1
|
Zhang H, Jiao J, Zhao T, Zhao E, Li L, Li G, Zhang B, Qin QM. GERWR: Identifying the Key Pathogenicity- Associated sRNAs of Magnaporthe Oryzae Infection in Rice Based on Graph Embedding and Random Walk With Restart. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:227-239. [PMID: 38153818 DOI: 10.1109/tcbb.2023.3348080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Rice blast, caused by Magnaporthe oryzae(M.oryzae), is a destructive rice disease that reduces rice yield by 10% to 30% annually. It also affects other cereal crops such as barley, wheat, rye, millet, sorghum, and maize. Small RNAs (sRNAs) play an essential regulatory role in fungus-plant interaction during the fungal invasion, but studies on pathogenic sRNAs during the fungal invasion of plants based on multi-omics data integration are rare. This paper proposes a novel approach called Graph Embedding combined with Random Walk with Restart (GERWR) to identify pathogenic sRNAs based on multi-omics data integration during M.oryzae invasion. By constructing a multi-omics network (MRMO), we identified 29 pathogenic sRNAs of rice blast fungus. Further analysis revealed that these sRNAs regulate rice genes in a many-to-many relationship, playing a significant regulatory role in the pathogenesis of rice blast disease. This paper explores the pathogenic factors of rice blast disease from the perspective of multi-omics data analysis, revealing the inherent connection between pathogenic factors of different omics. It has essential scientific significance for studying the pathogenic mechanism of rice blast fungus, the rice blast fungus-rice model system, and the pathogen-host interaction in related fields.
Collapse
|
2
|
Mostert I, Bester R, Burger JT, Maree HJ. Investigating Protein-Protein Interactions Between Grapevine Leafroll-Associated Virus 3 and Vitis vinifera. PHYTOPATHOLOGY 2023; 113:1994-2005. [PMID: 37311734 DOI: 10.1094/phyto-03-23-0107-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Grapevine leafroll disease (GLD) is a globally important disease that affects the metabolic composition and biomass of grapes, leading to a reduction in grape yield and quality of wine produced. Grapevine leafroll-associated virus 3 (GLRaV-3) is the main causal agent for GLD. This study aimed to identify protein-protein interactions between GLRaV-3 and its host. A yeast two-hybrid (Y2H) library was constructed from Vitis vinifera mRNA and screened against GLRaV-3 open reading frames encoding structural proteins and those potentially involved in systemic spread and silencing of host defense mechanisms. Five interacting protein pairs were identified, three of which were demonstrated in planta. The minor coat protein of GLRaV-3 was shown to interact with 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase 02, a protein involved in primary carbohydrate metabolism and the biosynthesis of aromatic amino acids. Interactions were also identified between GLRaV-3 p20A and an 18.1-kDa class I small heat shock protein, as well as MAP3K epsilon protein kinase 1. Both proteins are involved in the response of plants to various stressors, including pathogen infections. Two additional proteins, chlorophyll a-b binding protein CP26 and a SMAX1-LIKE 6 protein, were identified as interacting with p20A in yeast but these interactions could not be demonstrated in planta. The findings of this study advance our understanding of the functions of GLRaV-3-encoded proteins and how the interaction between these proteins and those of V. vinifera could lead to GLD.
Collapse
Affiliation(s)
- Ilani Mostert
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rachelle Bester
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
- Citrus Research International, Stellenbosch 7600, South Africa
| | - Johan T Burger
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Hans J Maree
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
- Citrus Research International, Stellenbosch 7600, South Africa
| |
Collapse
|
3
|
Mostert I, Bester R, Burger JT, Maree HJ. Identification of Interactions between Proteins Encoded by Grapevine Leafroll-Associated Virus 3. Viruses 2023; 15:208. [PMID: 36680248 PMCID: PMC9865355 DOI: 10.3390/v15010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
The roles of proteins encoded by members of the genus Ampelovirus, family Closteroviridae are largely inferred by sequence homology or analogy to similarly located ORFs in related viruses. This study employed yeast two-hybrid and bimolecular fluorescence complementation assays to investigate interactions between proteins of grapevine leafroll-associated virus 3 (GLRaV-3). The p5 movement protein, HSP70 homolog, coat protein, and p20B of GLRaV-3 were all found to self-interact, however, the mechanism by which p5 interacts remains unknown due to the absence of a cysteine residue crucial for the dimerisation of the closterovirus homolog of this protein. Although HSP70h forms part of the virion head of closteroviruses, in GLRaV-3, it interacts with the coat protein that makes up the body of the virion. Silencing suppressor p20B has been shown to interact with HSP70h, as well as the major coat protein and the minor coat protein. The results of this study suggest that the virion assembly of a member of the genus Ampelovirus occurs in a similar but not identical manner to those of other genera in the family Closteroviridae. Identification of interactions of p20B with virus structural proteins provides an avenue for future research to explore the mechanisms behind the suppression of host silencing and suggests possible involvement in other aspects of the viral replication cycle.
Collapse
Affiliation(s)
- Ilani Mostert
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Rachelle Bester
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Citrus Research International, P.O. Box 2201, Matieland 7602, South Africa
| | - Johan T. Burger
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Hans J. Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Citrus Research International, P.O. Box 2201, Matieland 7602, South Africa
| |
Collapse
|
4
|
Vondras AM, Lerno L, Massonnet M, Minio A, Rowhani A, Liang D, Garcia J, Quiroz D, Figueroa‐Balderas R, Golino DA, Ebeler SE, Al Rwahnih M, Cantu D. Rootstock influences the effect of grapevine leafroll-associated viruses on berry development and metabolism via abscisic acid signalling. MOLECULAR PLANT PATHOLOGY 2021; 22:984-1005. [PMID: 34075700 PMCID: PMC8295520 DOI: 10.1111/mpp.13077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 05/14/2023]
Abstract
Grapevine leafroll-associated virus (GLRaV) infections are accompanied by symptoms influenced by host genotype, rootstock, environment, and which individual or combination of GLRaVs is present. Using a dedicated experimental vineyard, we studied the responses to GLRaVs in ripening berries from Cabernet Franc grapevines grafted to different rootstocks and with zero, one, or pairs of leafroll infection(s). RNA sequencing data were mapped to a high-quality Cabernet Franc genome reference assembled to carry out this study and integrated with hormone and metabolite abundance data. This study characterized conserved and condition-dependent responses to GLRaV infection(s). Common responses to GLRaVs were reproduced in two consecutive years and occurred in plants grafted to different rootstocks in more than one infection condition. Though different infections were inconsistently distinguishable from one another, the effects of infections in plants grafted to different rootstocks were distinct at each developmental stage. Conserved responses included the modulation of genes related to pathogen detection, abscisic acid (ABA) signalling, phenylpropanoid biosynthesis, and cytoskeleton remodelling. ABA, ABA glucose ester, ABA and hormone signalling-related gene expression, and the expression of genes in several transcription factor families differentiated the effects of GLRaVs in berries from Cabernet Franc grapevines grafted to different rootstocks. These results support that ABA participates in the shared responses to GLRaV infection and differentiates the responses observed in grapevines grafted to different rootstocks.
Collapse
Affiliation(s)
- Amanda M. Vondras
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Larry Lerno
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Mélanie Massonnet
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Andrea Minio
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Adib Rowhani
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Dingren Liang
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Jadran Garcia
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Daniela Quiroz
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Deborah A. Golino
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Susan E. Ebeler
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Maher Al Rwahnih
- Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Dario Cantu
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
5
|
Song Y, Hanner RH, Meng B. Probing into the Effects of Grapevine Leafroll-Associated Viruses on the Physiology, Fruit Quality and Gene Expression of Grapes. Viruses 2021; 13:v13040593. [PMID: 33807294 PMCID: PMC8066071 DOI: 10.3390/v13040593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Grapevine leafroll is one of the most widespread and highly destructive grapevine diseases that is responsible for great economic losses to the grape and wine industries throughout the world. Six distinct viruses have been implicated in this disease complex. They belong to three genera, all in the family Closteroviridae. For the sake of convenience, these viruses are named as grapevine leafroll-associated viruses (GLRaV-1, -2, -3, -4, -7, and -13). However, their etiological role in the disease has yet to be established. Furthermore, how infections with each GLRaV induce the characteristic disease symptoms remains unresolved. Here, we first provide a brief overview on each of these GLRaVs with a focus on genome structure, expression strategies and gene functions, where available. We then provide a review on the effects of GLRaV infection on the physiology, fruit quality, fruit chemical composition, and gene expression of grapevine based on the limited information so far reported in the literature. We outline key methodologies that have been used to study how GLRaV infections alter gene expression in the grapevine host at the transcriptomic level. Finally, we present a working model as an initial attempt to explain how infections with GLRaVs lead to the characteristic symptoms of grapevine leafroll disease: leaf discoloration and downward rolling. It is our hope that this review will serve as a starting point for grapevine virology and the related research community to tackle this vastly important and yet virtually uncharted territory in virus-host interactions involving woody and perennial fruit crops.
Collapse
Affiliation(s)
- Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Robert H. Hanner
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 53876)
| |
Collapse
|
6
|
Prator CA, Chooi KM, Jones D, Davy MW, MacDiarmid RM, Almeida RPP. Comparison of two different host plant genera responding to grapevine leafroll-associated virus 3 infection. Sci Rep 2020; 10:8505. [PMID: 32444786 PMCID: PMC7244584 DOI: 10.1038/s41598-020-64972-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/17/2020] [Indexed: 11/08/2022] Open
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the most important viruses of grapevine but, despite this, there remain several gaps in our understanding of its biology. Because of its narrow host range - limited to Vitis species - and because the virus is restricted to the phloem, most GLRaV-3 research has concentrated on epidemiology and the development of detection assays. The recent discovery that GLRaV-3 can infect Nicotiana benthamiana, a plant model organism, makes new opportunities available for research in this field. We used RNA-seq to compare both V. vinifera and P1/HC-Pro N. benthamiana host responses to GLRaV-3 infection. Our analysis revealed that the majority of DEGs observed between the two hosts were unique although responses between the two hosts also showed several shared gene expression results. When comparing gene expression patterns that were shared between the two hosts, we observed the downregulation of genes associated with stress chaperones, and the induction of gene families involved in primary plant physiological processes. This is the first analysis of gene expression profiles beyond Vitis to mealybug-transmitted GLRaV-3 and demonstrates that N. benthamiana could serve as a useful tool for future studies of GLRaV-3-host interactions.
Collapse
Affiliation(s)
- Cecilia A Prator
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Dan Jones
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Marcus W Davy
- The New Zealand Institute for Plant and Food Research Limited, Te Puke, New Zealand
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
7
|
Liu J, Fan H, Wang Y, Han C, Wang X, Yu J, Li D, Zhang Y. Genome-Wide microRNA Profiling Using Oligonucleotide Microarray Reveals Regulatory Networks of microRNAs in Nicotiana benthamiana During Beet Necrotic Yellow Vein Virus Infection. Viruses 2020; 12:E310. [PMID: 32178444 PMCID: PMC7150760 DOI: 10.3390/v12030310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/15/2023] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) infections induce stunting and leaf curling, as well as root and floral developmental defects and leaf senescence in Nicotiana benthamiana. A microarray analysis with probes capable of detecting 1596 candidate microRNAs (miRNAs) was conducted to investigate differentially expressed miRNAs and their targets upon BNYVV infection of N. benthamiana plants. Eight species-specific miRNAs of N. benthamiana were identified. Comprehensive characterization of the N. benthamiana microRNA profile in response to the BNYVV infection revealed that 129 miRNAs were altered, including four species-specific miRNAs. The targets of the differentially expressed miRNAs were predicted accordingly. The expressions of miR164, 160, and 393 were up-regulated by BNYVV infection, and those of their target genes, NAC21/22, ARF17/18, and TIR, were down-regulated. GRF1, which is a target of miR396, was also down-regulated. Further genetic analysis of GRF1, by Tobacco rattle virus-induced gene silencing, assay confirmed the involvement of GRF1 in the symptom development during BNYVV infection. BNYVV infection also induced the up-regulation of miR168 and miR398. The miR398 was predicted to target umecyanin, and silencing of umecyanin could enhance plant resistance against viruses, suggesting the activation of primary defense response to BNYVV infection in N. benthamiana. These results provide a global profile of miRNA changes induced by BNYVV infection and enhance our understanding of the mechanisms underlying BNYVV pathogenesis.
Collapse
Affiliation(s)
- Junying Liu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
- Laboratory of Phytopathology, College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Huiyan Fan
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Chenggui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Xianbing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| |
Collapse
|
8
|
Chitarra W, Pagliarani C, Abbà S, Boccacci P, Birello G, Rossi M, Palmano S, Marzachì C, Perrone I, Gambino G. miRVIT: A Novel miRNA Database and Its Application to Uncover Vitis Responses to Flavescence dorée Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1034. [PMID: 30065744 PMCID: PMC6057443 DOI: 10.3389/fpls.2018.01034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 05/08/2023]
Abstract
Micro(mi)RNAs play crucial roles in plant developmental processes and in defense responses to biotic and abiotic stresses. In the last years, many works on small RNAs in grapevine (Vitis spp.) were published, and several conserved and putative novel grapevine-specific miRNAs were identified. In order to reorganize the high quantity of available data, we produced "miRVIT," the first database of all novel grapevine miRNA candidates characterized so far, and still not deposited in miRBase. To this aim, each miRNA accession was renamed, repositioned in the last version of the grapevine genome, and compared with all the novel and conserved miRNAs detected in grapevine. Conserved and novel miRNAs cataloged in miRVIT were then used for analyzing Vitis vinifera plants infected by Flavescence dorée (FD), one of the most severe phytoplasma diseases affecting grapevine. The analysis of small RNAs from healthy, recovered (plants showing spontaneous and stable remission of symptoms), and FD-infected "Barbera" grapevines showed that FD altered the expression profiles of several miRNAs, including those involved in cell development and photosynthesis, jasmonate signaling, and disease resistance response. The application of miRVIT in a biological context confirmed the effectiveness of the followed approach, especially for the identification of novel miRNA candidates in grapevine. miRVIT database is available at http://mirvit.ipsp.cnr.it. Highlights: The application of the newly produced database of grapevine novel miRNAs to the analysis of plants infected by Flavescence dorée reveals key roles of miRNAs in photosynthesis and jasmonate signaling.
Collapse
Affiliation(s)
- Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
- Viticultural and Enology Research Centre, Council for Agricultural Research and Economics, Conegliano, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giancarlo Birello
- Research Institute on Sustainable Economic Growth, National Research Council of Italy, Turin, Italy
| | - Marika Rossi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| |
Collapse
|
9
|
Comparative Analysis of MicroRNA Expression in Three Paulownia Species with Phytoplasma Infection. FORESTS 2018. [DOI: 10.3390/f9060302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Chaudhary V, Jangra S, Yadav NR. Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection. J Nanobiotechnology 2018; 16:40. [PMID: 29653577 PMCID: PMC5897953 DOI: 10.1186/s12951-018-0368-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/07/2018] [Indexed: 12/31/2022] Open
Abstract
Nanobiotechnology has the potential to revolutionize diverse sectors including medicine, agriculture, food, textile and pharmaceuticals. Disease diagnostics, therapeutics and crop protection strategies are fast emerging using nanomaterials preferably nanobiomaterials. It has potential for development of novel nanobiomolecules which offer several advantages over conventional treatment methods. RNA nanoparticles with many unique features are promising candidates in disease treatment. The miRNAs are involved in many biochemical and developmental pathways and their regulation in plants and animals. These appear to be a powerful tool for controlling various pathological diseases in human, plants and animals, however there are challenges associated with miRNA based nanotechnology. Several advancements made in the field of miRNA therapeutics make it an attractive approach, but a lot more has to be explored in nanotechnology assisted miRNA therapy. The miRNA based technologies can be employed for detection and combating crop diseases as well. Despite these potential advantages, nanobiotechnology applications in the agricultural sector are still in its infancy and have not yet made its mark in comparison with healthcare sector. The review provides a platform to discuss nature, role and use of miRNAs in nanobiotechnology applications.
Collapse
Affiliation(s)
- Vrantika Chaudhary
- Department of Molecular Biology, Biotechnology and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Sumit Jangra
- Department of Molecular Biology, Biotechnology and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Neelam R. Yadav
- Department of Molecular Biology, Biotechnology and Bioinformatics, CCS Haryana Agricultural University, Hisar, 125004 India
| |
Collapse
|
11
|
Visser M, Cook G, Burger JT, Maree HJ. In silico analysis of the grapefruit sRNAome, transcriptome and gene regulation in response to CTV-CDVd co-infection. Virol J 2017; 14:200. [PMID: 29058618 PMCID: PMC5651572 DOI: 10.1186/s12985-017-0871-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/16/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Small RNA (sRNA) associated gene regulation has been shown to play a significant role during plant-pathogen interaction. In commercial citrus orchards co-infection of Citrus tristeza virus (CTV) and viroids occur naturally. METHODS A next-generation sequencing-based approach was used to study the sRNA and transcriptional response in grapefruit to the co-infection of CTV and Citrus dwarfing viroid. RESULTS The co-infection resulted in a difference in the expression of a number of sRNA species when comparing healthy and infected plants; the majority of these were derived from transcripts processed in a phased manner. Several RNA transcripts were also differentially expressed, including transcripts derived from two genes, predicted to be under the regulation of sRNAs. These genes are involved in plant hormone systems; one in the abscisic acid, and the other in the cytokinin regulatory pathway. Additional analysis of virus- and viroid-derived small-interfering RNAs (siRNAs) showed areas on the pathogen genomes associated with increased siRNA synthesis. Most interestingly, the starting position of the p23 silencing suppressor's sub-genomic RNA generated a siRNA hotspot on the CTV genome. CONCLUSIONS This study showed the involvement of various genes, as well as endogenous and exogenous RNA-derived sRNA species in the plant-defence response. The results highlighted the role of sRNA-directed plant hormone regulation during biotic stress, as well as a counter-response of plants to virus suppressors of RNA-silencing.
Collapse
Affiliation(s)
- Marike Visser
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Glynnis Cook
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Citrus Research International, Nelspruit, South Africa
| | - Johan T. Burger
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Hans J. Maree
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Agricultural Research Council, Infruitec-Nietvoorbij: Institute for Deciduous Fruit, Vines and Wine, Stellenbosch, South Africa
| |
Collapse
|