1
|
Ben Saad R, Ben Romdhane W, Čmiková N, Baazaoui N, Bouteraa MT, Ben Akacha B, Chouaibi Y, Maisto M, Ben Hsouna A, Garzoli S, Wiszniewska A, Kačániová M. Research progress on plant stress-associated protein (SAP) family: Master regulators to deal with environmental stresses. Bioessays 2024; 46:e2400097. [PMID: 39248672 DOI: 10.1002/bies.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
Collapse
Affiliation(s)
- Rania Ben Saad
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Narjes Baazaoui
- Biology department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Taieb Bouteraa
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Bouthaina Ben Akacha
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Yosra Chouaibi
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anis Ben Hsouna
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia, Tunisia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Rome, Italy
| | - Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Kraków, Kraków, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Warszawa, Poland
| |
Collapse
|
2
|
Vashisth V, Sharma G, Giri J, Sharma AK, Tyagi AK. Rice A20/AN1 protein, OsSAP10, confers water-deficit stress tolerance via proteasome pathway and positive regulation of ABA signaling in Arabidopsis. PLANT CELL REPORTS 2024; 43:215. [PMID: 39138747 DOI: 10.1007/s00299-024-03304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
KEY MESSAGE Overexpression of rice A20/AN1 zinc-finger protein, OsSAP10, improves water-deficit stress tolerance in Arabidopsis via interaction with multiple proteins. Stress-associated proteins (SAPs) constitute a class of A20/AN1 zinc-finger domain containing proteins and their genes are induced in response to multiple abiotic stresses. The role of certain SAP genes in conferring abiotic stress tolerance is well established, but their mechanism of action is poorly understood. To improve our understanding of SAP gene functions, OsSAP10, a stress-inducible rice gene, was chosen for the functional and molecular characterization. To elucidate its role in water-deficit stress (WDS) response, we aimed to functionally characterize its roles in transgenic Arabidopsis, overexpressing OsSAP10. OsSAP10 transgenics showed improved tolerance to water-deficit stress at seed germination, seedling and mature plant stages. At physiological and biochemical levels, OsSAP10 transgenics exhibited a higher survival rate, increased relative water content, high osmolyte accumulation (proline and soluble sugar), reduced water loss, low ROS production, low MDA content and protected yield loss under WDS relative to wild type (WT). Moreover, transgenics were hypersensitive to ABA treatment with enhanced ABA signaling and stress-responsive genes expression. The protein-protein interaction studies revealed that OsSAP10 interacts with proteins involved in proteasomal pathway, such as OsRAD23, polyubiquitin and with negative and positive regulators of stress signaling, i.e., OsMBP1.2, OsDRIP2, OsSCP and OsAMTR1. The A20 domain was found to be crucial for most interactions but insufficient for all interactions tested. Overall, our investigations suggest that OsSAP10 is an important candidate for improving water-deficit stress tolerance in plants, and positively regulates ABA and WDS signaling via protein-protein interactions and modulation of endogenous genes expression in ABA-dependent manner.
Collapse
Affiliation(s)
- Vishal Vashisth
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Gunjan Sharma
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
3
|
Ponce TP, Bugança MDS, da Silva VS, de Souza RF, Moda-Cirino V, Tomaz JP. Differential Gene Expression in Contrasting Common Bean Cultivars for Drought Tolerance during an Extended Dry Period. Genes (Basel) 2024; 15:935. [PMID: 39062714 PMCID: PMC11276061 DOI: 10.3390/genes15070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Common beans (Phaseolus vulgaris L.), besides being an important source of nutrients such as iron, magnesium, and protein, are crucial for food security, especially in developing countries. Common bean cultivation areas commonly face production challenges due to drought occurrences, mainly during the reproductive period. Dry spells last approximately 20 days, enough time to compromise production. Hence, it is crucial to understand the genetic and molecular mechanisms that confer drought tolerance to improve common bean cultivars' adaptation to drought. Sixty six RNASeq libraries, generated from tolerant and sensitive cultivars in drought time sourced from the R5 phenological stage at 0 to 20 days of water deficit were sequenced, generated over 1.5 billion reads, that aligned to 62,524 transcripts originating from a reference transcriptome, as well as 6673 transcripts obtained via de novo assembly. Differentially expressed transcripts were functionally annotated, revealing a variety of genes associated with molecular functions such as oxidoreductase and transferase activity, as well as biological processes related to stress response and signaling. The presence of regulatory genes involved in signaling cascades and transcriptional control was also highlighted, for example, LEA proteins and dehydrins associated with dehydration protection, and transcription factors such as WRKY, MYB, and NAC, which modulate plant response to water deficit. Additionally, genes related to membrane and protein protection, as well as water and ion uptake and transport, were identified, including aquaporins, RING-type E3 ubiquitin transferases, antioxidant enzymes such as GSTs and CYPs, and thioredoxins. This study highlights the complexity of plant response to water scarcity, focusing on the functional diversity of the genes involved and their participation in the biological processes essential for plant adaptation to water stress. The identification of regulatory and cell protection genes offers promising prospects for genetic improvement aiming at the production of common bean varieties more resistant to drought. These findings have the potential to drive sustainable agriculture, providing valuable insights to ensure food security in a context of climate change.
Collapse
Affiliation(s)
- Talita Pijus Ponce
- Curso de Pós-Graduação em Agricultura Conservacionista, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
| | - Michely da Silva Bugança
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Victória Stern da Silva
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Centro de Ciências Agrárias, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Rogério Fernandes de Souza
- Laboratório de Bioinformática, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Vânia Moda-Cirino
- Curso de Pós-Graduação em Agricultura Conservacionista, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
| | - Juarez Pires Tomaz
- Curso de Pós-Graduação em Agricultura Conservacionista, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
| |
Collapse
|
4
|
Ben Saad R, Ben Romdhane W, Bouteraa MT, Jemli S, Ben Hsouna A, Hassairi A. Development of a marker-free engineered durum wheat overexpressing Lobularia maritima GASA1 with improved drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108775. [PMID: 38810521 DOI: 10.1016/j.plaphy.2024.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Due to their fixed lifestyle, plants must adapt to abiotic or biotic stresses by orchestrating various responses, including protective and growth control measures. Growth arrest is provoked upon abiotic stress and can impair plant production. Members of the plant-specific GASA (gibberellic acid-stimulated Arabidopsis) gene family play crucial roles in phytohormone responses, abiotic and biotic stresses, and plant growth. Here, we recognized and examined the LmGASA1 gene from the halophyte plant Lobularia maritima and developed marker-free engineered durum wheat plants overexpressing the gene. The LmGASA1 transcript profile revealed that it's induced by stressful events as well as by phytohormones including GA3, MeJA, and ABA, suggesting that the LmGASA1 gene may contribute to these stress and hormone signal transduction pathways. Transient expression of GFP-LmGASA1 fusion in onion epidermal cells indicated that LmGASA1 is localized to the cell membrane. Further analysis showed that overexpression of LmGASA1 in durum wheat plants enhanced tolerance to drought stress compared with that in non-transgenic (NT) plants, imposing no yield penalty and enabling seed production even following drought stress at the vegetative stage. Altogether, our data indicate that LmGASA1 regulates both the scavenging capacity of the antioxidant enzymatic system and the activation of at least six stress-related genes that function as positive regulators of drought stress tolerance. LmGASA1 appears to be a novel gene useful for further functional analysis and potential engineering for drought stress tolerance in crops.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ''1177'', 3018, Sfax -Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia.
| | - Mohamed Taieb Bouteraa
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ''1177'', 3018, Sfax -Tunisia
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, B.P ''1177'', 3018, Sfax -Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ''1177'', 3018, Sfax -Tunisia; Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Afif Hassairi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ''1177'', 3018, Sfax -Tunisia; Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Chen L, Meng Y, Yang W, Lv Q, Zhou L, Liu S, Tang C, Xie Y, Li X. Genome-wide analysis and identification of TaRING-H2 gene family and TaSDIR1 positively regulates salt stress tolerance in wheat. Int J Biol Macromol 2023:125162. [PMID: 37263334 DOI: 10.1016/j.ijbiomac.2023.125162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Salt stress is an abiotic stress factor that limits high yields, and thus identifying salt tolerance genes is very important for improving the tolerance of salt in wheat. In this study we identified 274 TaRING-H2 family members and analyzed their gene positions, gene structures, conserved structural domains, promoter cis-acting elements and covariance relationships. And we investigated TaRING-H2-120 (TaSDIR1) in salt stress. Transgenic lines exhibited higher salt tolerance in the germination and seedling stages. Compared with the wild type, overexpression of TaSDIR1 upregulated the expression of genes encoding enzymes related to the control of reactive oxygen species (ROS), thereby reducing the accumulation of ROS, as well as increased the expression of ion transport-related genes to limit the inward flow of Na+ in vivo and maintain a higher K+/Na+ ratio. The expression levels of these genes were opposite in lines where TaSDIR1 was silenced by BSMV-VIGS, and the silenced wheat exhibited higher salt sensitivity. Arabidopsis mutants and heterologous TaSDIR1 overexpressing lines had similar salt stress tolerance phenotypes. We also demonstrated that TaSDIR1 interacted with TaSDIR1P2 in vivo and in vitro. A sequence of 80-100 amino acids in TaSDIR1P2 encoded a coiled coil domain that was important for the activity of E3 ubiquitin ligase, and it was also the core region for the interaction between TaSDIR1 and TaSDIR1P2. Overall, our results suggest that TaSDIR1 positively regulates salt stress tolerance in wheat.
Collapse
Affiliation(s)
- Liuping Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weibing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Zhou
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuqing Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenghan Tang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Lin C, Huang Q, Liu Z, Brown SE, Chen Q, Li Y, Dong Y, Wu H, Mao Z. AoSAP8-P encoding A20 and/or AN1 type zinc finger protein in asparagus officinalis L. Improving stress tolerance in transgenic Nicotiana sylvestris. Gene 2023; 862:147284. [PMID: 36781027 DOI: 10.1016/j.gene.2023.147284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
The full length CDS of an A20 and AN1 type zinc finger gene (named AoSAP8-P), located nearby the male specific Y chromosome (MSY) region of Asparagus officinalis (garden asparagus) was amplified by RT-PCR from purple passion. This gene, predicted as the stress associated protein (SAPs) gene families, encodes 172 amino acids with multiple cis elements including light, stress response box, MYB and ERF binding sites on its promoter. To analyze its function, the gene expression of different organs in different asparagus gender were analyzed and the overexpressed transgenic Nicotiana sylvestris lines were generated. The results showed the gene was highly expressed in both flower and root of male garden asparagus; the germination rate of seeds of the T2 transgenic lines (T2-5-4 and T2-7-1) under the stress conditions of 125 mM NaCl and 150 mM mannitol were significantly higher than the wild type (WT) respectively. When the potted T2-5-4, T2-7-1 lines and WT were subjected to drought stress for 24 days and the leaf discs immerged into 20 % PEG6000 and 300 mM NaCl solution for 48 h respectively, the T2-5-4 and T2-7-1 with AoSAP8-P expression showed stronger drought, salt and osmotic stress tolerance. When compared, the effects of AoSAP8-P overexpression on productive development showed that the flowering time of transgenic lines, were ∼ 9 day earlier with larger but fewer pollens than its WT counterparts. However, there were no significant differences in anthers, stigmas and pollen viability between the transgenic lines and WT. Our results suggested that, the AoSAP8-P gene plays a role in improving the stress resistance and shortening seeds generation time for perianal survival during the growth and development of garden asparagus.
Collapse
Affiliation(s)
- Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Qiuqiu Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Sylvia E Brown
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Qing Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Yuping Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Yumei Dong
- Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China
| | - He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China.
| |
Collapse
|
7
|
Bae Y, Lim CW, Lee SC. Pepper stress-associated protein 14 is a substrate of CaSnRK2.6 that positively modulates abscisic acid-dependent osmotic stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:357-374. [PMID: 36458345 DOI: 10.1111/tpj.16052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The phytohormone abscisic acid (ABA) plays a prominent role in various abiotic stress responses of plants. In the ABA-dependent osmotic stress response, SnRK2.6, one of the subclass III SnRK2 kinases, has been identified as playing a key role by phosphorylating and activating downstream genes. Although several modulatory proteins have been reported to be phosphorylated by SnRK2.6, the identities of the full spectrum of downstream targets have yet to be sufficiently established. In this study, we identified CaSAP14, a stress-associated protein in pepper (Capsicum annuum), as a downstream target of CaSnRK2.6. We elucidated the physical interaction between SnRK2.6 and CaSAP14, both in vitro and in vivo, and accordingly identified a C-terminal C2H2-type zinc finger domain of CaSAP14 as being important for their interaction. CaSAP14-silenced pepper plants showed dehydration- and high salt-sensitive phenotypes, whereas overexpression of CaSAP14 in Arabidopsis conferred tolerance to dehydration, high salinity, and mannitol treatment, with plants showing ABA-hypersensitive phenotypes. Furthermore, an in-gel kinase assay revealed that CaSnRK2.6 phosphorylates CaSAP14 in response to exogenous ABA, dehydration, and high-salinity stress. Collectively, these findings suggest that CaSAP14 is a direct substrate of CaSnRK2.6 and positively modulates dehydration- and high salinity-induced osmotic stress responses.
Collapse
Affiliation(s)
- Yeongil Bae
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| |
Collapse
|
8
|
Comprehensive Identification and Functional Analysis of Stress-Associated Protein (SAP) Genes in Osmotic Stress in Maize. Int J Mol Sci 2022; 23:ijms232214010. [PMID: 36430489 PMCID: PMC9692755 DOI: 10.3390/ijms232214010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Stress-associated proteins (SAPs) are a kind of zinc finger protein with an A20/AN1 domain and contribute to plants' adaption to various abiotic and biological stimuli. However, little is known about the SAP genes in maize (Zea mays L.). In the present study, the SAP genes were identified from the maize genome. Subsequently, the protein properties, gene structure and duplication, chromosomal location, and cis-acting elements were analyzed by bioinformatic methods. Finally, their expression profiles under osmotic stresses, including drought and salinity, as well as ABA, and overexpression in Saccharomyces cerevisiae W303a cells, were performed to uncover the potential function. The results showed that a total of 10 SAP genes were identified and named ZmSAP1 to ZmSAP10 in maize, which was unevenly distributed on six of the ten maize chromosomes. The ZmSAP1, ZmSAP4, ZmSAP5, ZmSAP6, ZmSAP7, ZmSAP8 and ZmSAP10 had an A20 domain at N terminus and AN1 domain at C terminus, respectively. Only ZmSAP2 possessed a single AN1 domain at the N terminus. ZmSAP3 and ZmSAP9 both contained two AN1 domains without an A20 domain. Most ZmSAP genes lost introns and had abundant stress- and hormone-responsive cis-elements in their promoter region. The results of quantitative real-time PCR showed that all ZmSAP genes were regulated by drought and saline stresses, as well as ABA induction. Moreover, heterologous expression of ZmSAP2 and ZmSAP7 significantly improved the saline tolerance of yeast cells. The study provides insights into further underlying the function of ZmSAPs in regulating stress response in maize.
Collapse
|
9
|
Ben Hsouna A, Michalak M, Kukula-Koch W, Ben Saad R, ben Romdhane W, Zeljković SĆ, Mnif W. Evaluation of Halophyte Biopotential as an Unused Natural Resource: The Case of Lobularia maritima. Biomolecules 2022; 12:1583. [PMID: 36358933 PMCID: PMC9687265 DOI: 10.3390/biom12111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Halophytes are plant species widely distributed in saline habitats, such as beaches, postindustrial wastelands, irrigated lands, salt flats, and others. Excessive salt level, known to limit plant growth, is not harmful to halophytes, which have developed a variety of defense mechanisms allowing them to colonize harsh environments. Plants under stress are known to respond with several morpho-anatomical adaptations, but also to enhance the production of secondary metabolites to better cope with difficult conditions. Owing to these adaptations, halophytes are an interesting group of undemanding plants with a high potential for application in the food and pharmaceutical industries. Therefore, this review aims to present the characteristics of halophytes, describe changes in their gene expression, and discuss their synthesized metabolites of pharmacognostic and pharmacological significance. Lobularia maritima is characterized as a widely spread halophyte that has been shown to exhibit various pharmacological properties in vitro and in vivo. It is concluded that halophytes may become important sources of natural products for the treatment of various ailments and for supplementing the human diet with necessary non-nutrients and minerals. However, extensive studies are needed to deepen the knowledge of their biological potential in vivo, so that they can be introduced to the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir-Tunisia, Monastir 5000, Tunisia
| | - Monika Michalak
- Collegium Medicum, Jan Kochanowski University, IX WiekówKielc 19, 35-317 Kielce, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
| | - Walid ben Romdhane
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha 61922, Saudi Arabia
- ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
| |
Collapse
|
10
|
Bouteraa MT, Mishra A, Romdhane WB, Hsouna AB, Siddique KHM, Saad RB. Bio-Stimulating Effect of Natural Polysaccharides from Lobularia maritima on Durum Wheat Seedlings: Improved Plant Growth, Salt Stress Tolerance by Modulating Biochemical Responses and Ion Homeostasis. PLANTS (BASEL, SWITZERLAND) 2022; 11:1991. [PMID: 35956469 PMCID: PMC9370194 DOI: 10.3390/plants11151991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Bioactivities of polysaccharides derived from halophyte plants have gained attention in recent years. The use of biostimulants in agriculture is an innovative method of dealing with environmental stressors affecting plant growth and development. Here, we investigated the use of natural polysaccharides derived from the halophyte plant Lobularia maritima (PSLm) as a biostimulant in durum wheat seedlings under salt stress. Treatment with polysaccharide extract (0.5, 1, and 2 mg/mL PSLm) stimulated in vitro wheat growth, including germination, shoot length, root length, and fresh weight. PSLm at 2 mg/mL provided tolerance to plants against NaCl stress with improved membrane stability and low electrolyte leakage, increased antioxidant activities (catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD)), enhanced leaf chlorophyll fluorescence, proline, and total sugar contents, decreased lipid peroxidation (MDA), and reactive oxygen species (H2O2) levels, and coordinated the efflux and compartmentation of intracellular ions. The expression profile analyses of ten stress-related genes (NHX1, HKT1.4, SOS1, SOD, CAT, GA20-ox1, GA3-ox1, NRT1.1, NRT2.1, and GS) using RT-qPCR revealed the induction of several key genes in durum wheat growing in media supplemented with PSLm extract, even in unstressed conditions that could be related to the observed tolerance. This study revealed that PSLm extract contributes to salt tolerance in durum wheat seedlings, thereby enhancing their reactive oxygen species scavenging ability, and provided evidence for exploring PSLm as a plant biostimulant for sustainable and organic agriculture.
Collapse
Affiliation(s)
- Mohamed Taieb Bouteraa
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ‘1177’, Sfax 3018, Tunisia; (M.T.B.); (W.B.R.); (A.B.H.)
| | - Avinash Mishra
- CSIR—Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India;
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ‘1177’, Sfax 3018, Tunisia; (M.T.B.); (W.B.R.); (A.B.H.)
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ‘1177’, Sfax 3018, Tunisia; (M.T.B.); (W.B.R.); (A.B.H.)
- Departments of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, Gafsa 2112, Tunisia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P ‘1177’, Sfax 3018, Tunisia; (M.T.B.); (W.B.R.); (A.B.H.)
| |
Collapse
|
11
|
Genome-Wide Analyses of Tea Plant Stress-Associated Proteins (SAPs) Reveal the Role of CsSAP12 in Increased Drought Tolerance in Transgenic Tomatoes. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Plant stress-associated proteins (SAPs) contain A20/AN1 zinc finger domains and are involved in plant response to abiotic stresses. In this study, we aimed to explore the biological function of tea plant CsSAPs. A total of 14 CsSAP genes were identified in the tea plant genome using a reference genome database (Camellia sinensis var. sinensis). The CsSAPs were divided into the following two groups: Group I, containing one AN1 domain and/or one A20 domain; and Group II, containing two AN1 domains and/or two C2H2 domains. The sequence alignments and conserved domains analysis indicated that the CsSAPs were highly structurally conserved in terms of amino acid sequence and protein structure. The CsSAPs showed different transcript levels in spatio-temporal expression and in response to cold and drought stress in tea plants. Furthermore, the expression of CsSAP12 was considerably upregulated under drought stress. The overexpression of CsSAP12 in transgenic tomatoes showed increased tolerance to drought stress compared with the wild type. Altogether, the results showed that CsSAP12 might be involved in drought stress. Thus, CsSAP12 might be a target gene in genetic engineering to improve drought tolerance in tea plants.
Collapse
|
12
|
Identification and Expression Analysis of Zinc Finger A20/AN1 Stress-Associated Genes SmSAP Responding to Abiotic Stress in Eggplant. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stress-associated proteins (SAP), a class of zinc-finger proteins, have been identified as novel stress regulatory proteins in stress responses. However, SAP genes in eggplant (SmSAP) have been little reported. It has important significance in identifying SAP members, understanding the molecular mechanisms underlying stress responses, and tolerance. We performed a comprehensive study of the A20/AN1 domains, motifs, gene structures, phylogenetic relationships, chromosomal locations, gene replications, collinearity, cis-acting elements, and expression pattern responses to various abiotic stresses. Twenty-one SAP genes were identified in eggplant (SmSAP) and were localized on 10 chromosomes. A phylogenetic analysis revealed that most of the SmSAP proteins showed a high homology with the tomato SAP members, and 21 members were divided into four groups based on the homology of the SAP members in eggplant, tomato, rice, and Arabidopsis. Further analysis revealed that SmSAP proteins contain the characteristic A20/AN1 domains, the A20 domain composed of motif 2 (ILCINNCGFFGSPATMNLCSKCYKDMJLK). Four pairs of tandem duplications were found in eggplant, and 10 SmSAP genes had collinearity with SAP genes from Arabidopsis, potato, or tomato, but only four SmSAP genes were collinear with SAP genes in the three species mentioned above. Moreover, the promoters of SmSAP genes were predicted to contain many cis-acting elements that respond to abiotic stress and hormones. A qRT-PCR analysis of the four selected SmSAP genes exhibited diverse expression levels in response to various environmental stresses. These results provided a comprehensive analysis of the SmSAP genes and lay a solid foundation for improving the understanding of the functional diversification of SAP genes under various environmental stresses in eggplant.
Collapse
|
13
|
Bae Y, Lim CW, Lee SC. Differential Functions of Pepper Stress-Associated Proteins in Response to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:756068. [PMID: 34956259 PMCID: PMC8702622 DOI: 10.3389/fpls.2021.756068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Stress-associated proteins (SAPs), a group of zinc-finger-type proteins, have been identified as novel regulators of plant abiotic and biotic stresses. However, although they have been discovered in different plant species, their precise functional roles remain unclear. Here, we identified 14 SAP subfamily genes in the pepper genome. An investigation of the promoter regions of these genes for cis-regulatory elements associated with abiotic stress responses revealed the presence of multiple stress-related elements. Domain and phylogenetic analyses using the corresponding protein sequences revealed that the CaSAP genes can be classified into six groups (I-VI) and sorted into two broad types. Expression levels of the CaSAP genes were found to be differentially induced by low temperature, the dehydration stress, or exogenous abscisic acid. Group II and IV genes were highly induced by the low temperature and dehydration treatments, respectively. Moreover, subcellular localization analysis indicated that the proteins in these two groups are distributed in the nucleus, cytoplasm, and plasma membrane. Among the pepper plants silenced with the three identified group II CaSAP genes, the CA02g10410-silenced plants showed tolerance to low temperature, whereas the CA03g17080-silenced plants were found to have temperature-sensitive phenotypes. Interestingly, group IV CaSAP-silenced pepper plants showed drought-tolerant phenotypes. These findings contribute to a preliminary characterization of CaSAP genes and provide directions for future research on the biological role of CaSAPs in response to different abiotic stresses.
Collapse
|
14
|
Baidyussen A, Jatayev S, Khassanova G, Amantayev B, Sereda G, Sereda S, Gupta NK, Gupta S, Schramm C, Anderson P, Jenkins CLD, Soole KL, Langridge P, Shavrukov Y. Expression of Specific Alleles of Zinc-Finger Transcription Factors, HvSAP8 and HvSAP16, and Corresponding SNP Markers, Are Associated with Drought Tolerance in Barley Populations. Int J Mol Sci 2021; 22:12156. [PMID: 34830037 PMCID: PMC8617764 DOI: 10.3390/ijms222212156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
Abstract
Two genes, HvSAP8 and HvSAP16, encoding Zinc-finger proteins, were identified earlier as active in barley plants. Based on bioinformatics and sequencing analysis, six SNPs were found in the promoter regions of HvSAP8 and one in HvSAP16, among parents of two barley segregating populations, Granal × Baisheshek and Natali × Auksiniai-2. ASQ and Amplifluor markers were developed for HvSAP8 and HvSAP16, one SNP in each gene, and in each of two populations, showing simple Mendelian segregation. Plants of F6 selected breeding lines and parents were evaluated in a soil-based drought screen, revealing differential expression of HvSAP8 and HvSAP16 corresponding with the stress. After almost doubling expression during the early stages of stress, HvSAP8 returned to pre-stress level or was strongly down-regulated in plants with Granal or Baisheshek genotypes, respectively. For HvSAP16 under drought conditions, a high expression level was followed by either a return to original levels or strong down-regulation in plants with Natali or Auksiniai-2 genotypes, respectively. Grain yield in the same breeding lines and parents grown under moderate drought was strongly associated with their HvSAP8 and HvSAP16 genotypes. Additionally, Granal and Natali genotypes with specific alleles at HvSAP8 and HvSAP16 were associated with improved performance under drought via higher 1000 grain weight and more shoots per plant, respectively.
Collapse
Affiliation(s)
- Akmaral Baidyussen
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (A.B.); (S.J.); (G.K.); (B.A.)
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (A.B.); (S.J.); (G.K.); (B.A.)
| | - Gulmira Khassanova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (A.B.); (S.J.); (G.K.); (B.A.)
| | - Bekzak Amantayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (A.B.); (S.J.); (G.K.); (B.A.)
| | - Grigory Sereda
- A.F. Khristenko Karaganda Agricultural Experimental Station, Karaganda Region 100435, Kazakhstan; (G.S.); (S.S.)
| | - Sergey Sereda
- A.F. Khristenko Karaganda Agricultural Experimental Station, Karaganda Region 100435, Kazakhstan; (G.S.); (S.S.)
| | - Narendra K. Gupta
- Department of Plant Physiology, SKN Agriculture University, Jobner 303 329, India; (N.K.G.); (S.G.)
| | - Sunita Gupta
- Department of Plant Physiology, SKN Agriculture University, Jobner 303 329, India; (N.K.G.); (S.G.)
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Peter Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Peter Langridge
- Wheat Initiative, Julius-Kühn-Institute, 14195 Berlin, Germany;
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5005, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| |
Collapse
|
15
|
Harbaoui M, Ben Romdhane W, Ben Hsouna A, Brini F, Ben Saad R. The durum wheat annexin, TdAnn6, improves salt and osmotic stress tolerance in Arabidopsis via modulation of antioxidant machinery. PROTOPLASMA 2021; 258:1047-1059. [PMID: 33594480 DOI: 10.1007/s00709-021-01622-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
TdAnn6 is a gene encoding an annexin protein in durum wheat (Triticum durum). The function of TdAnn6 in plant response to stress is not yet clearly understood. Here, we isolated TdAnn6 and characterized it in genetically modified Arabidopsis thaliana. Expressing TdAnn6 in Arabidopsis coincided with an improvement in stress tolerance at germination and seedling stages. In addition, TdAnn6-expressing seedling antioxidant activities were improved with lower level of malondialdehyde, and enhanced transcript levels of six stress-related genes during salt/osmotic stresses. Under greenhouse conditions, the TdAnn6 plants exhibited increased tolerance to salt or drought stress. To deepen our understanding of TdAnn6 function, we isolated a 1515-bp genomic fragment upstream of its coding sequence, designated as PrTdAnn6. The PrTdAnn6 promoter was fused to the β-glucuronidase reporter gene and transferred to Arabidopsis. By histochemical GUS staining, GUS activity was detected in the roots, leaves, and floral organs, but no activity was detected in the seeds. Furthermore, we noticed a high stimulation of promoter activity when A. thaliana seedlings were exposed to NaCl, mannitol, ABA, GA, and cold conditions. This cross-talk between tissue-specific expression and exogenous stress stimulation may provide additional layers of regulation for salt and osmotic stress responses in crops.
Collapse
Affiliation(s)
- Marwa Harbaoui
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
- Departments of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
| |
Collapse
|
16
|
Sokolkova A, Burlyaeva M, Valiannikova T, Vishnyakova M, Schafleitner R, Lee CR, Ting CT, Nair RM, Nuzhdin S, Samsonova M, von Wettberg E. Genome-wide association study in accessions of the mini-core collection of mungbean (Vigna radiata) from the World Vegetable Gene Bank (Taiwan). BMC PLANT BIOLOGY 2020; 20:363. [PMID: 33050907 PMCID: PMC7556912 DOI: 10.1186/s12870-020-02579-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/26/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Mungbean (Vigna radiata (L.) R. Wilczek, or green gram) is important tropical and sub-tropical legume and a rich source of dietary protein and micronutrients. In this study we employ GWAS to examine the genetic basis of variation in several important traits in mungbean, using the mini-core collection established by the World Vegetable Center, which includes 296 accessions that represent the major market classes. This collection has been grown in a common field plot in southern European part of Russia in 2018. RESULTS We used 5041 SNPs in 293 accessions that passed strict filtering for genetic diversity, linkage disequilibrium, population structure and GWAS analysis. Polymorphisms were distributed among all chromosomes, but with variable density. Linkage disequilibrium decayed in approximately 105 kb. Four distinct subgroups were identified within 293 accessions with 70% of accessions attributed to one of the four populations. By performing GWAS on the mini-core collection we have found several loci significantly associated with two important agronomical traits. Four SNPs associated with possibility of maturation in Kuban territory of Southern Russia in 2018 were identified within a region of strong linkage which contains genes encoding zinc finger A20 and an AN1 domain stress-associated protein. CONCLUSIONS The core collection of mungbean established by the World Vegetable Center is a valuable resource for mungbean breeding. The collection has been grown in southern European part of Russia in 2018 under incidental stresses caused by abnormally hot weather and different photoperiod. We have found several loci significantly associated with color of hypocotyl and possibility of maturation under these stressful conditions. SNPs associated with possibility of maturation localize to a region on chromosome 2 with strong linkage, in which genes encoding zinc finger A20 and AN1 domain stress associated protein (SAP) are located. Phenotyping of WorldVeg collection for maturation traits in temperate climatic locations is important as phenology remains a critical breeding target for mungbean. As demand rises for mungbean, production in temperate regions with shorter growing seasons becomes crucial to keep up with needs. Uncovering SNPs for phenology traits will speed breeding efforts.
Collapse
Affiliation(s)
- Alena Sokolkova
- Peter the Great St. Petersburg Polytechnic University, Department of Applied Mathematics, St. Petersburg, Russia
| | - Marina Burlyaeva
- Federal Research Centre All-Russian N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - Tatjana Valiannikova
- Kuban Branch of Federal Research Centre All-Russian N.I. Vavilov Institute of Plant Genetic Resources (VIR), Krasnodar region, Russia
| | - Margarita Vishnyakova
- Federal Research Centre All-Russian N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | | | | | | | - Ramakrishnan Madhavan Nair
- World Vegetable Center, South and Central Asia, ICRISAT Campus, Patancheru, Hyderabad, Telangana, 502324, India
| | - Sergey Nuzhdin
- Peter the Great St. Petersburg Polytechnic University, Department of Applied Mathematics, St. Petersburg, Russia
- University of Southern California, Los Angeles, CA, 90089, USA
| | - Maria Samsonova
- Peter the Great St. Petersburg Polytechnic University, Department of Applied Mathematics, St. Petersburg, Russia.
| | - Eric von Wettberg
- Peter the Great St. Petersburg Polytechnic University, Department of Applied Mathematics, St. Petersburg, Russia.
- University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
17
|
Baidyussen A, Aldammas M, Kurishbayev A, Myrzabaeva M, Zhubatkanov A, Sereda G, Porkhun R, Sereda S, Jatayev S, Langridge P, Schramm C, Jenkins CLD, Soole KL, Shavrukov Y. Identification, gene expression and genetic polymorphism of zinc finger A20/AN1 stress-associated genes, HvSAP, in salt stressed barley from Kazakhstan. BMC PLANT BIOLOGY 2020; 20:156. [PMID: 33050881 PMCID: PMC7556924 DOI: 10.1186/s12870-020-02332-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/06/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND A family of genes designated as the Zinc finger A20/AN1 Transcription factors encoding stress-associated proteins (SAP) are well described in Arabidopsis and rice, and include 14 AtSAP and 18 OsSAP genes that are associated with variable tolerances to multiple abiotic stresses. The SAP gene family displays a great diversity in its structure and across different plant species. The aim of this study was to identify all HvSAP genes in barley (Hordeum vulgare L.), to analyse the expression of selected genes in response to salinity in barley leaves and develop SNP marker for HvSAP12 to evaluate the association between genotypes of barley plants and their grain yield in field trials. RESULTS In our study, 17 HvSAP genes were identified in barley, which were strongly homologous to rice genes. Five genes, HvSAP5, HvSAP6, HvSAP11, HvSAP12 and HvSAP15, were found to be highly expressed in leaves of barley plants in response to salt stress in hydroponics compared to controls, using both semi-quantitative RT-PCR and qPCR analyses. The Amplifluor-like SNP marker KATU-B30 was developed and used for HvSAP12 genotyping. A strong association (R2 = 0.85) was found between KATU-B30 and grain yield production per plant of 50 F3 breeding lines originating from the cross Granal × Baisheshek in field trials with drought and low to moderate salinity in Northern and Central Kazakhstan. CONCLUSIONS A group of HvSAP genes, and HvSAP12 in particular, play an important role in the tolerance of barley plants to salinity and drought, and is associated with higher grain yield in field trials. Marker-assisted selection with SNP marker KATU-B30 can be applied in barley breeding to improve grain yield production under conditions of abiotic stress.
Collapse
Affiliation(s)
- Akmaral Baidyussen
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Maryam Aldammas
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Akhylbek Kurishbayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Malika Myrzabaeva
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Askar Zhubatkanov
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Grigory Sereda
- A.F. Khristenko Karaganda Agricultural Experimental Station, Karaganda, Kazakhstan
| | - Raisa Porkhun
- A.F. Khristenko Karaganda Agricultural Experimental Station, Karaganda, Kazakhstan
| | - Sergey Sereda
- A.F. Khristenko Karaganda Agricultural Experimental Station, Karaganda, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan.
| | | | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Colin L D Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Kathleen L Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
18
|
Ben Saad R, Ben Romdhane W, Mihoubi W, Ben Hsouna A, Brini F. A Lobularia maritima LmSAP protein modulates gibberellic acid homeostasis via its A20 domain under abiotic stress conditions. PLoS One 2020; 15:e0233420. [PMID: 32428039 PMCID: PMC7237032 DOI: 10.1371/journal.pone.0233420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 01/09/2023] Open
Abstract
Stress-associated proteins (SAPs) are favorable targets to improve stress tolerance in plants, owing to their roles in developmental processes and stress responses. However, the role of SAPs and the molecular mechanisms by which they regulate plant stress responses remain poorly understood. Previously, it was reported that LmSAP expression was upregulated by various abiotic stressors in Lobularia maritima, and that transgenic tobacco lines with constitutively expressed LmSAPΔA20 and LmSAPΔA20-ΔAN1 showed dwarf phenotypes due to the deficiency of cell elongation under salt and osmotic stresses. In this study, we examined the function of A20 domain in the GA pathway in response to abiotic stresses. Transient expression of acGFP-LmSAPΔA20 and acGFP-LmSAPΔA20-ΔAN1 in onion epidermal cells demonstrated that these fused proteins were localized in the nucleo–cytoplasm. However, the truncated form acGFP-LmSAPΔAN1 was localized in the nucleus. Moreover, comparison of native and truncated LmSAP showed dramatic structural changes caused by the deletion of the A20 domain, leading to loss of function and localization. Interestingly, overexpression LmSAP and truncated LmSAPΔAN1 led to up-regulation of GA biosynthetic genes and increased total gibberellins (GAs) content, corresponding with accelerated development in transgenic tobacco plants. Moreover, the dwarf phenotype of the transgenic lines that express LmSAPΔA20 and LmSAPΔA20-ΔAN1 under stress conditions was fully restored by the application of exogenous GA3. These findings improve our understanding of the role of LmSAP in regulating GA homeostasis, which is important for regulating plant development under abiotic stress conditions.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- * E-mail:
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Wafa Mihoubi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Department of Life Sciences, Faculty of Sciences of Gafsa, Gafsa, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
19
|
Lai W, Zhou Y, Pan R, Liao L, He J, Liu H, Yang Y, Liu S. Identification and Expression Analysis of Stress-Associated Proteins (SAPs) Containing A20/AN1 Zinc Finger in Cucumber. PLANTS (BASEL, SWITZERLAND) 2020; 9:E400. [PMID: 32213813 PMCID: PMC7154871 DOI: 10.3390/plants9030400] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/01/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022]
Abstract
Stress-associated proteins (SAPs) are a class of zinc finger proteins that confer tolerance to a variety of abiotic and biotic stresses in diverse plant species. However, in cucumber (Cucumis sativus L.), very little is known about the roles of SAP gene family members in regulating plant growth, development, and stress responses. In this study, a total of 12 SAP genes (named as CsSAP1-CsSAP12) were identified in the cucumber genome, which were unevenly distributed on six chromosomes. Gene duplication analysis detected one tandem duplication and two segmental duplication events. Phylogenetic analysis of SAP proteins from cucumber and other plants suggested that they could be divided into seven groups (sub-families), and proteins in the same group generally had the same arrangement of AN1 (ZnF-AN1) and A20 (ZnF-A20) domains. Most of the CsSAP genes were intronless and harbored a number of stress- and hormone-responsive cis-elements in their promoter regions. Tissue expression analysis showed that the CsSAP genes had a broad spectrum of expression in different tissues, and some of them displayed remarkable alteration in expression during fruit development. RT-qPCR results indicated that all the selected CsSAP genes displayed transcriptional responses to cold, drought, and salt stresses. These results enable the first comprehensive description of the SAP gene family in cucumber and lay a solid foundation for future research on the biological functions of CsSAP genes.
Collapse
Affiliation(s)
- Wei Lai
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong Zhou
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rao Pan
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liting Liao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Juncheng He
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haoju Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingui Yang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiqiang Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|