1
|
Zhang D, Spiegelhalder RP, Abrash EB, Nunes TDG, Hidalgo I, Anleu Gil MX, Jesenofsky B, Lindner H, Bergmann DC, Raissig MT. Opposite polarity programs regulate asymmetric subsidiary cell divisions in grasses. eLife 2022; 11:e79913. [PMID: 36537077 PMCID: PMC9767456 DOI: 10.7554/elife.79913] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Grass stomata recruit lateral subsidiary cells (SCs), which are key to the unique stomatal morphology and the efficient plant-atmosphere gas exchange in grasses. Subsidiary mother cells (SMCs) strongly polarise before an asymmetric division forms a SC. Yet apart from a proximal polarity module that includes PANGLOSS1 (PAN1) and guides nuclear migration, little is known regarding the developmental processes that form SCs. Here, we used comparative transcriptomics of developing wild-type and SC-less bdmute leaves in the genetic model grass Brachypodium distachyon to identify novel factors involved in SC formation. This approach revealed BdPOLAR, which forms a novel, distal polarity domain in SMCs that is opposite to the proximal PAN1 domain. Both polarity domains are required for the formative SC division yet exhibit various roles in guiding pre-mitotic nuclear migration and SMC division plane orientation, respectively. Nonetheless, the domains are linked as the proximal domain controls polarisation of the distal domain. In summary, we identified two opposing polarity domains that coordinate the SC division, a process crucial for grass stomatal physiology.
Collapse
Affiliation(s)
- Dan Zhang
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | | | - Emily B Abrash
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Tiago DG Nunes
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Inés Hidalgo
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | | | - Barbara Jesenofsky
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Heike Lindner
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
- Institute of Plant Sciences, University of BernBernSwitzerland
| | - Dominique C Bergmann
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
- Institute of Plant Sciences, University of BernBernSwitzerland
| |
Collapse
|
2
|
Wang J, Cao W, Guo Q, Yang Y, Bai L, Pan L. Resistance to mesosulfuron-methyl in Beckmannia syzigachne may involve ROS burst and non-target-site resistance mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113072. [PMID: 34922171 DOI: 10.1016/j.ecoenv.2021.113072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Herbicide resistance to chemical herbicide is a global issue that presents an ongoing threat to grain production. Though it has been frequently implicated that the production of detoxification enzymes increased in resistance development, the mechanisms for overexpression of these genes employed by herbicide-resistant weeds remain complicated. In this study, a mesosulfuron-methyl resistant Beckmannia syzigachne population (R) was found to be cross-resistant to another herbicide pyriminobac-methyl. No known target-site mutations were detected in the R population. In contrast, the decreased uptake and enhanced metabolic rates of mesosulfuron-methyl were detected in the R than the susceptible (S) population. Two candidate ATP-binding cassette (ABC) transporter genes (ABCB25 and ABCC14) that were constitutively up-regulated in the R population were identified by RNA-sequencing and validated by RT-qPCR. Alteration of antioxidant enzyme activities and gene expressions implied that mesosulfuron-methyl-induced antioxidant defenses provoked reactive oxygen species (ROS) burst. ROS scavenger assay showed that ROS induces ABCB25 and ABCC14 expression. This study reported for the first time that ABC transporters mediated non-target-site resistance contributes to mesosulfuron-methyl resistance in a B. syzigachne population, and implicated that ROS burst might be involved in the overexpression of ABC transporter genes in weeds.
Collapse
Affiliation(s)
- Junzhi Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Wanfen Cao
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Qiushuang Guo
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yang Yang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, Graduate School of Hunan University, Changsha 410125, China.
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Chatterjee D, Wittmeyer K, Lee TF, Cui J, Yennawar NH, Yennawar HP, Meyers BC, Chopra S. Maize unstable factor for orange1 is essential for endosperm development and carbohydrate accumulation. PLANT PHYSIOLOGY 2021; 186:1932-1950. [PMID: 33905500 PMCID: PMC8331166 DOI: 10.1093/plphys/kiab183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Maize (Zea mays L.) Ufo1-1 is a spontaneous dominant mutation of the unstable factor for orange1 (ufo1). We recently cloned ufo1, which is a Poaceae-specific gene highly expressed during seed development in maize. Here, we have characterized Ufo1-1 and a loss-of-function Ds insertion allele (ufo1-Dsg) to decipher the role of ufo1 in maize. We found that both ufo1 mutant alleles impact sugars and hormones, and have defects in the basal endosperm transfer layer (BETL) and adjacent cell types. The Ufo1-1 BETL had reduced cell elongation and cell wall ingrowth, resulting in cuboidal shaped transfer cells. In contrast, the ufo1-Dsg BETL cells showed a reduced overall size with abnormal wall ingrowth. Expression analysis identified the impact of ufo1 on several genes essential for BETL development. The overexpression of Ufo1-1 in various tissues leads to ectopic phenotypes, including abnormal cell organization and stomata subsidiary cell defects. Interestingly, pericarp and leaf transcriptomes also showed that as compared with wild type, Ufo1-1 had ectopic expression of endosperm development-specific genes. This study shows that Ufo1-1 impacts the expression patterns of a wide range of genes involved in various developmental processes.
Collapse
Affiliation(s)
- Debamalya Chatterjee
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kameron Wittmeyer
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tzuu-fen Lee
- The Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Jin Cui
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hemant P Yennawar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Blake C Meyers
- The Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65201, USA
| | - Surinder Chopra
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Marti L, Savatin DV, Gigli-Bisceglia N, de Turris V, Cervone F, De Lorenzo G. The intracellular ROS accumulation in elicitor-induced immunity requires the multiple organelle-targeted Arabidopsis NPK1-related protein kinases. PLANT, CELL & ENVIRONMENT 2021; 44:931-947. [PMID: 33314180 DOI: 10.1111/pce.13978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 05/22/2023]
Abstract
Recognition at the plasma membrane of danger signals (elicitors) belonging to the classes of the microbe/pathogen- and damage-associated molecular patterns is a key event in pathogen sensing by plants and is associated with a rapid activation of immune responses. Different cellular compartments, including plasma membrane, chloroplasts, nuclei and mitochondria, are involved in the immune cellular program. However, how pathogen sensing is transmitted throughout the cell remains largely to be uncovered. Arabidopsis NPK1-related Proteins (ANPs) are mitogen-activated protein kinase kinase kinases previously shown to have a role in immunity. In this article, we studied the in vivo intracellular dynamics of ANP1- and ANP3-GFP fusions and found that under basal physiological conditions both proteins are present in the cytosol, while ANP3 is also localized in mitochondria. After elicitor perception, both proteins are present also in the plastids and nuclei, revealing a localization pattern that is so far unique. The N-terminal region of the protein kinases is responsible for their localization in mitochondria and plastids. Moreover, we found that the localization of ANPs coincides with the sites of elicitor-induced ROS accumulation and that plants lacking ANP function do not accumulate intracellular ROS.
Collapse
Affiliation(s)
- Lucia Marti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | | | - Nora Gigli-Bisceglia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | | | - Felice Cervone
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| |
Collapse
|
5
|
Nunes TDG, Zhang D, Raissig MT. Form, development and function of grass stomata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:780-799. [PMID: 31571301 DOI: 10.1111/tpj.14552] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
Stomata are cellular breathing pores on leaves that open and close to absorb photosynthetic carbon dioxide and to restrict water loss through transpiration, respectively. Grasses (Poaceae) form morphologically innovative stomata, which consist of two dumbbell-shaped guard cells flanked by two lateral subsidiary cells (SCs). This 'graminoid' morphology is associated with faster stomatal movements leading to more water-efficient gas exchange in changing environments. Here, we offer a genetic and mechanistic perspective on the unique graminoid form of grass stomata and the developmental innovations during stomatal cell lineage initiation, recruitment of SCs and stomatal morphogenesis. Furthermore, the functional consequences of the four-celled, graminoid stomatal morphology are summarized. We compile the identified players relevant for stomatal opening and closing in grasses, and discuss possible mechanisms leading to cell-type-specific regulation of osmotic potential and turgor. In conclusion, we propose that the investigation of functionally superior grass stomata might reveal routes to improve water-stress resilience of agriculturally relevant plants in a changing climate.
Collapse
Affiliation(s)
- Tiago D G Nunes
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120, Heidelberg, Germany
| | - Dan Zhang
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120, Heidelberg, Germany
| | - Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Adamakis IDS, Sperdouli I, Eleftheriou EP, Moustakas M. Hydrogen Peroxide Production by the Spot-Like Mode Action of Bisphenol A. FRONTIERS IN PLANT SCIENCE 2020; 11:1196. [PMID: 32849741 PMCID: PMC7419983 DOI: 10.3389/fpls.2020.01196] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/23/2020] [Indexed: 05/11/2023]
Abstract
Bisphenol A (BPA), an intermediate chemical used for synthesizing polycarbonate plastics, has now become a wide spread organic pollutant. It percolates from a variety of sources, and plants are among the first organisms to encounter, absorb, and metabolize it, while its toxic effects are not yet fully known. Therefore, we experimentally studied the effects of aqueous BPA solutions (50 and 100 mg L-1, for 6, 12, and 24 h) on photosystem II (PSII) functionality and evaluated the role of reactive oxygen species (ROS) on detached leaves of the model plant Arabidopsis thaliana. Chlorophyll fluorescence imaging analysis revealed a spatiotemporal heterogeneity in the quantum yields of light energy partitioning at PSII in Arabidopsis leaves exposed to BPA. Under low light PSII function was negatively influenced only at the spot-affected BPA zone in a dose- and time-dependent manner, while at the whole leaf only the maximum photochemical efficiency (Fv/Fm) was negatively affected. However, under high light all PSII photosynthetic parameters measured were negatively affected by BPA application, in a time-dependent manner. The affected leaf areas by the spot-like mode of BPA action showed reduced chlorophyll autofluorescence and increased accumulation of hydrogen peroxide (H2O2). When H2O2 was scavenged via N-acetylcysteine under BPA exposure, PSII functionality was suspended, while H2O2 scavenging under non-stress had more detrimental effects on PSII function than BPA alone. It can be concluded that the necrotic death-like spots under BPA exposure could be due to ROS accumulation, but also H2O2 generation seems to play a role in the leaf response against BPA-related stress conditions.
Collapse
Affiliation(s)
- Ioannis-Dimosthenis S. Adamakis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Ioannis-Dimosthenis S. Adamakis, ; Michael Moustakas,
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | | | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Ioannis-Dimosthenis S. Adamakis, ; Michael Moustakas,
| |
Collapse
|
7
|
Giannoutsou E, Galatis B, Apostolakos P. De-Esterified Homogalacturonan Enrichment of the Cell Wall Region Adjoining the Preprophase Cortical Cytoplasmic Zone in Some Protodermal Cell Types of Three Land Plants. Int J Mol Sci 2019; 21:E81. [PMID: 31861957 PMCID: PMC6981616 DOI: 10.3390/ijms21010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 11/16/2022] Open
Abstract
The distribution of highly de-esterified homogalacturonans (HGs) in dividing protodermal cells of the monocotyledon Zea mays, the dicotyledon Vigna sinensis, and the fern Asplenium nidus was investigated in order to examine whether the cell wall region adjoining the preprophase band (PPB) is locally diversified. Application of immunofluorescence revealed that de-esterified HGs were accumulated selectively in the cell wall adjacent to the PPB in: (a) symmetrically dividing cells of stomatal rows of Z. mays, (b) the asymmetrically dividing protodermal cells of Z. mays, (c) the symmetrically dividing guard cell mother cells (GMCs) of Z. mays and V. sinensis, and (d) the symmetrically dividing protodermal cells of A. nidus. A common feature of the above cell types is that the cell division plane is defined by extrinsic cues. The presented data suggest that the PPB cortical zone-plasmalemma and the adjacent cell wall region function in a coordinated fashion in the determination/accomplishment of the cell division plane, behaving as a continuum. The de-esterified HGs, among other possible functions, might be involved in the perception and the transduction of the extrinsic cues determining cell division plane in the examined cells.
Collapse
Affiliation(s)
| | | | - Panagiotis Apostolakos
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15781 Athens, Greece; (E.G.); (B.G.)
| |
Collapse
|
8
|
Ferreira BG, Freitas MSC, Bragança GP, Moreira ASFP, Carneiro RGS, Isaias RMS. Enzyme-mediated metabolism in nutritive tissues of galls induced by Ditylenchus gallaeformans (Nematoda: Anguinidae). PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1052-1062. [PMID: 31102569 DOI: 10.1111/plb.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
The galls induced by Ditylenchus gallaeformans (Nematoda) on leaves of Miconia albicans have unique features when compared to other galls. The nematode colonies are surrounded by nutritive tissues with promeristematic cells, capable of originating new emergences facing the larval chamber, and providing indeterminate growth to these galls. Considering enzyme activity as essential for the translocation of energetic molecules from the common storage tissue (CST) to the typical nutritive tissue (TNT), and the major occurrence of carbohydrates in nematode galls, it was expected that hormones would mediate sink strength relationships by activating enzymes in indeterminate growth regions of the galls. Histochemical, immunocytochemical and quantitative analyses were made in order to demonstrate sites of enzyme activity and hormones, and comparative levels of total soluble sugars, water soluble polysaccharides and starch. The source-sink status, via carbohydrate metabolism, is controlled by the major accumulation of cytokinins in totipotent nutritive cells and new emergences. Thus, reducing sugars, such as glucose and fructose, accumulate in the TNT, where they supply the energy for successive cycles of cell division and for nematode feeding. The histochemical detection of phosphorylase and invertase activities indicates the occurrence of starch catabolism and sucrose transformation into reducing sugars, respectively, in the establishment of a gradient from the CST towards the TNT. Reducing sugars in the TNT are important for the production of new cell walls during the indeterminate growth of the galls, which have increased levels of water-soluble polysaccharides that corroborate such a hypothesis. Functional relationship between plant hormone accumulation, carbohydrate metabolism and cell differentiation in D. gallaeformans-induced galls is attested, providing new insights on cell development and plant metabolism.
Collapse
Affiliation(s)
- B G Ferreira
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - M S C Freitas
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - G P Bragança
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - A S F P Moreira
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - R G S Carneiro
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - R M S Isaias
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Nishimura T, Koshiba T. Immunolocalization of IAA Using an Anti-IAA-C-Antibody Raised Against Carboxyl-Linked IAA. Methods Mol Biol 2019; 1924:165-172. [PMID: 30694474 DOI: 10.1007/978-1-4939-9015-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plant hormone indole-3-acetic acid (IAA) plays a crucial role in plant physiological events such as plant development, differentiation, and environmental responses. IAA is synthesized in specific focal cells and/or tissues such as the coleoptile tip in maize and the root tip and young leaf primordia in Arabidopsis thaliana. Recent studies have shown that formation of an IAA maxima or concentration gradient, created by the changing expression and cellular localization of IAA transport proteins, crucially controls plant physiological events. For this reason, visualization of IAA molecules at the cell and tissue levels is necessary to accurately determine the distribution of IAA in plants. Immunolocalization of IAA is a means to directly visualize IAA and observe its localization and distribution in plant cells and tissues. Here, we introduce an immunolocalization protocol to observe IAA distribution that uses a specific anti-IAA-C-antibody raised against carboxyl-linked IAA. This method is applicable for various plant samples and is reliable for specifically detecting IAA in plant tissues.
Collapse
Affiliation(s)
- Takeshi Nishimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| | - Tomokazu Koshiba
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
10
|
Apostolakos P, Livanos P, Giannoutsou E, Panteris E, Galatis B. The intracellular and intercellular cross-talk during subsidiary cell formation in Zea mays: existing and novel components orchestrating cell polarization and asymmetric division. ANNALS OF BOTANY 2018; 122:679-696. [PMID: 29346521 PMCID: PMC6215039 DOI: 10.1093/aob/mcx193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/25/2017] [Indexed: 05/03/2023]
Abstract
Background Formation of stomatal complexes in Poaceae is the outcome of three asymmetric and one symmetric cell division occurring in particular leaf protodermal cells. In this definite sequence of cell division events, the generation of subsidiary cells is of particular importance and constitutes an attractive model for studying local intercellular stimulation. In brief, an induction stimulus emitted by the guard cell mother cells (GMCs) triggers a series of polarization events in their laterally adjacent protodermal cells. This signal determines the fate of the latter cells, forcing them to divide asymmetrically and become committed to subsidiary cell mother cells (SMCs). Scope This article summarizes old and recent structural and molecular data mostly derived from Zea mays, focusing on the interplay between GMCs and SMCs, and on the unique polarization sequence occurring in both cell types. Recent evidence suggests that auxin operates as an inducer of SMC polarization/asymmetric division. The intercellular auxin transport is facilitated by the distribution of a specific transmembrane auxin carrier and requires reactive oxygen species (ROS). Interestingly, the local differentiation of the common cell wall between SMCs and GMCs is one of the earliest features of SMC polarization. Leucine-rich repeat receptor-like kinases, Rho-like plant GTPases as well as the SCAR/WAVE regulatory complex also participate in the perception of the morphogenetic stimulus and have been implicated in certain polarization events in SMCs. Moreover, the transduction of the auxin signal and its function are assisted by phosphatidylinositol-3-kinase and the products of the catalytic activity of phospholipases C and D. Conclusion In the present review, the possible role(s) of each of the components in SMC polarization and asymmetric division are discussed, and an overall perspective on the mechanisms beyond these phenomena is provided.
Collapse
Affiliation(s)
- P Apostolakos
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - P Livanos
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - E Giannoutsou
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - E Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - B Galatis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Panteris E, Achlati T, Daras G, Rigas S. Stomatal Complex Development and F-Actin Organization in Maize Leaf Epidermis Depend on Cellulose Synthesis. Molecules 2018; 23:molecules23061365. [PMID: 29882773 PMCID: PMC6099634 DOI: 10.3390/molecules23061365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 11/17/2022] Open
Abstract
Cellulose microfibrils reinforce the cell wall for morphogenesis in plants. Herein, we provide evidence on a series of defects regarding stomatal complex development and F-actin organization in Zea mays leaf epidermis, due to inhibition of cellulose synthesis. Formative cell divisions of stomatal complex ontogenesis were delayed or inhibited, resulting in lack of subsidiary cells and frequently in unicellular stomata, with an atypical stomatal pore. Guard cells failed to acquire a dumbbell shape, becoming rounded, while subsidiary cells, whenever present, exhibited aberrant morphogenesis. F-actin organization was also affected, since the stomatal complex-specific arrays were scarcely observed. At late developmental stages, the overall F-actin network was diminished in all epidermal cells, although thick actin bundles persisted. Taken together, stomatal complex development strongly depends on cell wall mechanical properties. Moreover, F-actin organization exhibits a tight relationship with the cell wall.
Collapse
Affiliation(s)
- Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Theonymphi Achlati
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece.
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece.
| |
Collapse
|
12
|
Hong L, Dumond M, Zhu M, Tsugawa S, Li CB, Boudaoud A, Hamant O, Roeder AHK. Heterogeneity and Robustness in Plant Morphogenesis: From Cells to Organs. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:469-495. [PMID: 29505739 DOI: 10.1146/annurev-arplant-042817-040517] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Development is remarkably reproducible, producing organs with the same size, shape, and function repeatedly from individual to individual. For example, every flower on the Antirrhinum stalk has the same snapping dragon mouth. This reproducibility has allowed taxonomists to classify plants and animals according to their morphology. Yet these reproducible organs are composed of highly variable cells. For example, neighboring cells grow at different rates in Arabidopsis leaves, sepals, and shoot apical meristems. This cellular variability occurs in normal, wild-type organisms, indicating that cellular heterogeneity (or diversity in a characteristic such as growth rate) is either actively maintained or, at a minimum, not entirely suppressed. In fact, cellular heterogeneity can contribute to producing invariant organs. Here, we focus on how plant organs are reproducibly created during development from these highly variable cells.
Collapse
Affiliation(s)
- Lilan Hong
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| | - Mathilde Dumond
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
- Current affiliation: Department for Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
| | - Mingyuan Zhu
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| | - Satoru Tsugawa
- Theoretical Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan;
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Arezki Boudaoud
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
| | - Olivier Hamant
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| |
Collapse
|
13
|
Bedetti CS, Jorge NC, Trigueiro FCG, Bragança GP, Modolo LV, Isaias RMS. Detection of cytokinins and auxin in plant tissues using histochemistry and immunocytochemistry. Biotech Histochem 2018; 93:149-154. [DOI: 10.1080/10520295.2017.1417640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- CS Bedetti
- Institute of Biological Sciences, Department of Botany, Plant Anatomy Laboratory, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - NC Jorge
- Institute of Biological Sciences, Department of Botany, Plant Anatomy Laboratory, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - FCG Trigueiro
- Institute of Biological Sciences, Department of Botany, Plant Anatomy Laboratory, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - GP Bragança
- Institute of Biological Sciences, Department of Botany, Plant Anatomy Laboratory, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - LV Modolo
- Institute of Biological Sciences, Department of Botany, Plant Anatomy Laboratory, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - RMS Isaias
- Institute of Biological Sciences, Department of Botany, Plant Anatomy Laboratory, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
14
|
Livanos P, Galatis B, Quader H, Apostolakos P. ROS homeostasis as a prerequisite for the accomplishment of plant cytokinesis. PROTOPLASMA 2017; 254:569-586. [PMID: 27129324 DOI: 10.1007/s00709-016-0976-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
Reactive oxygen species (ROS) are emerging players in several biological processes. The present work investigates their potential involvement in plant cytokinesis by the application of reagents disturbing ROS homeostasis in root-tip cells of Triticum turgidum. In particular, the NADPH-oxidase inhibitor diphenylene iodonium, the ROS scavenger N-acetyl-cysteine, and menadione that leads to ROS overproduction were used. The effects on cytokinetic cells were examined using light, fluorescence, and transmission electron microscopy. ROS imbalance had a great impact on the cytokinetic process including the following: (a) formation of atypical "phragmoplasts" incapable of guiding vesicles to the equatorial plane, (b) inhibition of the dictyosomal and/or endosomal vesicle production that provides the developing cell plates with membranous and matrix polysaccharidic material, (c) disturbance of the fusion processes between vesicles arriving on the cell plate plane, (d) disruption of endocytic vesicle production that mediates the removal of the excess membrane material from the developing cell plate, and (e) the persistence of large callose depositions in treated cell plates. Consequently, either elevated or low ROS levels in cytokinetic root-tip cells resulted in a total inhibition of cell plate assembly or the formation of aberrant cell plates, depending on the stage of the affected cytokinetic cells. The latter failed to expand towards cell cortex and hence to give rise to complete daughter cell wall. These data revealed for the first time the necessity of ROS homeostasis for accomplishment of plant cytokinesis, since it seems to be a prerequisite for almost every aspect of this process.
Collapse
Affiliation(s)
- Pantelis Livanos
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15781, Greece
| | - Basil Galatis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15781, Greece
| | - Hartmut Quader
- Division of Cell Biology/Phycology, Biocenter Klein Flottbek, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Panagiotis Apostolakos
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15781, Greece.
| |
Collapse
|
15
|
Sandalio LM, Rodríguez-Serrano M, Romero-Puertas MC. Leaf epinasty and auxin: A biochemical and molecular overview. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:187-193. [PMID: 27968987 DOI: 10.1016/j.plantsci.2016.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 05/16/2023]
Abstract
Leaf epinasty involves the downward bending of leaves as a result of disturbances in their growth, with a greater expansion in adaxial cells as compared to abaxial surface cells. The co-ordinated anisotropy of growth in epidermal, palisade mesophyll and vascular tissues contributes to epinasty. This phenotype, which is regulated by auxin (indole-3-acetic acid, IAA), controls plant cell division and elongation by regulating the expression of a vast number of genes. Other plant hormones, such as ethylene, abscisic acid and brassinosteroids, also regulate epinasty and hyponasty. Reactive oxygen species (ROS) accumulation induced by auxins and 2,4-dichlorophenoxyacetic acid (2,4-D) triggers epinasty. The role of ROS and nitric oxide (NO) in the regulation of epinasty has recently been established. Thus, treatment with synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) induces disturbances in the actin cytoskeleton through ROS and NO-dependent post-translational modifications in actin by carbonylation and S-nitrosylation, which cause a reduction in the actin filament. Reorientation of microtubules has become a major feature of the response to auxin. The cytoskeleton is therefore a key player in epinastic development.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.
| | - María Rodríguez-Serrano
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
16
|
Giannoutsou E, Apostolakos P, Galatis B. Spatio-temporal diversification of the cell wall matrix materials in the developing stomatal complexes of Zea mays. PLANTA 2016; 244:1125-1143. [PMID: 27460945 DOI: 10.1007/s00425-016-2574-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/20/2016] [Indexed: 05/02/2023]
Abstract
The matrix cell wall materials, in developing Zea mays stomatal complexes are asymmetrically distributed, a phenomenon appearing related to the local cell wall expansion and deformation, the establishment of cell polarity, and determination of the cell division plane. In cells of developing Zea mays stomatal complexes, definite cell wall regions expand determinately and become locally deformed. This differential cell wall behavior is obvious in the guard cell mother cells (GMCs) and the subsidiary cell mother cells (SMCs) that locally protrude towards the adjacent GMCs. The latter, emitting a morphogenetic stimulus, induce polarization/asymmetrical division in SMCs. Examination of immunolabeled specimens revealed that homogalacturonans (HGAs) with a high degree of de-esterification (2F4- and JIM5-HGA epitopes) and arabinogalactan proteins are selectively distributed in the extending and deformed cell wall regions, while their margins are enriched with rhamnogalacturonans (RGAs) containing highly branched arabinans (LM6-RGA epitope). In SMCs, the local cell wall matrix differentiation constitutes the first structural event, indicating the establishment of cell polarity. Moreover, in the premitotic GMCs and SMCs, non-esterified HGAs (2F4-HGA epitope) are preferentially localized in the cell wall areas outlining the cytoplasm where the preprophase band is formed. In these areas, the forthcoming cell plate fuses with the parent cell walls. These data suggest that the described heterogeneity in matrix cell wall materials is probably involved in: (a) local cell wall expansion and deformation, (b) the transduction of the inductive GMC stimulus, and
Collapse
Affiliation(s)
- E Giannoutsou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - P Apostolakos
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - B Galatis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784, Athens, Greece.
| |
Collapse
|
17
|
Nick P. Life breaks symmetry. PROTOPLASMA 2016; 253:965-966. [PMID: 27311980 DOI: 10.1007/s00709-016-0994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Peter Nick
- Molecular Cell Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|