1
|
Song P, Ma N, Dong S, Qiao H, Zhang J, Guan B, Tong S, Zhao Y. Enhancing Acetate Utilization in Phaeodactylum tricornutum through the Introduction of Acetate Transport Protein. Biomolecules 2024; 14:822. [PMID: 39062536 PMCID: PMC11274376 DOI: 10.3390/biom14070822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The diatom Phaeodactylum tricornutum, known for its high triacylglycerol (TAG) content and significant levels of n-3 long chain polyunsaturated fatty acids (LC-PUFAs), such as eicosapentaenoic acid (EPA), has a limited ability to utilize exogenous organic matter. This study investigates the enhancement of acetate utilization in P. tricornutum by introducing an exogenous acetate transport protein. The acetate transporter gene ADY2 from Saccharomyces cerevisiae endowed the organism with the capability to assimilate acetate and accelerating its growth. The transformants exhibited superior growth rates at an optimal NaAc concentration of 0.01 M, with a 1.7- to 2.0-fold increase compared to the wild-type. The analysis of pigments and photosynthetic activities demonstrated a decline in photosynthetic efficiency and maximum electron transport rate. This decline is speculated to result from the over-reduction of the electron transport components between photosystems due to acetate utilization. Furthermore, the study assessed the impact of acetate on the crude lipid content and fatty acid composition, revealing an increase in the crude lipid content and alterations in fatty acid profiles, particularly an increase in C16:1n-7 at the expense of EPA and a decrease in the unsaturation index. The findings provide insights into guiding the biomass and biologically active products production of P. tricornutum through metabolic engineering.
Collapse
Affiliation(s)
- Pu Song
- School of Life Sciences, Ludong University, Yantai 264025, China; (P.S.); (N.M.); (S.D.); (J.Z.); (S.T.); (Y.Z.)
| | - Ning Ma
- School of Life Sciences, Ludong University, Yantai 264025, China; (P.S.); (N.M.); (S.D.); (J.Z.); (S.T.); (Y.Z.)
| | - Shaokun Dong
- School of Life Sciences, Ludong University, Yantai 264025, China; (P.S.); (N.M.); (S.D.); (J.Z.); (S.T.); (Y.Z.)
| | - Hongjin Qiao
- School of Life Sciences, Ludong University, Yantai 264025, China; (P.S.); (N.M.); (S.D.); (J.Z.); (S.T.); (Y.Z.)
| | - Jumei Zhang
- School of Life Sciences, Ludong University, Yantai 264025, China; (P.S.); (N.M.); (S.D.); (J.Z.); (S.T.); (Y.Z.)
| | - Bo Guan
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China;
| | - Shanying Tong
- School of Life Sciences, Ludong University, Yantai 264025, China; (P.S.); (N.M.); (S.D.); (J.Z.); (S.T.); (Y.Z.)
| | - Yancui Zhao
- School of Life Sciences, Ludong University, Yantai 264025, China; (P.S.); (N.M.); (S.D.); (J.Z.); (S.T.); (Y.Z.)
| |
Collapse
|
2
|
Sun H, Wang J, Li Y, Yang S, Chen DD, Tu Y, Liu J, Sun Z. Synthetic biology in microalgae towards fucoxanthin production for pharmacy and nutraceuticals. Biochem Pharmacol 2024; 220:115958. [PMID: 38052271 DOI: 10.1016/j.bcp.2023.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Synthetic biology has emerged as a powerful tool for engineering biological systems to produce valuable compounds, including pharmaceuticals and nutraceuticals. Microalgae, in particular, offer a promising platform for the production of bioactive compounds due to their high productivity, low land and water requirements, and ability to perform photosynthesis. Fucoxanthin, a carotenoid pigment found predominantly in brown seaweeds and certain microalgae, has gained significant attention in recent years due to its numerous health benefits, such as antioxidation, antitumor effect and precaution osteoporosis. This review provides an overview of the principles and applications of synthetic biology in the microbial engineering of microalgae for enhanced fucoxanthin production. Firstly, the fucoxanthin bioavailability and metabolism in vivo was introduced for the beneficial roles, followed by the biological functions of anti-oxidant activity, anti-inflammatory activity, antiapoptotic role antidiabetic and antilipemic effects. Secondly, the cultivation condition and strategy were summarized for fucoxanthin improvement with low production costs. Thirdly, the genetic engineering of microalgae, including gene overexpression, knockdown and knockout strategies were discussed for further improving the fucoxanthin production. Then, synthetic biology tools of CRISPR-Cas9 genome editing, transcription activator-like effector nucleases as well as modular assembly and chassis engineering were proposed to precise modification of microalgal genomes to improve fucoxanthin production. Finally, challenges and future perspectives were discussed to realize the industrial production and development of functional foods of fucoxanthin from microalgae.
Collapse
Affiliation(s)
- Han Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuelian Li
- China National Chemical Information Center, Beijing 100020, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | | | - Yidong Tu
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Algae Innovation Center for Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Zheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| |
Collapse
|
3
|
Agarwal A, Selvam A, Majood M, Agrawal O, Chakrabarti S, Mukherjee M. Carbon nanosheets to unravel the production of bioactive compounds from microalgae: A robust approach in drug discovery. Drug Discov Today 2023; 28:103586. [PMID: 37080385 DOI: 10.1016/j.drudis.2023.103586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
The conglomeration of active pharmaceutical ingredients (APIs) has influenced the development of life-saving drugs. These APIs are customarily synthetic products, albeit with adverse side effects. Thus, to overcome the bottlenecks associated with synthetically derived APIs, the approach of photocatalytically obtaining bioactive compounds from natural ingredients has emerged. Amid the pool of photoactive nanomaterials, this short review emphasizes the intelligent strategy of exploiting photoactive carbon nanosheets to photocatalytically derive bioactive compounds from natural algal biomass to treat many acute or chronic medical conditions. Carbon nanosheets result in phototrophic harvesting of bioactive compounds from microalgae as a result of their being an effective biocatalyst that increases the rate of photosynthesis. To understand the clinical translation of bioactive compounds, the pharmacodynamics of algal bioactive compounds are highlighted to determine the practicality and feasibility of using this green approach for pharmaceutical drug discovery.
Collapse
Affiliation(s)
- Aakanksha Agarwal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India; Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
4
|
Baldisserotto C, Demaria S, Arcidiacono M, Benà E, Giacò P, Marchesini R, Ferroni L, Benetti L, Zanella M, Benini A, Pancaldi S. Enhancing Urban Wastewater Treatment through Isolated Chlorella Strain-Based Phytoremediation in Centrate Stream: An Analysis of Algae Morpho-Physiology and Nutrients Removal Efficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:1027. [PMID: 36903888 PMCID: PMC10004828 DOI: 10.3390/plants12051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The release of inadequately treated urban wastewater is the main cause of environmental pollution of aquatic ecosystems. Among efficient and environmentally friendly technologies to improve the remediation process, those based on microalgae represent an attractive alternative due to the potential of microalgae to remove nitrogen (N) and phosphorus (P) from wastewaters. In this work, microalgae were isolated from the centrate stream of an urban wastewater treatment plant and a native Chlorella-like species was selected for studies on nutrient removal from centrate streams. Comparative experiments were set up using 100% centrate and BG11 synthetic medium, modified with the same N and P as the effluent. Since microalgal growth in 100% effluent was inhibited, cultivation of microalgae was performed by mixing tap-freshwater with centrate at increasing percentages (50%, 60%, 70%, and 80%). While algal biomass and nutrient removal was little affected by the differently diluted effluent, morpho-physiological parameters (FV/FM ratio, carotenoids, chloroplast ultrastructure) showed that cell stress increased with increasing amounts of centrate. However, the production of an algal biomass enriched in carotenoids and P, together with N and P abatement in the effluent, supports promising microalgae applications that combine centrate remediation with the production of compounds of biotechnological interest; for example, for organic agriculture.
Collapse
Affiliation(s)
- Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Sara Demaria
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Michela Arcidiacono
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Elisa Benà
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Pierluigi Giacò
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Roberta Marchesini
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Linda Benetti
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy
| | - Marcello Zanella
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy
| | - Alessio Benini
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
- Terra&Acqua Tech Laboratory, Technopole of the University of Ferrara, Via Saragat, 13, 44122 Ferrara, Italy
| |
Collapse
|
5
|
Agarwal A, Jeevanandham S, Sangam S, Chakraborty A, Mukherjee M. Exploring the Role of Carbon-Based Nanomaterials in Microalgae for the Sustainable Production of Bioactive Compounds and Beyond. ACS OMEGA 2022; 7:22061-22072. [PMID: 35811909 PMCID: PMC9260754 DOI: 10.1021/acsomega.2c01009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/03/2022] [Indexed: 05/05/2023]
Abstract
An enchanting yet challenging task is the development of higher productivity in plants to meet the ample food demands for the growing global population while harmonizing the ecosystem using front-line technologies. This has kindled the practice of green microalgae cultivation as a driver of key biostimulant products, targeting agronomic needs. To this end, a prodigious and economical strategy for producing bioactive compounds (sources of secondary metabolites) from microalgae using carbon-based nanomaterials (CNMs) as a platform can circumvent these hurdles. Recently, the nanobionics approach of incorporating CNMs with living systems has emerged as a promising technique to develop organelles with new and augmented functions. Herein, we discuss the importance of 2D carbon nanosheets (CNS) as an alternative carbon source for the phototrophic cultivation of microalgae. CNS not only aids in cost reduction for algal cultivation but also confers combinatorial innate or exogenous functions that enhance its programmed biosynthetic metabolism, proliferation, or tolerance to stress. Moreover, the inherent ability of CNS to act as efficient biocatalysts can enhance the rate of photosynthesis. The primary focus of this mini-review is the development of an economic route for enhanced yield of bioactive compounds while simultaneously serving as a heterogeneous platform for enhancing the sustainable production of biostimulants including bioactive compounds from algal biomass for pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Aakanksha Agarwal
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
| | - Sampathkumar Jeevanandham
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
| | - Sujata Sangam
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
- Amity
Institute of Biotechnology, Amity University
Uttar Pradesh, Noida 201313, India
| | - Arnab Chakraborty
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
| | - Monalisa Mukherjee
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
- Amity
Institute of Biotechnology, Amity University
Uttar Pradesh, Noida 201313, India
- . Tel: +91(0)-120-4392194
| |
Collapse
|
6
|
Parsaeimehr A, Ahmed II, Deumaga MLK, Hankoua B, Ozbay G. Enhancement in phycobiliprotein accumulation in Aphanothece sp. using different carbon sources and flashing frequency. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
7
|
Improved growth of bait microalgae Isochrysis and aquacultural wastewater treatment with mixotrophic culture. Bioprocess Biosyst Eng 2022; 45:589-597. [PMID: 34994848 DOI: 10.1007/s00449-021-02681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/09/2021] [Indexed: 11/02/2022]
Abstract
This research of mixotrophic microalgae Isochrysis 3011 with glycerol was combined with the treatment of aqua-cultural wastewater, different initial concentrations, and optimized light intensities. The algae growth rate, removal efficiencies of total nitrogen (TN) and total phosphorus (TP) were determined. Results showed that the suitable initial concentration was 0.4 g L-1, and the optimum light intensity was 60 µmol m-2 s-1. The growth of the mixotrophic group was better than that of the autotrophic culture. The biomass yield of the mixotrophic group with glycerol was 0.17 g L-1 d-1, and the removal rates of TN and TP were 73.39% and 95.61%, respectively. The content of total lipid and total protein in mixotrophic group were higher than the values of the autotrophic group. This indicates that aquaculture wastewater treatment with mixotrophic bait microalgae can obtain superior micro-algal biomass, which is also a potential technology for wastewater utilization and ecological protection.
Collapse
|
8
|
Wu Q, Guo L, Wang Y, Zhao Y, Jin C, Gao M, She Z. Phosphorus uptake, distribution and transformation with Chlorella vulgaris under different trophic modes. CHEMOSPHERE 2021; 285:131366. [PMID: 34242982 DOI: 10.1016/j.chemosphere.2021.131366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) uptake, distribution and transformation are important processes associated with the growth and metabolism of microalgae. In this study, the fate of P in soluble microbial products (SMP), extracellular polymeric substances (EPS), and intracellular polymeric substances (IPS) of Chlorella vulgaris C7 in the form of inorganic P (IP) and organic P (OP) was studied under different trophic modes, including photoautotrophy, heterotrophy and mixotrophy. The results showed that mixotrophic cultivation of microalgae brought highest biomass yield, which was 2.09 times and 11.10 times higher than that of the photoautotrophic and heterotrophic conditions. Regarding P distribution and transformation, the trophic modes affected the transformation trends and rates of P in the form of IP and OP among SMP, EPS and IPS. Under photoautotrophic condition, EPS was the main P pool, and most of P in C. vulgaris was IP. While, under mixotrophic condition, IPS was the main P pool, and most of P was transformed to OP. The addition of glucose promoted the uptake of P by algal cells and the transformation of IP to OP, which accounted for 79.32% of total phosphorus at the end of cultivation. Collectively, mixotrophic cultivation was regarded as the optimum approach for microalgae cultivation and nutrient recovery.
Collapse
Affiliation(s)
- Qirui Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Yu Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
9
|
Castillo T, Ramos D, García-Beltrán T, Brito-Bazan M, Galindo E. Mixotrophic cultivation of microalgae: An alternative to produce high-value metabolites. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108183] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Mixotrophic cultivation of Thalassiosira pseudonana with pure and crude glycerol: Impact on lipid profile. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Zhang Z, Sun D, Cheng KW, Chen F. Investigation of carbon and energy metabolic mechanism of mixotrophy in Chromochloris zofingiensis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:36. [PMID: 33541405 PMCID: PMC7863362 DOI: 10.1186/s13068-021-01890-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/25/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Mixotrophy can confer a higher growth rate than the sum of photoautotrophy and heterotrophy in many microalgal species. Thus, it has been applied to biodiesel production and wastewater utilization. However, its carbon and energy metabolic mechanism is currently poorly understood. RESULTS To elucidate underlying carbon and energy metabolic mechanism of mixotrophy, Chromochloris zofingiensis was employed in the present study. Photosynthesis and glucose metabolism were found to operate in a dynamic balance during mixotrophic cultivation, the enhancement of one led to the lowering of the other. Furthermore, compared with photoautotrophy, non-photochemical quenching and photorespiration, considered by many as energy dissipation processes, were significantly reduced under mixotrophy. Comparative transcriptome analysis suggested that the intermediates of glycolysis could directly enter the chloroplast and replace RuBisCO-fixed CO2 to provide carbon sources for chloroplast organic carbon metabolism under mixotrophy. Therefore, the photosynthesis rate-limiting enzyme, RuBisCO, was skipped, allowing for more efficient utilization of photoreaction-derived energy. Besides, compared with heterotrophy, photoreaction-derived ATP reduced the need for TCA-derived ATP, so the glucose decomposition was reduced, which led to higher biomass yield on glucose. Based on these results, a mixotrophic metabolic mechanism was identified. CONCLUSIONS Our results demonstrate that the intermediates of glycolysis could directly enter the chloroplast and replace RuBisCO-fixed CO2 to provide carbon for photosynthesis in mixotrophy. Therefore, the photosynthesis rate-limiting enzyme, RuBisCO, was skipped in mixotrophy, which could reduce energy waste of photosynthesis while promote cell growth. This finding provides a foundation for future studies on mixotrophic biomass production and photosynthetic metabolism.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Life Sciences, Hebei University, Baoding, 071000, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Dongzhe Sun
- Nutrition & Health Research Institute, China National Cereals, Oils and Foodstuffs Corporation (COFCO), Beijing, 102209, People's Republic of China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
12
|
Altunoz M, Allesina G, Pedrazzi S, Guidetti E. Integration of biological waste conversion and wastewater treatment plants by microalgae cultivation. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Marchello AE, Oliveira NL, Lombardi AT, Polpo A. An investigation onto Cd toxicity to freshwater microalga Chlorella sorokiniana in mixotrophy and photoautotrophy: A Bayesian approach. CHEMOSPHERE 2018; 211:794-803. [PMID: 30099164 DOI: 10.1016/j.chemosphere.2018.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 05/28/2023]
Abstract
Aquatic ecosystems are composed by a myriad of dissolved organic materials that can be assimilated by microalgae, while they can perform photosynthesis, this is refereed as mixotrophy. However, ecotoxicological tests usually consider only the photoautotrophic metabolism. This research investigated the ecotoxicological differences between photoautotrophy and mixotrophy in Chlorella sorokiniana exposed to cadmium (Cd). Chlorophyll a, photosynthetic efficiency (Fv/Fm), cell viability, biochemical composition and pH were used to monitor possible toxic effects at 72 h cultures. Glucose (1 g.L-1) was used as organic carbon source. To evaluate the probability of the photoautotrophic culture being more affected by Cd than the mixotrophic one, Bayesian statistical analysis was performed. The photoautotrophic cultures were more affected by Cd than the mixotrophic ones, with reduction of all evaluated parameters, except for protein concentration. However, in mixotrophic cultures, no changes in protein concentration and proteins:carbohydrates ratio were observed, and chlorophyll a, Fv/Fm and cell viability were only affected at the high Cd concentrations (range ln -11.5 to -9.4). However, both mixotrophy and photoautotrophy had the same probability of having the carbohydrates concentration affected by Cd. We conclude that the microalgae in mixotrophy were more resistant to the Cd than in photoautotrophy. In addition, we showed that under photoautotrophy Fv/Fm decreased linearly as Cd concentration increased, but in mixotrophy no effect was observed up to 10-5 molL-1 Cd, after which it decreased. We rationale that the reduced photosynthetic capacity under mixotrophy can end up reducing the release of oxygen gas, which can compromise the entire aquatic ecosystem.
Collapse
Affiliation(s)
- Adriano Evandir Marchello
- Laboratory of Algal Biotechnology, Department of Botany, Federal University of São Carlos, São Carlos, Brazil; Post-graduate in Ecology and Natural Resources, Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil.
| | | | - Ana Teresa Lombardi
- Laboratory of Algal Biotechnology, Department of Botany, Federal University of São Carlos, São Carlos, Brazil
| | - Adriano Polpo
- Department of Statistics, Center of Exact Sciences and Technology, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
14
|
Ferroni L, Giovanardi M, Poggioli M, Baldisserotto C, Pancaldi S. Enhanced photosynthetic linear electron flow in mixotrophic green microalga Ettlia oleoabundans UTEX 1185. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:215-223. [PMID: 30014925 DOI: 10.1016/j.plaphy.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Basic understanding of the photosynthetic physiology of the oleaginous green microalga Ettlia oleoabundans is still very limited, including the modulation of the photosynthetic membrane upon metabolism conversion from autotrophy to mixotrophy. It was previously reported that, upon glucose supply in the culture medium, E. oleoabundans preserves photosystem II (PSII) from degradation by virtue of a higher packing of thylakoid complexes. In this work, it was investigated whether in the mixotrophic exponential growth phase the PSII activity is merely preserved or even enhanced. Modulated fluorescence parameters were then recorded under short-term treatments with increasing irradiance values of white light. It was found that the mixotrophic microalga down-regulated the chlororespiratory electron recycling from photosystem I (PSI), but enhanced the linear electron flow from PSII to PSI. Ability to keep PSII more open than in autotrophic growth conditions indicated that the respiration of the glucose taken up from the medium fed the carbon fixing reactions with CO2. The overall electron poise was indeed well regulated, with a lesser need for thermal dissipation of excess absorbed energy. It is proposed that the significant, though small, increase in PSII maximum quantum yield in mixotrophic cells just reflects an improved light energy use and an increased photochemical capacity as compared to the autotrophic cells.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Martina Giovanardi
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Mariachiara Poggioli
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy.
| |
Collapse
|
15
|
Sabia A, Clavero E, Pancaldi S, Salvadó Rovira J. Effect of different CO 2 concentrations on biomass, pigment content, and lipid production of the marine diatom Thalassiosira pseudonana. Appl Microbiol Biotechnol 2018; 102:1945-1954. [PMID: 29356867 DOI: 10.1007/s00253-017-8728-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023]
Abstract
The marine diatom Thalassiosira pseudonana grown under air (0.04% CO2) and 1 and 5% CO2 concentrations was evaluated to determine its potential for CO2 mitigation coupled with biodiesel production. Results indicated that the diatom cultures grown at 1 and 5% CO2 showed higher growth rates (1.14 and 1.29 div day-1, respectively) and biomass productivities (44 and 48 mgAFDWL-1 day-1) than air grown cultures (with 1.13 div day-1 and 26 mgAFDWL-1 day-1). The increase of CO2 resulted in higher cell volume and pigment content per cell of T. pseudonana. Interestingly, lipid content doubled when air was enriched with 1-5% CO2. Moreover, the analysis of the fatty acid composition of T. pseudonana revealed the predominance of monounsaturated acids (palmitoleic-16:1 and oleic-18:1) and a decrease of the saturated myristic acid-14:0 and polyunsaturated fatty acids under high CO2 levels. These results suggested that T. pseudonana seems to be an ideal candidate for biodiesel production using flue gases.
Collapse
Affiliation(s)
- Alessandra Sabia
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Esther Clavero
- Catalonia Institute for Energy Research, IREC, Marcel·lí Domingo, 2, 43007, Tarragona, Catalonia, Spain
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy.
| | - Joan Salvadó Rovira
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007, Tarragona, Spain
| |
Collapse
|
16
|
Abu Hajar HA, Riefler RG, Stuart BJ. Cultivation of the microalga Neochloris oleoabundans for biofuels production and other industrial applications (a review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817060096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Xue LL, Chen HH, Jiang JG. Implications of glycerol metabolism for lipid production. Prog Lipid Res 2017; 68:12-25. [PMID: 28778473 DOI: 10.1016/j.plipres.2017.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/06/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
Triacylglycerol (TAG) is an important product in oil-producing organisms. Biosynthesis of TAG can be completed through either esterification of fatty acids to glycerol backbone, or through esterification of 2-monoacylglycerol. This review will focus on the former pathway in which two precursors, fatty acid and glycerol-3-phosphate (G3P), are required for TAG formation. Tremendous progress has been made about the enzymes or genes that regulate the biosynthetic pathway of TAG. However, much attention has been paid to the fatty acid provision and the esterification process, while the possible role of G3P is largely neglected. Glycerol is extensively studied on its usage as carbon source for value-added products, but the modification of glycerol metabolism, which is directly associated with G3P synthesis, is seldom recognized in lipid investigations. The relevance among glycerol metabolism, G3P synthesis and lipid production is described, and the role of G3P in glycerol metabolism and lipid production are discussed in detail with an emphasis on how G3P affects lipid production through the modulation of glycerol metabolism. Observations of lipid metabolic changes due to glycerol related disruption in mammals, plants, and microorganisms are introduced. Altering glycerol metabolism results in the changes of final lipid content. Possible regulatory mechanisms concerning the relationship between glycerol metabolism and lipid production are summarized.
Collapse
Affiliation(s)
- Lu-Lu Xue
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China; (b)Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hao-Hong Chen
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
18
|
Giovanardi M, Poggioli M, Ferroni L, Lespinasse M, Baldisserotto C, Aro EM, Pancaldi S. Higher packing of thylakoid complexes ensures a preserved Photosystem II activity in mixotrophic Neochloris oleoabundans. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
A comparative analysis of biomass and lipid content in five Tribonema sp. strains at autotrophic, heterotrophic and mixotrophic cultivation. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.04.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Faè M, Accossato S, Cella R, Fontana F, Goldschmidt-Clermont M, Leelavathi S, Reddy VS, Longoni P. Comparison of transplastomic Chlamydomonas reinhardtii and Nicotiana tabacum expression system for the production of a bacterial endoglucanase. Appl Microbiol Biotechnol 2017; 101:4085-4092. [PMID: 28190097 DOI: 10.1007/s00253-017-8164-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 11/28/2022]
Abstract
The bulk production of recombinant enzymes by either prokaryotic or eukaryotic organisms might contribute to replace environmentally non-friendly chemistry-based industrial processes with enzyme-based biocatalysis, provided the cost of enzyme production is low. In this context, it is worth noting that the production of recombinant proteins by photosynthetic organisms offer both eukaryotic (nuclear) and prokaryotic (chloroplast) alternatives, along with the advantage of an autotrophic nutrition. Compared to nuclear transformation, chloroplast transformation generally allows a higher level of accumulation of the recombinant protein of interest. Furthermore, among the photosynthetic organisms, there is a choice of using either multicellular or unicellular ones. Tobacco, being a non-food and non-feed plant, has been considered as a good choice for producing enzymes with applications in technical industry, using a transplastomic approach. Also, unicellular green algae, in particular Chlamydomonas reinhardtii, have been proposed as candidate organisms for the production of recombinant proteins. In the light of the different features of these two transplastomic systems, we decided to make a direct comparison of the efficiency of production of a bacterial endoglucanase. With respect to the amount obtained, 14 mg g-1 of biomass fresh weight equivalent to 8-10% of the total protein content and estimated production cost, 1.5-2€ kg-1, tobacco proved to be far more favorable for bulk enzyme production when compared to C. reinhardtii which accumulated this endoglucanase at 0.003% of the total protein.
Collapse
Affiliation(s)
- Matteo Faè
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Sonia Accossato
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
- Laboratory of Plant Physiology, University of Neuchâtel, Rue Emilie-Argand 11, CH-2000, Neuchâtel, Switzerland
| | - Rino Cella
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Fabrizia Fontana
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, Sciences III, CH-1211, Genève, Switzerland
| | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, Sciences III, CH-1211, Genève, Switzerland
| | - Sadhu Leelavathi
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vanga Siva Reddy
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Paolo Longoni
- Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, Sciences III, CH-1211, Genève, Switzerland.
| |
Collapse
|
21
|
Baldisserotto C, Popovich C, Giovanardi M, Sabia A, Ferroni L, Constenla D, Leonardi P, Pancaldi S. Photosynthetic aspects and lipid profiles in the mixotrophic alga Neochloris oleoabundans as useful parameters for biodiesel production. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Blank CE, Hinman NW. Cyanobacterial and algal growth on chitin as a source of nitrogen; ecological, evolutionary, and biotechnological implications. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Silva HR, Prete CEC, Zambrano F, de Mello VH, Tischer CA, Andrade DS. Combining glucose and sodium acetate improves the growth of Neochloris oleoabundans under mixotrophic conditions. AMB Express 2016; 6:10. [PMID: 26847340 PMCID: PMC4816098 DOI: 10.1186/s13568-016-0180-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/14/2016] [Indexed: 11/12/2022] Open
Abstract
Mixotrophic cultivation is a potential approach to produce microalgal
biomass that can be used as raw materials for renewable biofuels and animal feed,
although using a suitable, cost-effective organic carbon source is crucial. Here, we
used a Box–Behnken design with three factors, the glucose and sodium acetate
concentrations, and the percentage of Bold’s basal medium (BBM), to evaluate the
effects of different carbon sources on biomass productivity and the protein and
lipid contents of Neochloris oleoabundans
(UTEX#1185). When grow at optimal levels of these factors, 100 % BBM plus
7.5 g L−1 each of glucose and sodium acetate, N. oleoabundans yielded
1.75 g L−1 of dry biomass, with 4.88 ± 0.09 % N,
24.01 ± 0.29–30.5 ± 0.38 % protein, and 34.4 % ± 0.81 lipids. A nuclear magnetic
resonance spectrum (1H-NMR) of a lipid extract showed
that the free fatty acid content was 11.25 %. Thus, combining glucose and sodium
acetate during the mixotrophic cultivation of N.
oleoabundans can yield greater amounts of biomass, proteins, and lipids
for biofuel production.
Collapse
|
24
|
Sabia A, Baldisserotto C, Biondi S, Marchesini R, Tedeschi P, Maietti A, Giovanardi M, Ferroni L, Pancaldi S. Re-cultivation of Neochloris oleoabundans in exhausted autotrophic and mixotrophic media: the potential role of polyamines and free fatty acids. Appl Microbiol Biotechnol 2015; 99:10597-609. [DOI: 10.1007/s00253-015-6908-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/20/2015] [Accepted: 08/01/2015] [Indexed: 11/28/2022]
|
25
|
Goecke F, Jerez CG, Zachleder V, Figueroa FL, Bišová K, Řezanka T, Vítová M. Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta). Front Microbiol 2015; 6:2. [PMID: 25674079 PMCID: PMC4309186 DOI: 10.3389/fmicb.2015.00002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/02/2015] [Indexed: 11/13/2022] Open
Abstract
Lanthanides are biologically non-essential elements with wide applications in technology and industry. Their concentration as environmental contaminants is, therefore, increasing. Although non-essential, lanthanides have been proposed (and even used) to produce beneficial effects in plants, even though their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements. We tested the effect of low concentrations of lanthanides on the common freshwater microalga Desmodesmus quadricauda, grown under conditions of metal ion-deficiency (lower calcium or manganese concentrations). Our goal was to test if lanthanides can replace essential metals in their functions. Physiological stress was recorded by studying growth and photosynthetic activity using a pulse amplitude modulation (PAM) fluorimeter. We found that nutrient stress reduced parameters of growth and photosynthesis, such as maximal quantum yield, relative electron transport rate, photon capturing efficiency and light saturation irradiance. After adding low concentrations of five lanthanides, we confirmed that they can produce a stimulatory effect on microalgae, depending on the nutrient (metal) deprivation. In the case of a calcium deficit, the addition of lanthanides partly alleviated the adverse effects, probably by a partial substitution of the element. In contrast, with manganese deprivation (and at even lower concentrations), lanthanides enhanced the deleterious effect on cellular growth and photosynthetic competence. These results show that lanthanides can replace essential elements, but their effects on microalgae depend on stress and the nutritional state of the microalgae, raising the possibility of environmental impacts at even low concentrations.
Collapse
Affiliation(s)
- Franz Goecke
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology Academy of Sciences of the Czech Republic Třeboň, Czech Republic
| | - Celia G Jerez
- Department of Ecology, Faculty of Sciences, University of Málaga Málaga, Spain
| | - Vilém Zachleder
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology Academy of Sciences of the Czech Republic Třeboň, Czech Republic
| | - Félix L Figueroa
- Department of Ecology, Faculty of Sciences, University of Málaga Málaga, Spain
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology Academy of Sciences of the Czech Republic Třeboň, Czech Republic
| | - Tomáš Řezanka
- Department of Microbiology, Institute of Microbiology Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Milada Vítová
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology Academy of Sciences of the Czech Republic Třeboň, Czech Republic
| |
Collapse
|