOI: 10.3390/pathogens11050575] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is the leading cause of pediatric encephalitis in Southeast Asia. The enzootic transmission of JEV involves two types of amplifying hosts, swine and avian species. The involvement of pigs in the transmission cycle makes JEV a unique pathogen because human Japanese encephalitis cases are frequently linked to the epizootic spillover from pigs, which can not only develop viremia to sustain transmission but also signs of neurotropic and reproductive disease. The existing knowledge of the epidemiology of JEV largely suggests that viremic pigs are a source of infectious viruses for competent mosquito species, especially Culex tritaeniorhynchus in the endemic regions. However, several recently published studies that applied molecular detection techniques to the characterization of JEV pathogenesis in pigs described the shedding of JEV through multiple routes and persistent infection, both of which have not been reported in the past. These findings warrant a re-examination of the role that pigs are playing in the transmission and maintenance of JEV. In this review, we summarize discoveries on the shedding of JEV during the course of infection and analyze the available published evidence to discuss the possible role of the vector-free JEV transmission route among pigs in viral maintenance.
Collapse
Affiliation(s)
- So Lee Park
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA; (S.L.P.); (Y.-J.S.H.)
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA; (S.L.P.); (Y.-J.S.H.)
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA; (S.L.P.); (Y.-J.S.H.)
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
7
|
Antiviral drug research for Japanese encephalitis: an updated review. Pharmacol Rep 2022; 74:273-296. [PMID: 35182390 PMCID: PMC8964565 DOI: 10.1007/s43440-022-00355-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Japanese encephalitis (JE) caused by the Japanese encephalitis virus (JEV) is one of Asia's most common viral encephalitis. JEV is a flavivirus, common in rural and sub-urban regions of Asian countries. Although only 1% of JEV-infected individuals develop JE, there is a 20-30% chance of death among these individuals and possible neurological sequelae post-infection. No licensed anti-JE drugs are currently available, despite extensive efforts to develop them. Literature search was performed using databases such as PubMed Central, Google Scholar, Wiley Online Library, etc. using keywords such as Japanese encephalitis virus, antiviral drugs, antiviral drug screening, antiviral drug targets, etc. From around 230 papers/abstracts and research reviews retrieved and reviewed for this study, approximately 180 most relevant and important ones have been cited. Different approaches in drug testing and various antiviral drug targets explored so far have been thoroughly searched from the literature and compiled, besides addressing the future perspectives of the antiviral drug development strategies. Although the development of effective anti-JE drugs is an urgent issue, only supportive care is currently available. Recent advancements in understanding the biology of infection and new drug targets have been promising improvements. Despite hindrances such as the unavailability of a proper drug delivery system or a treatment regimen irrespective of the stage of infection, several promising anti-JE candidate molecules are in different phases of clinical trials. Nonetheless, efficient therapy against JEV is expected to be achieved with drug combinations and a highly targeted drug delivery system soon.
Collapse
|
8
|
Rocha RF, Del Sarto JL, Gomes GF, Gonçalves MP, Rachid MA, Smetana JHC, Souza DG, Teixeira MM, Marques RE. Type I interferons are essential while type II interferon is dispensable for protection against St. Louis encephalitis virus infection in the mouse brain. Virulence 2021; 12:244-259. [PMID: 33410731 PMCID: PMC7808420 DOI: 10.1080/21505594.2020.1869392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 01/24/2023] Open
Abstract
St. Louis encephalitis virus (SLEV) is a neglected mosquito-borne flavivirus that causes severe neurological disease in humans. SLEV replication in the central nervous system (CNS) induces the local production of interferons (IFNs), which are attributed to host protection. The antiviral response to SLEV infection in the CNS is not completely understood, which led us to characterize the roles of IFNs using mouse models of St. Louis encephalitis. We infected mice deficient in type I IFN receptor (ABR-/-) or deficient in Type II IFN (IFNγ-/-) and assessed the contribution of each pathway to disease development. We found that type I and II IFNs play different roles in SLEV infection. Deficiency in type I IFN signaling was associated to an early and increased mortality, uncontrolled SLEV replication and impaired ISG expression, leading to increased proinflammatory cytokine production and brain pathology. Conversely, IFNγ-/- mice were moderately resistant to SLEV infection. IFNγ deficiency caused no changes to viral load or SLEV-induced encephalitis and did not change the expression of ISGs in the brain. We found that type I IFN is essential for the control of SLEV replication whereas type II IFN was not associated with protection in this model.
Collapse
Affiliation(s)
- Rebeca Froes Rocha
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana L. Del Sarto
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Giovanni F. Gomes
- Laboratório de Neurofarmacologia, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mariana P. Gonçalves
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Milene A. Rachid
- Laboratório de Apoptose, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana H. C. Smetana
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Daniele G. Souza
- Laboratório de Interação Microrganismo-Hospedeiro, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
9
|
An Advax-Adjuvanted Inactivated Cell-Culture Derived Japanese Encephalitis Vaccine Induces Broadly Neutralising Anti-Flavivirus Antibodies, Robust Cellular Immunity and Provides Single Dose Protection. Vaccines (Basel) 2021; 9:vaccines9111235. [PMID: 34835166 PMCID: PMC8618450 DOI: 10.3390/vaccines9111235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 01/24/2023] Open
Abstract
ccJE+Advax is an inactivated cell culture Japanese encephalitis (JE) vaccine formulated with Advax, a novel polysaccharide adjuvant based on delta inulin. This vaccine has previously shown promise in murine and equine studies and the current study sought to better understand its mechanism of action and assess the feasibility of single dose vaccine protection. Mice immunised with ccJE+Advax had higher serum neutralisation titres than those immunised with ccJE alone or with alum adjuvant. ccJE+Advax induced extraordinarily broad cross-neutralising antibodies against multiple flaviviruses including West Nile virus (WNV), Murray Valley encephalitis virus (MVEV), St Louis encephalitis virus (SLEV) and Dengue virus-1 and -2 (DENV-1 and -2). Notably, the DENV-2 cross-neutralising antibodies from ccJE+Advax immunised mice uniquely had no DENV-2 antibody-dependent infection enhancement (ADIE) activity, in contrast to high ADIE activity seen with DENV-1 cross-reactive antibodies induced by mbJE or ccJE alone or with alum adjuvant. JEV-stimulated splenocytes from ccJE+Advax immunised mice showed increased IL-17 and IFN-γ production, consistent with a mixed Th1 and Th17 response, whereas ccJE-alum was associated with production of mainly Th2 cytokines. In a mouse lethal challenge study against highly virulent JaTH160 JEV strain, ccJE+Advax conferred complete protection in a two-dose schedule with 50 ng of vaccine antigen and near complete protection after a single 200 ng dose of vaccine antigen. There is an ongoing lack of human vaccines against particular flaviviruses, including WNV, SLEV and MVEV. Given its ability to provide single-dose JEV protection and induce broadly neutralising antibodies devoid of ADIE activity, ccJE+Advax vaccine could be useful in situations where rapid protection is desirable, e.g., during a local outbreak or for use in travellers or armies requiring rapid deployment to JEV endemic regions.
Collapse
|
10
|
Tripathi A, Banerjee A, Vrati S. Development and characterization of an animal model of Japanese encephalitis virus infection in adolescent C57BL/6 mouse. Dis Model Mech 2021; 14:dmm049176. [PMID: 34447981 PMCID: PMC8543065 DOI: 10.1242/dmm.049176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022] Open
Abstract
A mouse-adapted isolate of Japanese encephalitis virus (JEV), designated as JEV-S3, was generated by serially passaging the P20778 strain of the virus in 3- to 4-week-old C57BL/6 mice. Blood-brain barrier leakage was evident in JEV-S3-infected mice, in which viral antigens and RNA were consistently demonstrated in the brain, along with infiltration of activated immune cells, as evidenced by an increased CD45+CD11b+ cell population. Histopathology studies showed the presence of perivascular cuffing, haemorrhage and necrotic foci in the virus-infected brain, conforming to the pathological changes seen in the brain of JEV-infected patients. Mass spectrometry studies characterized the molecular events leading to brain inflammation in the infected mice. Notably, a significant induction of inflammatory cytokines, such as IFNγ, IL6, TNFα and TGFβ, was observed. Further, genome sequencing of the JEV-S3 isolate identified the mutations selected during the mouse passage of the virus. Overall, we present an in-depth characterization of a robust and reproducible mouse model of JEV infection. The JEV-S3 isolate will be a useful tool to screen antivirals and study virus pathogenesis in the adolescent mouse model.
Collapse
MESH Headings
- Adaptation, Physiological
- Aging/pathology
- Amino Acid Substitution
- Animals
- Antiviral Agents/pharmacology
- Astrocytes/drug effects
- Astrocytes/pathology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/pathology
- Caspases/metabolism
- Cell Line
- Disease Models, Animal
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/pathogenicity
- Encephalitis Virus, Japanese/physiology
- Encephalitis, Japanese/complications
- Encephalitis, Japanese/genetics
- Encephalitis, Japanese/pathology
- Encephalitis, Japanese/virology
- Gene Expression Regulation/drug effects
- Genome, Viral
- Inflammation/complications
- Inflammation/pathology
- Interferons/pharmacology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/pathology
- Mutation/genetics
- Virulence/drug effects
- Virus Replication/drug effects
- Virus Replication/physiology
- Mice
Collapse
Affiliation(s)
- Aarti Tripathi
- Infection and Immunology, Translational Health Science and Technology Institute, Faridabad 121001, India
| | - Arup Banerjee
- Infection and Immunology, Translational Health Science and Technology Institute, Faridabad 121001, India
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, India
| | - Sudhanshu Vrati
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, India
| |
Collapse
|
11
|
Precise localization and dynamic distribution of Japanese encephalitis virus in the rain nuclei of infected mice. PLoS Negl Trop Dis 2021; 15:e0008442. [PMID: 34153060 PMCID: PMC8216507 DOI: 10.1371/journal.pntd.0008442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a pathogen that causes severe vector-borne zoonotic diseases, thereby posing a serious threat to human health. Although JEV is potentially neurotropic, its pathogenesis and distribution in the host have not been fully elucidated. In this study, an infected mouse model was established using a highly virulent P3 strain of JEV. Immunohistochemistry and in situ hybridization, combined with anatomical imaging of the mouse brain, were used to dynamically localize the virus and construct three-dimensional (3D) images. Consequently, onset of mild clinical signs occurred in some mice at 3.5 d post JEV infection, while most mice displayed typical neurological signs at 6 d post-infection (dpi). Moreover, brain pathology revealed typical changes associated with non-suppurative encephalitis, which lasted up to 8 d. The earliest detection of viral antigen was achieved at 3 dpi in the thalamus and medulla oblongata. At 6 dpi, the positive viral antigen signals were mainly distributed in the cerebral cortex, olfactory area, basal ganglia, thalamus, and brainstem regions in mice. At 8 dpi, the antigen signals gradually decreased, and the localization of JEV tended to concentrate in the cerebrum and thalamus, while no viral antigen was detected in the brain at 21 dpi. In this model, the viral antigen was first expressed in the reticular thalamic nucleus (Rt), and the virus content is relatively stable. The expression of the viral antigen in the hippocampal CA2 region, the anterior olfactory nucleus, and the deep mesencephalic nucleus was high and persistent. The 3D images showed that viral signals were mostly concentrated in the parietal cortex, occipital lobe, and hippocampus, near the mid-sagittal plane. In the early stages of infection in mice, a large number of viral antigens were detected in denatured and necrotic neurons, suggesting that JEV directly causes neuronal damage. From the time of its entry, JEV is widely distributed in the central nervous system thereby causing extensive damage. There are many theories regarding the mechanism of entry of the Japanese encephalitis virus (JEV) into the nervous system. The inflammation cascade effect, resulting from the virus entering the central nervous system (CNS), is a major cause of brain injury in JEV patients. In this study, we found that the earliest point at which viral antigen was detected in the brain tissues following peripheral infection of JEV was at 3d. The virus was located in the nerve nuclei of the thalamus and medulla oblongata and, subsequently, viral antigens were found in the anterior olfactory nucleus. At 4 dpi, the virus was extensively distributed in the brain tissue, and at 6 d -8 d the viral antigen was widely distributed and highly concentrated. The viral concentration detected in the ventromedial thalamic nucleus (VM), deep mesencephalic nucleus (DpMe), and motor trigeminal nucleus (Mo5) remained high throughout the experiment. The hypertrophic nerve nuclei of JEV include the early anterior olfactory (AO) nucleus and the late hippocampal CA2 region. In the early stages of viral infection (6 dpi), the changes in viral antigen concentration and mortality rate were consistent. It was hypothesized that this stage represents the activation of viral proliferation and brain inflammation.
Collapse
|
12
|
Hermance ME, Hart CE, Esterly AT, Reynolds ES, Bhaskar JR, Thangamani S. Development of a small animal model for deer tick virus pathogenesis mimicking human clinical outcome. PLoS Negl Trop Dis 2020; 14:e0008359. [PMID: 32542017 PMCID: PMC7316340 DOI: 10.1371/journal.pntd.0008359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 06/25/2020] [Accepted: 05/04/2020] [Indexed: 01/06/2023] Open
Abstract
Powassan virus (POWV) is a tick-borne flavivirus that encompasses two genetic lineages, POWV (Lineage I) and deer tick virus (DTV, Lineage II). In recent years, the incidence of reported POWV disease cases has increased, coupled with an expanded geographic range of the DTV tick vector, Ixodes scapularis. POWV and DTV are serologically indistinguishable, and it is not known whether clinical manifestations, pathology, or disease outcome differ between the two viruses. Six-week-old male and female BALB/c mice were footpad-inoculated with DTV doses ranging from 101 to 105 FFU. Dose-independent mortality, morbidity, and organ viral loads were observed for mice inoculated with sequentially increasing doses of DTV. By study completion, all surviving mice had cleared their viremias but detectable levels of negative-sense DTV RNA were present in the brain, indicating viral persistence of infectious DTV in the central nervous system. For mice that succumbed to disease, neuropathology revealed meningoencephalitis characterized by microscopic lesions with widespread distribution of viral RNA in the brain. These findings, coupled with the rapid onset of neurological signs of disease and high viral titers in nervous tissue, highlight the neurotropism of DTV in this mouse model. Additionally, disease outcome for DTV-infected mice was not affected by sex, as males and females were equally susceptible to disease. This is the first study to comprehensively characterize the clinical disease outcome in a small animal model across a spectrum of POWV/DTV infection doses. Here, we developed a small animal model for DTV pathogenesis that mimics the manifestations of POWV disease in humans. Since it is currently not known whether DTV and POWV differ in their capacity to cause human disease, the animal model detailed in our study could be utilized in future comparative pathogenesis studies, or as a platform for testing the efficacy of vaccines, and anti-virals. Powassan virus (POWV) is a tick-borne flavivirus that can result in a fatal encephalitic disease in humans. Although POWV is closely related to deer tick virus (DTV), each virus is maintained in nature by unique transmission cycles. Because POWV and DTV are serologically indistinguishable and must be differentiated by genetic sequence analysis, an unknown portion of previously reported POWV cases may have actually been DTV cases. Overall, the scientific literature is sparse when it comes to describing confirmed DTV cases or the neurovirulence and clinical outcome for DTV-infected mice. Our study is the first to comprehensively characterize the survival rates, timeline of clinical disease, and tissue distribution of virus for mice infected with a range of DTV doses. Signs of disease in the DTV-infected mice mimicked the course of human clinical disease where neurological manifestations were preceded by a generalized febrile illness. Sequentially increasing doses of DTV did not elicit increased mortality rates or organ viral loads, which suggests that in this mouse model, virus infection and replication in tissues is independent of the infection dose. Our findings support the use of this mouse model in future DTV pathogenesis studies.
Collapse
Affiliation(s)
- Meghan E. Hermance
- SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Sciences, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Charles E. Hart
- SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Sciences, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Allen T. Esterly
- SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Sciences, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Erin S. Reynolds
- SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Sciences, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Jahnavi R. Bhaskar
- SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Sciences, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Saravanan Thangamani
- SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Sciences, SUNY Upstate Medical University, Syracuse, New York, United States of America
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Sethi M, Das T, Tomar N, John JK, Dubal ZB, Rajak KK, Singh R, Saikumar G. Japanese encephalitis virus-induced neuropathology in mouse model infected through the conjunctival route. Indian J Med Res 2020; 150:498-503. [PMID: 31939394 PMCID: PMC6977363 DOI: 10.4103/ijmr.ijmr_2078_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background & objectives: Mouse is a preferred animal model for studying pathogenesis of Japanese encephalitis virus (JEV) infections, and different routes of inoculation have been tried. Some neurotropic viruses can reach the brain following infection through ocular route. This study was undertaken to establish JEV-induced clinical disease in mouse model through conjunctival route and document the neuropathological effects. Methods: Ten two-week old Swiss albino mice were inoculated with 5 μl Vero cell cultured virus containing 104.7 TCID50 JEV through conjunctival route. Clinical signs of mice were observed twice daily. After necropsy examination, different organs including eyes and olfactory bulbs were collected for histopathological examination, quantification of viral copy number and antigen by real-time TaqMan assay and immunohistochemistry, respectively. Results: Infected mice showed characteristic clinical signs of JE by 4 days post-infection (dpi). Histopathological lesions in brain included perivascular cuffing by mononuclear cells, focal gliosis, necrosis of neurons and neuronophagia and astrocytosis in the cerebrum, cerebellum and the brainstem. JEV viral load was highest in the brain followed by intestine, heart, liver, spleen, lung and kidney. JEV antigen was detected in the bipolar and ganglion cells of the retina and in the mitral cells and periglomerular cells of olfactory bulb and other parts of the brain. Interpretation & conclusions: JEV infection in mice through conjunctival route produced characteristic clinical signs of the disease and neuropathological lesions. Demonstration of JEV antigen in association with neuropathological lesions in the central nervous system and neuronal cells of the eye showed that conjunctival route could be an effective alternate route for virus invasion into the brain. These findings have biosafety implications for researchers, veterinary practitioners and pig farmers.
Collapse
Affiliation(s)
- Menaka Sethi
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Tareni Das
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Neelam Tomar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Jeny K John
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Zunjar B Dubal
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kaushal K Rajak
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - G Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
14
|
Benzarti E, Sarlet M, Franssen M, Desmecht D, Schmidt-Chanasit J, Garigliany MM. New Insights into the Susceptibility of Immunocompetent Mice to Usutu Virus. Viruses 2020; 12:E189. [PMID: 32046265 PMCID: PMC7077335 DOI: 10.3390/v12020189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 01/08/2023] Open
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus that shares many similarities with the closely related West Nile virus (WNV) in terms of ecology and clinical manifestations. Initially distributed in Africa, USUV emerged in Italy in 1996 and managed to co-circulate with WNV in many European countries in a similar mosquito-bird life cycle. The rapid geographic spread of USUV, the seasonal mass mortalities it causes in the European avifauna, and the increasing number of infections with neurological disease both in healthy and immunocompromised humans has stimulated interest in infection studies to delineate USUV pathogenesis. Here, we assessed the pathogenicity of two USUV isolates from a recent Belgian outbreak in immunocompetent mice. The intradermal injection of USUV gave rise to disorientation and paraplegia and was associated with neuronal death in the brain and spinal cord in a single mouse. Intranasal inoculation of USUV could also establish the infection; viral RNA was detected in the brain 15 days post-infection. Overall, this pilot study probes the suitability of this murine model for the study of USUV neuroinvasiveness and the possibility of direct transmission in mammals.
Collapse
Affiliation(s)
- Emna Benzarti
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (M.S.); (M.F.); (D.D.)
| | - Michaël Sarlet
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (M.S.); (M.F.); (D.D.)
| | - Mathieu Franssen
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (M.S.); (M.F.); (D.D.)
| | - Daniel Desmecht
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (M.S.); (M.F.); (D.D.)
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359 Hamburg, Germany;
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20354 Hamburg, Germany
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (M.S.); (M.F.); (D.D.)
| |
Collapse
|
15
|
Chesnut M, Muñoz LS, Harris G, Freeman D, Gama L, Pardo CA, Pamies D. In vitro and in silico Models to Study Mosquito-Borne Flavivirus Neuropathogenesis, Prevention, and Treatment. Front Cell Infect Microbiol 2019; 9:223. [PMID: 31338335 PMCID: PMC6629778 DOI: 10.3389/fcimb.2019.00223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023] Open
Abstract
Mosquito-borne flaviviruses can cause disease in the nervous system, resulting in a significant burden of morbidity and mortality. Disease models are necessary to understand neuropathogenesis and identify potential therapeutics and vaccines. Non-human primates have been used extensively but present major challenges. Advances have also been made toward the development of humanized mouse models, but these models still do not fully represent human pathophysiology. Recent developments in stem cell technology and cell culture techniques have allowed the development of more physiologically relevant human cell-based models. In silico modeling has also allowed researchers to identify and predict transmission patterns and discover potential vaccine and therapeutic candidates. This review summarizes the research on in vitro and in silico models used to study three mosquito-borne flaviviruses that cause neurological disease in humans: West Nile, Dengue, and Zika. We also propose a roadmap for 21st century research on mosquito-borne flavivirus neuropathogenesis, prevention, and treatment.
Collapse
Affiliation(s)
- Megan Chesnut
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Laura S. Muñoz
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Neuroviruses Emerging in the Americas Study, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georgina Harris
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dana Freeman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Carlos A. Pardo
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Neuroviruses Emerging in the Americas Study, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David Pamies
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
North American domestic pigs are susceptible to experimental infection with Japanese encephalitis virus. Sci Rep 2018; 8:7951. [PMID: 29784969 PMCID: PMC5962597 DOI: 10.1038/s41598-018-26208-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/03/2018] [Indexed: 11/22/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is capable of causing encephalitic diseases in children. While humans can succumb to severe disease, the transmission cycle is maintained by viremic birds and pigs in endemic regions. Although JEV is regarded as a significant threat to the United States (U.S.), the susceptibility of domestic swine to JEV infection has not been evaluated. In this study, domestic pigs from North America were intravenously challenged with JEV to characterize the pathological outcomes. Systemic infection followed by the development of neutralizing antibodies were observed in all challenged animals. While most clinical signs were limited to nonspecific symptoms, virus dissemination and neuroinvasion was observed at the acute phase of infection. Detection of infectious viruses in nasal secretions suggest infected animals are likely to promote the vector-free transmission of JEV. Viral RNA present in tonsils at 28 days post infection demonstrates the likelihood of persistent infection. In summary, our findings indicate that domestic pigs can potentially become amplification hosts in the event of an introduction of JEV into the U.S. Vector-free transmission to immunologically naïve vertebrate hosts is also likely through nasal shedding of infectious viruses.
Collapse
|
17
|
Miller LJ, Nasar F, Schellhase CW, Norris SL, Kimmel AE, Valdez SM, Wollen-Roberts SE, Shamblin JD, Sprague TR, Lugo-Roman LA, Jarman RG, Yoon IK, Alera MT, Bavari S, Pitt MLM, Haddow AD. Zika Virus Infection in Syrian Golden Hamsters and Strain 13 Guinea Pigs. Am J Trop Med Hyg 2018; 98:864-867. [PMID: 29405107 DOI: 10.4269/ajtmh.17-0686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To evaluate potential immunocompetent small animal models of Zika virus (ZIKV) infection, we inoculated Syrian golden hamsters (subcutaneously or intraperitoneally) and strain 13 guinea pigs (intraperitoneally) with Senegalese ZIKV strain ArD 41525 or Philippines ZIKV strain CPC-0740. We did not detect viremia in hamsters inoculated subcutaneously with either virus strain, although some hamsters developed virus neutralizing antibodies. However, we detected statistically significant higher viremias (P = 0.0285) and a higher median neutralization titer (P = 0.0163) in hamsters inoculated intraperitoneally with strain ArD 41525 compared with strain CPC-0740. Furthermore, some hamsters inoculated with strain ArD 41525 displayed mild signs of disease. By contrast, strain 13 guinea pigs inoculated intraperitoneally with either strain did not have detectable viremias and less than half developed virus neutralizing antibodies. Our results support the use of the Syrian golden hamster intraperitoneal model to explore phenotypic variation between ZIKV strains.
Collapse
Affiliation(s)
- Lynn J Miller
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Veterinary Medicine Division, Fort Detrick, Maryland
| | - Farooq Nasar
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Fort Detrick, Maryland
| | - Christopher W Schellhase
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Pathology Division, Fort Detrick, Maryland
| | - Sarah L Norris
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Biostatistics Division, Fort Detrick, Maryland
| | - Adrienne E Kimmel
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Fort Detrick, Maryland
| | - Stephanie M Valdez
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Fort Detrick, Maryland
| | - Suzanne E Wollen-Roberts
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Fort Detrick, Maryland
| | - Joshua D Shamblin
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Fort Detrick, Maryland
| | - Thomas R Sprague
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Fort Detrick, Maryland
| | - Luis A Lugo-Roman
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Veterinary Medicine Division, Fort Detrick, Maryland
| | - Richard G Jarman
- Walter Reed Army Institute of Research, Virology Division, Silver Spring, Maryland
| | - In-Kyu Yoon
- International Vaccine Institute (IVI), Seoul, Republic of Korea
| | - Maria T Alera
- Philippines-AFRIMS Virology Research Unit (PARVU), Cebu City, Philippines
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Fort Detrick, Maryland
| | - M Louise M Pitt
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Fort Detrick, Maryland
| | - Andrew D Haddow
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Fort Detrick, Maryland
| |
Collapse
|
18
|
De Novo Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case. mSphere 2017; 2:mSphere00190-17. [PMID: 28529976 PMCID: PMC5437134 DOI: 10.1128/mspheredirect.00190-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022] Open
Abstract
The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus’s ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses. Zika virus (ZIKV) has recently emerged and is the etiological agent of congenital Zika syndrome (CZS), a spectrum of congenital abnormalities arising from neural tissue infections in utero. Herein, we describe the de novo generation of a new ZIKV isolate, ZIKVNatal, using a modified circular polymerase extension reaction protocol and sequence data obtained from a ZIKV-infected fetus with microcephaly. ZIKVNatal thus has no laboratory passage history and is unequivocally associated with CZS. ZIKVNatal could be used to establish a fetal brain infection model in IFNAR−/− mice (including intrauterine growth restriction) without causing symptomatic infections in dams. ZIKVNatal was also able to be transmitted by Aedes aegypti mosquitoes. ZIKVNatal thus retains key aspects of circulating pathogenic ZIKVs and illustrates a novel methodology for obtaining an authentic functional viral isolate by using data from deep sequencing of infected tissues. IMPORTANCE The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus’s ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses.
Collapse
|
19
|
Pérez-Ramírez E, Llorente F, del Amo J, Fall G, Sall AA, Lubisi A, Lecollinet S, Vázquez A, Jiménez-Clavero MÁ. Pathogenicity evaluation of twelve West Nile virus strains belonging to four lineages from five continents in a mouse model: discrimination between three pathogenicity categories. J Gen Virol 2017; 98:662-670. [DOI: 10.1099/jgv.0.000743] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| | - Javier del Amo
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| | - Gamou Fall
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, BP220, Senegal
| | - Amadou Alpha Sall
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, BP220, Senegal
| | - Alison Lubisi
- ARC-Onderstepoort Veterinary Institute, Onderstepoort, 0110 Pretoria, South Africa
| | - Sylvie Lecollinet
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Animal Health Laboratory, UMR1161 Virology, INRA, ANSES, ENVA, Maisons-Alfort 94706, France
| | - Ana Vázquez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El casar s/n, 28130 Valdeolmos, Madrid, Spain
| |
Collapse
|
20
|
Marques RE, Del Sarto JL, Rocha RPF, Gomes GF, Cramer A, Rachid MA, Souza DG, Nogueira ML, Teixeira MM. Development of a model of Saint Louis encephalitis infection and disease in mice. J Neuroinflammation 2017; 14:61. [PMID: 28330482 PMCID: PMC5361699 DOI: 10.1186/s12974-017-0837-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Flaviviruses are a genre of closely related viral pathogens which emerged in the last decades in Brazil and in the world. Saint (St.) Louis encephalitis virus (SLEV) is a neglected flavivirus that can cause a severe neurological disease that may lead to death or sequelae. St. Louis encephalitis pathogenesis is poorly understood, which hinders the development of specific treatment or vaccine. METHODS To address this problem, we developed a model of SLEV infection in mice to study mechanisms involved in the pathogenesis of severe disease. The model consists in the intracranial inoculation of the SLEV strain BeH 355964, a strain isolated from a symptomatic human patient in Brazil, in adult immunocompetent mice. RESULTS Inoculated mice presented SLEV replication in the brain, accompanied by tissue damage, disease signs, and mortality approximately 7 days post infection. Infection was characterized by the production of proinflammatory cytokines and interferons and by leukocyte recruitment to the brain, composed mainly by neutrophils and lymphocytes. In vitro experiments indicated that SLEV is able to replicate in both neurons and glia and caused neuronal death and cytokine production, respectively. CONCLUSIONS Altogether, intracranial SLEV infection leads to meningoencephalitis in mice, recapitulating several aspects of St. Louis encephalitis in humans. Our study indicates that the central nervous system (CNS) inflammation is a major component of SLEV-induced disease. This model may be useful to identify mechanisms of disease pathogenesis or resistance to SLEV infection.
Collapse
Affiliation(s)
- Rafael Elias Marques
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Present address: Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil.
| | - Juliana L Del Sarto
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rebeca P F Rocha
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giovanni F Gomes
- Laboratório de Investigação em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Allysson Cramer
- Laboratório de Imunorregulação de Doenças Infecciosas, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Milene A Rachid
- Laboratório de Apoptose, Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle G Souza
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maurício L Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Mauro M Teixeira
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
21
|
CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function. PLoS Negl Trop Dis 2017; 11:e0005329. [PMID: 28151989 PMCID: PMC5308832 DOI: 10.1371/journal.pntd.0005329] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/14/2017] [Accepted: 01/13/2017] [Indexed: 12/02/2022] Open
Abstract
Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β–T cells (TCRβ–null) are highly susceptible and die over 10–18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage. Japanese encephalitis virus (JEV) commonly infects human beings in developing countries including those in Southeast Asia. While the majority of the infected people suffer from mild illness, a minority suffers from encephalitis which may lead to death. The virus is transmitted by mosquito bites and elimination of mosquitoes is not a practical answer to prevent the disease, therefore, prevention by vaccination is a desired goal. While various vaccines are clinically tried and some are marketed further improvement in vaccines is still possible. In a complex disease like JE many components of the immune system contribute to variable extent in protection. We show here that one subset of T cells called CD8 cells which are capable of killing infected cells are very critical for providing protection against JEV infection in mice. In the absence of T cells we also observed that virus reaches the brain early, unlike in the presence of T cells, and this possibly results in high virus load in the brain leading to worsening of the condition and death. Thus, our data help in identifying the role of CD8 T cells in protection from lethal JEV infection and the information may be useful for modifying and/or developing vaccine for prevention of JEV-mediated disease.
Collapse
|
22
|
Brostoff T, Pesavento PA, Barker CM, Kenney JL, Dietrich EA, Duggal NK, Bosco-Lauth AM, Brault AC. MicroRNA reduction of neuronal West Nile virus replication attenuates and affords a protective immune response in mice. Vaccine 2016; 34:5366-5375. [PMID: 27637937 DOI: 10.1016/j.vaccine.2016.08.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 01/09/2023]
Abstract
West Nile virus (WNV) is an important agent of human encephalitis that has quickly become endemic across much of the United States since its identification in North America in 1999. While the majority (∼75%) of infections are subclinical, neurologic disease can occur in a subset of cases, with outcomes including permanent neurologic damage and death. Currently, there are no WNV vaccines approved for use in humans. This study introduces a novel vaccine platform for WNV to reduce viral replication in the central nervous system while maintaining peripheral replication to elicit strong neutralizing antibody titers. Vaccine candidates were engineered to incorporate microRNA (miRNA) target sequences for a cognate miRNA expressed only in neurons, allowing the host miRNAs to target viral transcription through endogenous RNA silencing. To maintain stability, these targets were incorporated in multiple locations within the 3'-untranslated region, flanking sequences essential for viral replication without affecting the viral open reading frame. All candidates replicated comparably to wild type WNV in vitro within cells that did not express the cognate miRNA. Insertional control viruses were also capable of neuroinvasion and neurovirulence in vivo in CD-1 mice. Vaccine viruses were safe at all doses tested and did not demonstrate mutations associated with a reversion to virulence when serially passaged in mice. All vaccine constructs were protective from lethal challenge in mice, producing 93-100% protection at the highest dose tested. Overall, this is a safe and effective attenuation strategy with broad potential application for vaccine development.
Collapse
Affiliation(s)
- Terza Brostoff
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Christopher M Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Joan L Kenney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Elizabeth A Dietrich
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Nisha K Duggal
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Angela M Bosco-Lauth
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| |
Collapse
|
23
|
The pathogenesis of 3 neurotropic flaviviruses in a mouse model depends on the route of neuroinvasion after viremia. J Neuropathol Exp Neurol 2015; 74:250-60. [PMID: 25668565 DOI: 10.1097/nen.0000000000000166] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurotropic flavivirus infection of humans results in viremia subsequently; in some cases, it causes meningitis encephalomyelitis, although the pathways from viremia to central nervous system (CNS) invasion are uncertain. Here, we intravenously infected BALB/c mice with 3 neurotropic flaviviruses, then examined the clinical manifestations and histopathologic changes. The Sofjin strain of tick-borne encephalitis virus-infected mice exhibited dose-dependent survival. The animals showed distention of the small intestine caused by peripheral neuritis because of infection of the myenteric plexus. Histopathologically, the strongly neurotropic Sofjin strain invaded the CNS of viremic mice via the autonomic nerves running from the plexus. The JaTH-160 strain of Japanese encephalitis virus was isolated from the lymph nodes during the preclinical phase of viral encephalitis. Therefore, this strain might infect the CNS via a hematogenous pathway, including through lymphoid tissues. The NY99-6922 strain of the West Nile virus caused clinical signs suggestive of intestinal, lymphoid, and/or neurologic involvement; the infected mice had prolonged viremia, suggesting that NY99-6922 may mainly use the hematogenous pathway; however, there was also histopathologic evidence of involvement of the autonomic nervous system pathway. In conclusion, the three neurotropic flaviviruses showed different pathogenesis, which were dependent upon overlapping but distinct pathways to CNS invasion after viremia.
Collapse
|
24
|
First genome sequence of St. Louis encephalitis virus (SLEV) isolated from a human in Brazil. Arch Virol 2015; 160:1189-95. [PMID: 25740285 DOI: 10.1007/s00705-015-2378-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/20/2015] [Indexed: 10/23/2022]
Abstract
St. Louis encephalitis virus (SLEV), a member of the family Flaviviridae, genus Flavivirus, is a causative agent of encephalitis in the Americas. In Brazil, sporadic cases of SLEV infection have been reported since 1953, but the first outbreak of SLEV in Brazil was identified only in 2007, concomitant with an outbreak of dengue virus (DENV) serotype 3. This finding, along with other reports, indicates that SLEV circulation in Brazil is largely unknown, and there may be epidemiological implications of the co-circulation of SLEV, DENV and other flaviviruses in Brazil. Here, we describe the first complete genome sequence of an SLEV strain isolated from a human patient in Brazil, strain BeH 355964. Phylogenetic analysis was performed to determine the genotype of BeH 355964 using the full-length genome and envelope (E) gene sequences separately. Both analyses showed that BeH 355964 could be classified as genotype V. Although the number of single gene sequences available is greater (such as for the E gene), the phylogenetic tree based on the complete genome sequence was better supported and provided further information about the virus.
Collapse
|
25
|
Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H. Mechanism of West Nile virus neuroinvasion: a critical appraisal. Viruses 2014; 6:2796-825. [PMID: 25046180 PMCID: PMC4113794 DOI: 10.3390/v6072796] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) is an important emerging neurotropic virus, responsible for increasingly severe encephalitis outbreaks in humans and horses worldwide. However, the mechanism by which the virus gains entry to the brain (neuroinvasion) remains poorly understood. Hypotheses of hematogenous and transneural entry have been proposed for WNV neuroinvasion, which revolve mainly around the concepts of blood-brain barrier (BBB) disruption and retrograde axonal transport, respectively. However, an over‑representation of in vitro studies without adequate in vivo validation continues to obscure our understanding of the mechanism(s). Furthermore, WNV infection in the current rodent models does not generate a similar viremia and character of CNS infection, as seen in the common target hosts, humans and horses. These differences ultimately question the applicability of rodent models for pathogenesis investigations. Finally, the role of several barriers against CNS insults, such as the blood-cerebrospinal fluid (CSF), the CSF-brain and the blood-spinal cord barriers, remain largely unexplored, highlighting the infancy of this field. In this review, a systematic and critical appraisal of the current evidence relevant to the possible mechanism(s) of WNV neuroinvasion is conducted.
Collapse
Affiliation(s)
- Willy W Suen
- School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia.
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, QLD, 4072, Australia.
| | | |
Collapse
|
26
|
Rosa R, Costa EA, Marques RE, Oliveira TS, Furtini R, Bomfim MRQ, Teixeira MM, Paixão TA, Santos RL. Isolation of saint louis encephalitis virus from a horse with neurological disease in Brazil. PLoS Negl Trop Dis 2013; 7:e2537. [PMID: 24278489 PMCID: PMC3836713 DOI: 10.1371/journal.pntd.0002537] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 09/30/2013] [Indexed: 11/23/2022] Open
Abstract
St. Louis encephalitis virus (SLEV) is a causative agent of encephalitis in humans in the Western hemisphere. SLEV is a positive-sense RNA virus that belongs to the Flavivirus genus, which includes West Nile encephalitis virus, Japanese encephalitis virus, Dengue virus and other medically important viruses. Recently, we isolated a SLEV strain from the brain of a horse with neurological signs in the countryside of Minas Gerais, Brazil. The SLEV isolation was confirmed by reverse-transcription RT-PCR and sequencing of the E protein gene. Virus identity was also confirmed by indirect immunofluorescence using commercial antibodies against SLEV. To characterize this newly isolated strain in vivo, serial passages in newborn mice were performed and led to hemorrhagic manifestations associated with recruitment of inflammatory cells into the central nervous system of newborns. In summary this is the first isolation of SLEV from a horse with neurological signs in Brazil. St. Louis encephalitis virus (SLEV), a member of the Flavivirus genus, which includes West Nile encephalitis virus, Japanese encephalitis virus, Dengue virus, and other medically important viruses, is a cause of encephalitis in humans and animals. SLEV is considered endemic in the Americas, and currently there is no vaccine or specific treatment available for controlling of preventing SLEV-induced encephalitis. In this study we describe the first isolation of SLEV from an adult male horse with neurologic disease, which was further characterized by molecular and serological methods. Phylogenetic analysis of a 903 base pairs amplified sequence from partial Envelope (E) gene region indicated that the isolate from the horse was within the cluster of the VB genotype. In addition, inoculation of the SLEV isolate intracranially in newborn mice resulted in circulatory and neurological changes. This is the first report of isolation of SLEV from a horse with neurological disease in Brazil.
Collapse
Affiliation(s)
- Roberta Rosa
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Erica Azevedo Costa
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Elias Marques
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Taismara Simas Oliveira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Saúde Animal, Instituto Mineiro de Agropecuária, Belo Horizonte, Minas Gerais, Brazil
| | - Ronaldo Furtini
- Laboratório de Saúde Animal, Instituto Mineiro de Agropecuária, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane Alves Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato Lima Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
27
|
Development of a small animal peripheral challenge model of Japanese encephalitis virus using interferon deficient AG129 mice and the SA14-14-2 vaccine virus strain. Vaccine 2013; 32:258-64. [PMID: 24252694 DOI: 10.1016/j.vaccine.2013.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/28/2013] [Accepted: 11/06/2013] [Indexed: 12/25/2022]
Abstract
Japanese encephalitis virus (JEV) is the most common cause of viral encephalitis in Asia, and it is increasingly a global public health concern due to its recent geographic expansion. While commercial vaccines are available and used in some endemic countries, JEV continues to be a public health problem, with 50,000 cases reported annually. Research with virulent JEV in mouse models to develop new methods of prevention and treatment is restricted to BSL-3 containment facilities, confining these studies to investigators with access to these facilities. We have developed an adult small animal peripheral challenge model using interferon-deficient AG129 mice and the JEV live-attenuated vaccine SA14-14-2, thus requiring only BSL-2 containment. A low dose of virus (10PFU/0.1ml) induced 100% morbidity in infected mice. Increased body temperatures measured by implantable temperature transponders correlated with an increase in infectious virus and viral RNA in serum, spleen and brain as well as an increase in pro-inflammatory markers measured by a 58-biomarker multi-analyte profile (MAP) constructed during the course of infection. In the future, the MAP measurements can be used as a baseline for comparison in order to better assess the inhibition of disease progression by other prophylactic and therapeutic agents. The use of the AG129/JEV SA14-14-2 animal model makes vaccine and therapeutic studies feasible for laboratories with limited biocontainment facilities.
Collapse
|
28
|
Palus M, Vojtíšková J, Salát J, Kopecký J, Grubhoffer L, Lipoldová M, Demant P, Růžek D. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J Neuroinflammation 2013; 10:77. [PMID: 23805778 PMCID: PMC3700758 DOI: 10.1186/1742-2094-10-77] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/11/2013] [Indexed: 12/30/2022] Open
Abstract
Background The clinical course of tick-borne encephalitis (TBE), a disease caused by TBE virus, ranges from asymptomatic or mild influenza-like infection to severe debilitating encephalitis or encephalomyelitis. Despite the medical importance of this disease, some crucial steps in the development of encephalitis remain poorly understood. In particular, the basis of the disease severity is largely unknown. Methods TBE virus growth, neutralizing antibody response, key cytokine and chemokine mRNA production and changes in mRNA levels of cell surface markers of immunocompetent cells in brain were measured in mice with different susceptibilities to TBE virus infection. Results An animal model of TBE based on BALB/c-c-STS/A (CcS/Dem) recombinant congenic mouse strains showing different severities of the infection in relation to the host genetic background was developed. After subcutaneous inoculation of TBE virus, BALB/c mice showed medium susceptibility to the infection, STS mice were resistant, and CcS-11 mice were highly susceptible. The resistant STS mice showed lower and delayed viremia, lower virus production in the brain and low cytokine/chemokine mRNA production, but had a strong neutralizing antibody response. The most sensitive strain (CcS-11) failed in production of neutralizing antibodies, but exhibited strong cytokine/chemokine mRNA production in the brain. After intracerebral inoculation, all mouse strains were sensitive to the infection and had similar virus production in the brain, but STS mice survived significantly longer than CcS-11 mice. These two strains also differed in the expression of key cytokines/chemokines, particularly interferon gamma-induced protein 10 (IP-10/CXCL10) and monocyte chemotactic protein-1 (MCP-1/CCL2) in the brain. Conclusions Our data indicate that the genetic control is an important factor influencing the clinical course of TBE. High neutralizing antibody response might be crucial for preventing host fatality, but high expression of various cytokines/chemokines during TBE can mediate immunopathology and be associated with more severe course of the infection and increased fatality.
Collapse
Affiliation(s)
- Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice CZ-37005, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|