1
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
2
|
van Leur SW, Heunis T, Munnur D, Sanyal S. Pathogenesis and virulence of flavivirus infections. Virulence 2021; 12:2814-2838. [PMID: 34696709 PMCID: PMC8632085 DOI: 10.1080/21505594.2021.1996059] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 11/01/2022] Open
Abstract
The Flavivirus genus consists of >70 members including several that are considered significant human pathogens. Flaviviruses display a broad spectrum of diseases that can be roughly categorised into two phenotypes - systemic disease involving haemorrhage exemplified by dengue and yellow Fever virus, and neurological complications associated with the likes of West Nile and Zika viruses. Attempts to develop vaccines have been variably successful against some. Besides, mosquito-borne flaviviruses can be vertically transmitted in the arthropods, enabling long term persistence and the possibility of re-emergence. Therefore, developing strategies to combat disease is imperative even if vaccines become available. The cellular interactions of flaviviruses with their human hosts are key to establishing the viral lifecycle on the one hand, and activation of host immunity on the other. The latter should ideally eradicate infection, but often leads to immunopathological and neurological consequences. In this review, we use Dengue and Zika viruses to discuss what we have learned about the cellular and molecular determinants of the viral lifecycle and the accompanying immunopathology, while highlighting current knowledge gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| |
Collapse
|
3
|
Mammalian animal models for dengue virus infection: a recent overview. Arch Virol 2021; 167:31-44. [PMID: 34761286 PMCID: PMC8579898 DOI: 10.1007/s00705-021-05298-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023]
Abstract
Dengue, a rapidly spreading mosquito-borne human viral disease caused by dengue virus (DENV), is a public health concern in tropical and subtropical areas due to its expanding geographical range. DENV can cause a wide spectrum of illnesses in humans, ranging from asymptomatic infection or mild dengue fever (DF) to life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Dengue is caused by four DENV serotypes; however, dengue pathogenesis is complex and poorly understood. Establishing a useful animal model that can exhibit dengue-fever-like signs similar to those in humans is essential to improve our understanding of the host response and pathogenesis of DENV. Although several animal models, including mouse models, non-human primate models, and a recently reported tree shrew model, have been investigated for DENV infection, animal models with clinical signs that are similar to those of DF in humans have not yet been established. Although animal models are essential for understanding the pathogenesis of DENV infection and for drug and vaccine development, each animal model has its own strengths and limitations. Therefore, in this review, we provide a recent overview of animal models for DENV infection and pathogenesis, focusing on studies of the antibody-dependent enhancement (ADE) effect in animal models.
Collapse
|
4
|
Gálvez NMS, Bohmwald K, Pacheco GA, Andrade CA, Carreño LJ, Kalergis AM. Type I Natural Killer T Cells as Key Regulators of the Immune Response to Infectious Diseases. Clin Microbiol Rev 2021; 34:e00232-20. [PMID: 33361143 PMCID: PMC7950362 DOI: 10.1128/cmr.00232-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune system must work in an orchestrated way to achieve an optimal response upon detection of antigens. The cells comprising the immune response are traditionally divided into two major subsets, innate and adaptive, with particular characteristics for each type. Type I natural killer T (iNKT) cells are defined as innate-like T cells sharing features with both traditional adaptive and innate cells, such as the expression of an invariant T cell receptor (TCR) and several NK receptors. The invariant TCR in iNKT cells interacts with CD1d, a major histocompatibility complex class I (MHC-I)-like molecule. CD1d can bind and present antigens of lipid nature and induce the activation of iNKT cells, leading to the secretion of various cytokines, such as gamma interferon (IFN-γ) and interleukin 4 (IL-4). These cytokines will aid in the activation of other immune cells following stimulation of iNKT cells. Several molecules with the capacity to bind to CD1d have been discovered, including α-galactosylceramide. Likewise, several molecules have been synthesized that are capable of polarizing iNKT cells into different profiles, either pro- or anti-inflammatory. This versatility allows NKT cells to either aid or impair the clearance of pathogens or to even control or increase the symptoms associated with pathogenic infections. Such diverse contributions of NKT cells to infectious diseases are supported by several publications showing either a beneficial or detrimental role of these cells during diseases. In this article, we discuss current data relative to iNKT cells and their features, with an emphasis on their driving role in diseases produced by pathogenic agents in an organ-oriented fashion.
Collapse
Affiliation(s)
- Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Animal Models Used in Hepatitis C Virus Research. Int J Mol Sci 2020; 21:ijms21113869. [PMID: 32485887 PMCID: PMC7312079 DOI: 10.3390/ijms21113869] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The narrow range of species permissive to infection by hepatitis C virus (HCV) presents a unique challenge to the development of useful animal models for studying HCV, as well as host immune responses and development of chronic infection and disease. Following earlier studies in chimpanzees, several unique approaches have been pursued to develop useful animal models for research while avoiding the important ethical concerns and costs inherent in research with chimpanzees. Genetically related hepatotropic viruses that infect animals are being used as surrogates for HCV in research studies; chimeras of these surrogate viruses harboring specific regions of the HCV genome are being developed to improve their utility for vaccine testing. Concurrently, genetically humanized mice are being developed and continually advanced using human factors known to be involved in virus entry and replication. Further, xenotransplantation of human hepatocytes into mice allows for the direct study of HCV infection in human liver tissue in a small animal model. The current advances in each of these approaches are discussed in the present review.
Collapse
|
6
|
Non-Human Primate Models of Dengue Virus Infection: A Comparison of Viremia Levels and Antibody Responses during Primary and Secondary Infection among Old World and New World Monkeys. Pathogens 2020; 9:pathogens9040247. [PMID: 32230836 PMCID: PMC7238212 DOI: 10.3390/pathogens9040247] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
Due to the global burden of dengue disease, a vaccine is urgently needed. One of the key points in vaccine development is the development of a robust and reliable animal model of dengue virus infection. Characteristics including the ability to sustain viral replication, demonstration of clinical signs, and immune response that resemble those of human dengue virus infection are vital in animal models. Preclinical studies in vaccine development usually include parameters such as safety evaluation, induction of viremia and antigenemia, immunogenicity, and vaccine effectiveness. Although mice have been used as a model, non-human primates have an advantage over mice because of their relative similarity to humans in their genetic composition and immune responses. This review compares the viremia kinetics and antibody responses of cynomolgus macaques (Macaca fasicularis), common marmosets (Callithrix jacchus), and tamarins (Saguinus midas and Saguinus labitus) and summarize the perspectives and the usefulness along with challenges in dengue vaccine development.
Collapse
|
7
|
Batista ICA, Quinan BR, Rocha Alves ÉA, Jangola STG, Oliveira ES, Colombarolli SG, Ferreira JGG, Rocha ESDO, Kroon EG, de Assis RR, de Oliveira JG, Fiuza JA, Calzavara-Silva CE. Design and production of dengue virus chimeric proteins useful for developing tetravalent vaccines. Vaccine 2020; 38:2005-2015. [PMID: 31982262 DOI: 10.1016/j.vaccine.2020.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/05/2019] [Accepted: 01/03/2020] [Indexed: 01/09/2023]
Abstract
Dengue virus (DENV) is a Flavivirus estimated to cause 390 million infections/year. Currently, there is no anti-viral specific treatment for dengue, and efficient DENV vector control is still unfeasible. Here, we designed and produced chimeric proteins containing potential immunogenic epitopes from the four DENV serotypes in an attempt to further compose safer, balanced tetravalent dengue vaccines. For this, South American DENV isolate sequences were downloaded from the NCBI/Virus Variation/Dengue virus databases and intraserotype-aligned to generate four consensuses. Four homologous DENV sequences were retrieved using BLAST and then interserotype-aligned. In parallel, sequences were subjected to linear B epitope prediction analysis. Regions of the envelope and NS1 proteins that are highly homologous among the four DENV serotypes, non-conserved antigenic regions and the most antigenic epitopes found in the C, prM, E and NS1 DENV proteins were used to construct 11 chimeric peptides. Genes encoding the chimeric proteins were commercially synthesized, and proteins were expressed, purified by affinity chromatography and further subjected to ELISA assays using sera from individuals infected with DENVs 1, 2, 3 or 4. As a proof-of-concept, the chimeric EnvEpII protein was selected to immunize BALB/c and C57BL/6 mice strains. The immunization with EnvEpII protein associated with aluminum induced an increased number of T CD4+ and CD8+ cells, high production of IgG1 and IgG2 antibodies, and increased levels of IL-2 and IL-17 cytokines, in both mouse strains. Because the EnvEpII protein associated with aluminum induced an efficient cellular response by stimulating the production of IL-2, IL-4, IL-17 and induced a robust humoral response in mice, we conclude that it resembles an efficient specific response against DENV infection. Although further experiments are required, our results indicate that epitope selection by bioinformatic tools is efficient to create recombinant proteins that can be used as candidates for the development of vaccines against infectious diseases.
Collapse
Affiliation(s)
- Izabella Cristina Andrade Batista
- Grupo de Imunologia Celular e Molecular, Fundação Oswaldo Cruz, IRR, Av. Augusto de Lima, 1715 Barro Preto, Belo Horizonte, MG, Brazil.
| | - Bárbara Resende Quinan
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 110 Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil.
| | - Érica Alessandra Rocha Alves
- Grupo de Imunologia Celular e Molecular, Fundação Oswaldo Cruz, IRR, Av. Augusto de Lima, 1715 Barro Preto, Belo Horizonte, MG, Brazil.
| | - Soraya Torres Gaze Jangola
- Grupo de Imunologia Celular e Molecular, Fundação Oswaldo Cruz, IRR, Av. Augusto de Lima, 1715 Barro Preto, Belo Horizonte, MG, Brazil.
| | - Eneida Santos Oliveira
- Grupo de Imunologia Celular e Molecular, Fundação Oswaldo Cruz, IRR, Av. Augusto de Lima, 1715 Barro Preto, Belo Horizonte, MG, Brazil.
| | - Stella Garcia Colombarolli
- Grupo de Imunologia Celular e Molecular, Fundação Oswaldo Cruz, IRR, Av. Augusto de Lima, 1715 Barro Preto, Belo Horizonte, MG, Brazil.
| | - Jorge Gomes Goulart Ferreira
- Grupo de Imunologia Celular e Molecular, Fundação Oswaldo Cruz, IRR, Av. Augusto de Lima, 1715 Barro Preto, Belo Horizonte, MG, Brazil.
| | | | - Erna Geessien Kroon
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, ICB, Av. Presidente Antônio Carlos, 6627 Pampulha, Belo Horizonte, MG, Brazil.
| | - Rafael Ramiro de Assis
- Vaccine Research and Development Center, Department of Physiology, University of California Irvine, USA.
| | - Jaquelline Germano de Oliveira
- Grupo de Imunologia Celular e Molecular, Fundação Oswaldo Cruz, IRR, Av. Augusto de Lima, 1715 Barro Preto, Belo Horizonte, MG, Brazil.
| | - Jacqueline Araújo Fiuza
- Grupo de Imunologia Celular e Molecular, Fundação Oswaldo Cruz, IRR, Av. Augusto de Lima, 1715 Barro Preto, Belo Horizonte, MG, Brazil.
| | - Carlos Eduardo Calzavara-Silva
- Grupo de Imunologia Celular e Molecular, Fundação Oswaldo Cruz, IRR, Av. Augusto de Lima, 1715 Barro Preto, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
dos Santos Franco L, Oliveira Vidal P, Amorim JH. In silico design of a Zika virus non-structural protein 5 aiming vaccine protection against zika and dengue in different human populations. J Biomed Sci 2017; 24:88. [PMID: 29169357 PMCID: PMC5701345 DOI: 10.1186/s12929-017-0395-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/17/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The arboviruses Zika virus (ZIKV) and Dengue virus (DENV) have important epidemiological impact in Brazil and other tropical regions of the world. Recently, it was shown that previous humoral immunity to DENV enhances ZIKV replication in vitro, which may lead to more severe forms of the disease. Thus, traditional approaches of vaccine development aiming to control viral infection through neutralizing antibodies may induce cross-reactive enhancing antibodies. In contrast, cellular immune response was shown to be capable of controlling DENV infection independently of antibodies. The aim of the present study was to design a flavivirus NS5 protein capable of inducing a cellular immune response against DENV and ZIKV. METHODS A consensus sequence of ZIKV NS5 protein was designed among isolates from various continents. Epitopes were predicted for the most prevalent alleles of class I and II HLA in the Brazilian population. Then, this epitopes were analyzed with regard to their conservation, population coverage and distribution along the whole antigen. RESULTS Nineteen epitopes predicted to be more reactive (percentile rank <1) and 100% conserved among ZIKV and DENV serotypes were selected. The distribution of such epitopes along the protein was shown on a three-dimensional model and population coverage was calculated for different regions of the world. The designed protein was predicted to be stable and the distribution of selected epitopes was shown to be homogeneous along domains. The population coverage of selected epitopes was higher than 50% for most of tropical areas of the world. CONCLUSION Such results indicate that the proposed antigen has the potential to induce protective cellular immune response to ZIKV and DENV in different human populations of the world.
Collapse
Affiliation(s)
- Lorrany dos Santos Franco
- Laboratório de Microbiologia, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras, Bahia CEP 47810-059 Brazil
| | - Paloma Oliveira Vidal
- Laboratório de Microbiologia, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras, Bahia CEP 47810-059 Brazil
| | - Jaime Henrique Amorim
- Laboratório de Microbiologia, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras, Bahia CEP 47810-059 Brazil
| |
Collapse
|
9
|
Amorim JH, dos Santos Alves RP, Bizerra R, Araújo Pereira S, Ramos Pereira L, Nascimento Fabris DL, Santos RA, Romano CM, de Souza Ferreira LC. Antibodies are not required to a protective immune response against dengue virus elicited in a mouse encephalitis model. Virology 2015; 487:41-9. [PMID: 26496698 DOI: 10.1016/j.virol.2015.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Generating neutralizing antibodies have been considered a prerequisite to control dengue virus (DENV) infection. However, T lymphocytes have also been shown to be important in a protective immune state. In order to investigate the contribution of both humoral and cellular immune responses in DENV immunity, we used an experimental model in which a non-lethal DENV2 strain (ACS46) is used to intracranially prime Balb/C mice which develop protective immunity against a lethal DENV2 strain (JHA1). Primed mice generated envelope-specific antibodies and CD8(+) T cell responses targeting mainly non-structural proteins. Immune sera from protected mice did not confer passive protection to naïve mice challenged with the JHA1 strain. In contrast, depletion of CD4(+) and CD8(+) T lymphocytes significantly reduced survival of ACS46-primed mice challenged with the JHA1 strain. Collectively, results presented in this study show that a cellular immune response targeting non-structural proteins are a promising way in vaccine development against dengue.
Collapse
Affiliation(s)
- Jaime Henrique Amorim
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Universidade de São Paulo, Brasil.
| | | | - Raíza Bizerra
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Universidade de São Paulo, Brasil
| | - Sara Araújo Pereira
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Universidade de São Paulo, Brasil
| | - Lennon Ramos Pereira
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Universidade de São Paulo, Brasil
| | | | - Robert Andreata Santos
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Universidade de São Paulo, Brasil
| | - Camila Malta Romano
- Instituto de Medicina Tropical de São Paulo e Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias (LIMHC), Universidade de São Paulo, Brasil
| | | |
Collapse
|
10
|
Matangkasombut P, Chan-in W, Opasawaschai A, Pongchaikul P, Tangthawornchaikul N, Vasanawathana S, Limpitikul W, Malasit P, Duangchinda T, Screaton G, Mongkolsapaya J. Invariant NKT cell response to dengue virus infection in human. PLoS Negl Trop Dis 2014; 8:e2955. [PMID: 24945350 PMCID: PMC4063705 DOI: 10.1371/journal.pntd.0002955] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/07/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Dengue viral infection is a global health threat without vaccine or specific treatment. The clinical outcome varies from asymptomatic, mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF). While adaptive immune responses were found to be detrimental in the dengue pathogenesis, the roles of earlier innate events remain largely uninvestigated. Invariant natural killer T (iNKT) cells represent innate-like T cells that could dictate subsequent adaptive response but their role in human dengue virus infection is not known. We hypothesized that iNKT cells play a role in human dengue infection. METHODS Blood samples from a well-characterized cohort of children with DF, DHF, in comparison to non-dengue febrile illness (OFI) and healthy controls at various time points were studied. iNKT cells activation were analyzed by the expression of CD69 by flow cytometry. Their cytokine production was then analyzed after α-GalCer stimulation. Further, the CD1d expression on monocytes, and CD69 expression on conventional T cells were measured. RESULTS iNKT cells were activated during acute dengue infection. The level of iNKT cell activation associates with the disease severity. Furthermore, these iNKT cells had altered functional response to subsequent ex vivo stimulation with α-GalCer. Moreover, during acute dengue infection, monocytic CD1d expression was also upregulated and conventional T cells also became activated. CONCLUSION iNKT cells might play an early and critical role in the pathogenesis of severe dengue viral infection in human. Targeting iNKT cells and CD1d serve as a potential therapeutic strategy for severe dengue infection in the future.
Collapse
Affiliation(s)
- Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
| | - Wilawan Chan-in
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anunya Opasawaschai
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pisut Pongchaikul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nattaya Tangthawornchaikul
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | | | | | - Prida Malasit
- Center of Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thaneeya Duangchinda
- Center of Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Gavin Screaton
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith campus, Imperial College London, London, United Kingdom
| | - Juthathip Mongkolsapaya
- Center of Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith campus, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Watanabe M, Kudo Y, Kawano M, Nakayama M, Nakamura K, Kameda M, Ebara M, Sato T, Nakamura M, Omine K, Kametani Y, Suzuki R, Ogasawara K. NKG2D functions as an activating receptor on natural killer cells in the common marmoset (Callithrix jacchus). Int Immunol 2014; 26:597-606. [PMID: 24860119 DOI: 10.1093/intimm/dxu053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The natural killer group 2 membrane D (NKG2D) receptor is an NK-activating receptor that plays an important role in host defense against tumors and viral infections. Although the marmoset is an important and reliable animal model, especially for the study of human-specific viral infections, functional characterization of NKG2D on marmoset NK cells has not previously been conducted. In the present study, we investigated a subpopulation of marmoset NK cells that express NKG2D and exhibit cytolytic potential. On the basis of their CD16 and CD56 expression patterns, marmoset NK cells can be classified into three subpopulations: CD16(+) CD56(-), CD16(-) CD56(+) and CD16(-) CD56(-) cells. NKG2D expression on marmoset CD16(+) CD56(-) and CD16(-) CD56(+) splenocytes was confirmed using an NKG2D ligand composed of an MHC class I chain-related molecule A (MICA)-Fc fusion protein. When marmoset splenocytes were cultured with IL-2 for 4 days, NKG2D expression was retained on CD16(+) CD56(-) and CD16(-) CD56(+). In addition, CD16(+) CD56(+) cells within the marmoset NK population appeared which expressed NKG2D after IL-2 stimulation. IL-2-activated marmoset NK cells showed strong cytolytic activity against K562 target cells and target cells stably expressing MICA. Further, the cytolytic activity of marmoset splenocytes was significantly reduced after addition of MICA-Fc fusion protein. Thus, NKG2D functions as an activating receptor on marmoset NK cells that possesses cytotoxic potential, and phenotypic profiles of marmoset NK cell subpopulations are similar to those seen in humans.
Collapse
Affiliation(s)
- Masamichi Watanabe
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yohei Kudo
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Mitsuko Kawano
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Masafumi Nakayama
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kyohei Nakamura
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Mai Kameda
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Masamune Ebara
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Takeki Sato
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Marina Nakamura
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kaito Omine
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yoshie Kametani
- Department of Immunology, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Sagamihara 252-0315, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
12
|
Callithrix penicillata: a feasible experimental model for dengue virus infection. Immunol Lett 2013; 158:126-33. [PMID: 24361035 DOI: 10.1016/j.imlet.2013.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/23/2022]
Abstract
Although the murine models have the feasibility to reproduce some signs of dengue Virus (DENV) infection, the use of isogenic hosts with polarized immune response patterns does not reproduce the particularities of human disease. Our goal was to investigate the kinetics of peripheral blood biomarkers in immunocompetent Callithrix penicillata non-human primates subcutaneously infected with DENV-3. The viral load of infected animals was determinated by quantitative real time PCR. Measurements of DENV-3/IgM were performed, and several parameters were assessed by hemogram: red blood cells count, hemoglobin, hematocrit, white blood cells count, neutrophils, monocytes, lymphocytes, and platelets count. The coagulogram was performed by prothrombin time (PT), and activated partial thromboplastin time (APTT) assays. The renal function was monitored by urea and creatinine, and the liver function by the aspartate (AST), and alanine (ALT) aminotransferases. Also, the level of the cytokines IL-6, TNF-α, IL-2, IFN-γ, IL-4 and IL-5 was quantified during the experimental study. Data analysis was performed considering relevant differences when baseline fold changes were found outside from 0.75 to 1.5 range. Our data demonstrated that infected animals presented relevant signs of dengue disease, including peaks of viremia at 5 days-post-infection (dpi), peaks of anti-DENV-3 IgM at 15 dpi and hemaglutination inhibition assay (HIA) from 15 to at 60 dpi. Despite early monocytosis, slight neutrophilia and lymphocytosis, animals developed persistent leucopenia starting at 4 dpi. Anemia episodes were steady at 3-4 dpi. Patent thrombocytopenia was observed from 1 to 15 dpi with sporadic decrease of APTT. A substantial increase of ALT and AST was observed with higher peak at 4 dpi. Moreover, early increases of TNF-alpha and IFN-gamma besides late increase of IFN-gamma were observed. The analysis of biomarkers network pointed out two relevant strong axes during early stages of dengue fever, a protective axes TNF-alpha/Lymphocytes/Platelets, and a pathological IL-2/IL-6/Viremia/Monocyte/PT bond. Later on, the biomarker network highlighted the interaction IFN-gamma/PLT/DENV-3(IgM;HAI)/PT, and the involvement of type-2 cytokines (IL-4; IL-5). Our findings demonstrated that C. penicillata is a feasible experimental model for dengue virus infection, which could be useful to pathogenesis studies, discovery of novel antiviral drugs as well as to evaluate vaccine candidates against DENV.
Collapse
|
13
|
Clark KB, Onlamoon N, Hsiao HM, Perng GC, Villinger F. Can non-human primates serve as models for investigating dengue disease pathogenesis? Front Microbiol 2013; 4:305. [PMID: 24130557 PMCID: PMC3795305 DOI: 10.3389/fmicb.2013.00305] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/24/2013] [Indexed: 11/28/2022] Open
Abstract
Dengue Virus (DV) infects between 50 and 100 million people globally, with public health costs totaling in the billions. It is the causative agent of dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), vector-borne diseases that initially predominated in the tropics. Due to the expansion of its mosquito vector, Aedes spp., DV is increasingly becoming a global problem. Infected individuals may present with a wide spectrum of symptoms, spanning from a mild febrile to a life-threatening illness, which may include thrombocytopenia, leucopenia, hepatomegaly, hemorrhaging, plasma leakage and shock. Deciphering the underlining mechanisms responsible for these symptoms has been hindered by the limited availability of animal models that can induce classic human pathology. Currently, several permissive non-human primate (NHP) species and mouse breeds susceptible to adapted DV strains are available. Though virus replication occurs in these animals, none of them recapitulate the cardinal features of human symptomatology, with disease only occasionally observed in NHPs. Recently our group established a DV serotype 2 intravenous infection model with the Indian rhesus macaque, which reliably produced cutaneous hemorrhages after primary virus exposure. Further manipulation of experimental parameters (virus strain, immune cell expansion, depletion, etc.) can refine this model and expand its relevance to human DF. Future goals include applying this model to elucidate the role of pre-existing immunity upon secondary infection and immunopathogenesis. Of note, virus titers in primates in vivo and in vitro, even with our model, have been consistently 1000-fold lower than those found in humans. We submit that an improved model, capable of demonstrating severe pathogenesis may only be achieved with higher virus loads. Nonetheless, our DV coagulopathy disease model is valuable for the study of select pathomechanisms and testing DV drug and vaccine candidates.
Collapse
Affiliation(s)
- Kristina B Clark
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
14
|
Efficient in vivo depletion of CD8+ T lymphocytes in common marmosets by novel CD8 monoclonal antibody administration. Immunol Lett 2013; 154:12-7. [DOI: 10.1016/j.imlet.2013.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/04/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022]
|