1
|
Zhou L, Zhou H, Fan Y, Wang J, Zhang R, Guo Z, Li Y, Kang R, Zhang Z, Yang D, Liu J. Metagenomics to Identify Viral Communities Associated with Porcine Respiratory Disease Complex in Tibetan Pigs in the Tibetan Plateau, China. Pathogens 2024; 13:404. [PMID: 38787256 PMCID: PMC11124006 DOI: 10.3390/pathogens13050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Tibetan pig is a unique pig breed native to the Qinghai-Tibet Plateau. To investigate viral communities associated with porcine respiratory disease complex (PRDC), 167 respiratory samples were collected from Tibetan pigs in the Ganzi Tibetan autonomous prefecture of Sichuan province. Following library construction and Illunima Novaseq sequencing, 18 distinct viruses belonging to 15 viral taxonomic families were identified in Tibetan pigs with PRDC. Among the 18 detected viruses, 3 viruses were associated with PRDC, including porcine circovirus type 2 (PCV-2), Torque teno sus virus (TTSuV), and porcine cytomegalovirus (PCMV). The genomic sequences of two PCV-2 strains, three TTSuV strains, and one novel Porprismacovirus strain were assembled by SOAPdenovo software (v2). Sequence alignment and phylogenetic analysis showed that both PCV-2 strains belonged to PCV-2d, three TTSuVs were classified to TTSuV2a and TTSuV2b genotypes, and the Porprismacovirus strain PPMV-SCgz-2022 showed a close genetic relationship with a virus of human origin. Recombination analysis indicated that PPMV-SCgz-2022 may have originated from recombination events between Human 16,806 × 66-213 strain and Porcine 17,668 × 82-593 strain. Furthermore, the high proportion of single infection or co-infection of PCV2/TTSuV2 provides insight into PRDC infection in Tibetan pigs. This is the first report of the viral communities in PRDC-affected Tibetan pigs in this region, and the results provides reference for the prevention and control of respiratory diseases in these animals.
Collapse
Affiliation(s)
- Long Zhou
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Han Zhou
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Yandi Fan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Jinghao Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Rui Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Zijing Guo
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Yanmin Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Runmin Kang
- Sichuan Animal Science Academy, Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Chengdu 610066, China;
| | - Zhidong Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Danjiao Yang
- Institute of Animal Science of Ganzi Tibetan Autonomous Prefecture of Sichuan Province, Kangding 626000, China
| | - Jie Liu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| |
Collapse
|
2
|
Luo R, Guan A, Ma B, Gao Y, Peng Y, He Y, Xu Q, Li K, Zhong Y, Luo R, Cao R, Jin H, Lin Y, Shang P. Developmental Dynamics of the Gut Virome in Tibetan Pigs at High Altitude: A Metagenomic Perspective across Age Groups. Viruses 2024; 16:606. [PMID: 38675947 PMCID: PMC11054254 DOI: 10.3390/v16040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Tibetan pig is a geographically isolated pig breed that inhabits high-altitude areas of the Qinghai-Tibetan plateau. At present, there is limited research on viral diseases in Tibetan pigs. This study provides a novel metagenomic exploration of the gut virome in Tibetan pigs (altitude ≈ 3000 m) across three critical developmental stages, including lactation, nursery, and fattening. The composition of viral communities in the Tibetan pig intestine, with a dominant presence of Microviridae phages observed across all stages of development, in combination with the previous literature, suggest that it may be associated with geographical locations with high altitude. Functional annotation of viral operational taxonomic units (vOTUs) highlights that, among the constantly increasing vOTUs groups, the adaptability of viruses to environmental stressors such as salt and heat indicates an evolutionary response to high-altitude conditions. It shows that the lactation group has more abundant viral auxiliary metabolic genes (vAMGs) than the nursery and fattening groups. During the nursery and fattening stages, this leaves only DNMT1 at a high level. which may be a contributing factor in promoting gut health. The study found that viruses preferentially adopt lytic lifestyles at all three developmental stages. These findings not only elucidate the dynamic interplay between the gut virome and host development, offering novel insights into the virome ecology of Tibetan pigs and their adaptation to high-altitude environments, but also provide a theoretical basis for further studies on pig production and epidemic prevention under extreme environmental conditions.
Collapse
Affiliation(s)
- Runbo Luo
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Aohan Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Bin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yuan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yuna Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yanling He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Qianshuai Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Kexin Li
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
| | - Yanan Zhong
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Ruibing Cao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China; (A.G.); (B.M.); (Y.G.); (Y.P.); (Y.H.); (Q.X.); (R.L.); (H.J.)
- College of Animal Medicine, Huazhong Agricultural University, Wuhan 430000, China
| | - Yan Lin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (R.L.); (K.L.); (Y.Z.)
| |
Collapse
|
3
|
Charoenkul K, Thaw YN, Phyu EM, Jairak W, Nasamran C, Chamsai E, Chaiyawong S, Amonsin A. First detection and genetic characterization of canine bufavirus in domestic dogs, Thailand. Sci Rep 2024; 14:4773. [PMID: 38413640 PMCID: PMC10899236 DOI: 10.1038/s41598-024-54914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/18/2024] [Indexed: 02/29/2024] Open
Abstract
Canine bufavirus (CBuV) was reported in domestic dogs worldwide. We conducted a survey of canine bufavirus in domestic dogs in Thailand from September 2016 to October 2022. Rectal swab samples (n = 531) were collected from asymptomatic dogs and dogs with gastroenteritis signs. The samples were tested for CBuV using PCR with specific primers to the VP1/VP2 gene, and 9.42% (50/531) was CBuV positive. Our findings showed that CBuVs could be detected in both symptomatic and healthy dogs. The Thai CBuVs were found in dogs from different age groups, with a significant presence in those under 1 year (12.60%) and dogs aged 1-5 years (7.34%) (p < 0.05), suggesting a high prevalence of Thai CBuVs in dogs under 5 years of age. We performed complete genome sequencing (n = 15) and partial VP1/VP2 sequencing (n = 5) of Thai CBuVs. Genetic and phylogenetic analyses showed that whole genomes of Thai CBuVs were closely related to Chinese and Italian CBuVs, suggesting the possible origin of Thai CBuVs. The analysis of VP1 and VP2 genes in Thai CBuVs showed that 18 of them were placed in subgroup A, while only 2 belonged to subgroup B. This study is the first to report the detection and genetic characterization of CBuVs in domestic dogs in Thailand. Additionally, surveillance and genetic characterization of CBuVs in domestic animals should be further investigated on a larger scale to elucidate the dynamic, evolution, and distribution of CBuVs.
Collapse
Affiliation(s)
- Kamonpan Charoenkul
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yu Nandi Thaw
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Eaint Min Phyu
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Waleemas Jairak
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanakarn Nasamran
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ekkapat Chamsai
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
| | - Supassama Chaiyawong
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Alongkorn Amonsin
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand.
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Pan Y, Qiu S, Chen R, Zhang T, Liang L, Wang M, Baloch AR, Wang L, Zhang Q, Yu S. Molecular detection and phylogenetic analysis of porcine circovirus type 3 in Tibetan pigs on the Qinghai-Tibet Plateau of China. Virol J 2022; 19:64. [PMID: 35392945 PMCID: PMC8991800 DOI: 10.1186/s12985-022-01792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
Background Porcine circovirus type 3 (PCV3) has been confirmed to infect pigs, posing a health risk and making pigs more susceptible to other pathogens. After the first report of PCV3 infection in the United States, its prevalence was determined in pigs suffering from clinical digestive or respiratory diseases in several other regions, including the Sichuan and Gansu provinces of China. In this study, we describe the frequency of PCV3 detection in Tibetan pigs inhabiting three different provinces surrounding the Qinghai-Tibet Plateau of China. Methods A total of 316 samples from diarrheic animals and 182 samples from healthy animals were collected in a randomized manner. Conventional PCR was applied for PCV3 DNA detection. The conserved regions of the PCV3 gene were analyzed with MEGA 7.1 software to design specific primers to sequence entire Cap genes in PCV3 strains, and the sequences were then used to confirm the subtypes of PCV3 in the positive samples. Prediction of the amino acid sequences by nucleotide sequence translation was also performed to compare the point mutations in the entire Cap protein. Twenty PCV3 whole-genomic sequences were used for genome phylogenetic analyses of PCV3 and sequence alignments with 22 other reference strains. Results We found that the prevalence of the virus was significantly higher in samples from pigs with diarrhoea than that in samples from healthy pigs. Phylogenetic analysis of Cap proteins demonstrated that the 20 PCV3 strains formed three clades, including PCV3a (8/20, 40.00%), PCV3b (5/20, 25%) and PCV3c (7/20, 35.00%). The complete genome sequence revealed that these strains formed one branch in the phylogenetic tree. Sequence analysis showed that the Cap proteins of the 20 different viral strains shared between 95.84 and 99.18% nucleotide identity. Cap protein sequence analyses showed that the positivity rate of PCV3a was highest in the samples from pigs with diarrhoea. In comparison, PCV3c was the most elevated subtype in the healthy samples. There was no mutation at a specific site in the amino acid sequences of the entire Cap protein from different PCV3 subtype strains from heathy samples. There was a mutation at site 113 in PCV3a, site 129 in PCV3b, and site 116 in PCV3c. Conclusion Our present data provide evidence that PCV3 is prevalent in Tibetan pigs at high altitudes in China, and the higher prevalence rates of the PCV3a and PCV3b subtypes in samples from pigs with diarrhoea further indicate that the genotypes should not be neglected during surveys of the pathogenicity of PCV3. Phylogenetic and genetic diversity analyses suggested that the continuous evolution, adaptation and mechanisms of pathogenicity of PCV3 in Tibetan pigs living in this special environment should be further studied.
Collapse
Affiliation(s)
- Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Rui Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Tiantian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Linfeng Liang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Abdul Rasheed Baloch
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
5
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
6
|
Qi M, Cao Z, Shang P, Zhang H, Hussain R, Mehmood K, Chang Z, Wu Q, Dong H. Comparative analysis of fecal microbiota composition diversity in Tibetan piglets suffering from diarrheagenic Escherichia coli (DEC). Microb Pathog 2021; 158:105106. [PMID: 34311015 DOI: 10.1016/j.micpath.2021.105106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
This study was ascertained to investigate the adverse effects of pathogenic E. coli on gut microbiota of Tibetan piglets with history of yellow and white dysentery. For this purpose, a total of 18 fecal samples were collected from infected and healthy Tibetan piglets for 16S rRNA gene amplification and sequencing of V3-V4 region. Results showed that Firmicutes, Bacteroidia Fusobacteriota, Proteobacteria and Actinobacteriota were the predominant bacteria in Tibetan piglets at the level of phylum classification. Results on classification at family level showed that Lactobacillus, Bacteroidota, Fusobacteriota and Enterobacteriaceae were the dominant bacteria. Results on classification of bacteria at phylum level compared with normal piglets indicated that Bacteroidota, Actinobacteriota, Euryarchaota and Spirochaetota in fecal microbial community in Tibetan piglets showing yellow dysenteric and diarrhea group were significantly decreased (P ≤ 0.05). Compared with the feces of healthy Tibetan piglets, the abundance of Escherichia-Shigella, Lactobacillus and Enterococcus increased significantly in feces of Tibetan piglets having yellow dysentery and white dysentery. Moreover, results exhibited that the Proteobacteria and Fusobacteriota were significantly increased (P ≤ 0.05) suggesting dominant microbial community. Results revealed that E. coli induced different pathological alterations in intestine including damage to intestinal epithelial cells, infiltration of inflammatory cells, presence of red blood cells in spaces of tissues, hemorrhages and necrosis of intestinal villi in piglets with history of yellow dysentery. This study for the first time reported the composition, characteristics, and differences of the fecal microflora diversity of Tibetan piglets with yellow and white dysentery in Qinghai-Tibet Plateau, which can provide a suitable support for effective control of diarrhoeal disease in these animals.
Collapse
Affiliation(s)
- Ming Qi
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, China
| | - Zhipeng Cao
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Zhenyu Chang
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, China
| | - Qingxia Wu
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, China
| | - Hailong Dong
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, China.
| |
Collapse
|