1
|
Sandalio LM, Espinosa J, Shabala S, León J, Romero-Puertas MC. Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5970-5988. [PMID: 37668424 PMCID: PMC10575707 DOI: 10.1093/jxb/erad349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Deterioration and impoverishment of soil, caused by environmental pollution and climate change, result in reduced crop productivity. To adapt to hostile soils, plants have developed a complex network of factors involved in stress sensing, signal transduction, and adaptive responses. The chemical properties of reactive oxygen species (ROS) and reactive nitrogen species (RNS) allow them to participate in integrating the perception of external signals by fine-tuning protein redox regulation and signal transduction, triggering specific gene expression. Here, we update and summarize progress in understanding the mechanistic basis of ROS and RNS production at the subcellular level in plants and their role in the regulation of ion channels/transporters at both transcriptional and post-translational levels. We have also carried out an in silico analysis of different redox-dependent modifications of ion channels/transporters and identified cysteine and tyrosine targets of nitric oxide in metal transporters. Further, we summarize possible ROS- and RNS-dependent sensors involved in metal stress sensing, such as kinases and phosphatases, as well as some ROS/RNS-regulated transcription factors that could be involved in metal homeostasis. Understanding ROS- and RNS-dependent signaling events is crucial to designing new strategies to fortify crops and improve plant tolerance of nutritional imbalance and metal toxicity.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Jesús Espinosa
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - José León
- Institute of Plant Molecular and Cellular Biology (CSIC-UPV), Valencia, Spain
| | - María C Romero-Puertas
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
2
|
Soliman E, Elshazly SM, Shewaikh SM, El-Shaarawy F. Reno- and hepato-protective effect of allopurinol after renal ischemia/reperfusion injury: Crosstalk between xanthine oxidase and peroxisome proliferator-activated receptor gamma signaling. Food Chem Toxicol 2023:113868. [PMID: 37269893 DOI: 10.1016/j.fct.2023.113868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Renal ischemia/reperfusion (I/R) is a common cause of acute kidney injury and remote liver damage is an ultimate negative outcome. Current treatments for I/R typically involve the use of antioxidants and anti-inflammatory to protect against oxidative stress and inflammation. Xanthine oxidase (XO) and PPAR-γ contribute to renal I/R-induced oxidative stress; however, the crosstalk between the two pathways remains unexplored. In the present study, we report that XO inhibitor, allopurinol (ALP), protects kidney and liver after renal I/R by PPAR-γ activation. Rats with renal I/R showed reduced kidney and liver functions, increased XO, and decreased PPAR-γ. ALP increased PPAR-γ expression and improved liver and kidney functions. ALP also reduced inflammation and nitrosative stress indicated by reduction in TNF-α, iNOS, nitric oxide (NO), and peroxynitrite formation. Interestingly, rats co-treated with PPAR-γ inhibitor, BADGE, and ALP showed diminished beneficial effect on renal and kidney functions, inflammation, and nitrosative stress. This data suggests that downregulation of PPAR-γ contributes to nitrosative stress and inflammation in renal I/R and the use of ALP reverses this effect by increasing PPAR-γ expression. In conclusion, this study highlights the potential therapeutic value of ALP and suggests targeting XO-PPAR-γ pathway as a promising strategy for preventing I/R injury.
Collapse
Affiliation(s)
- Eman Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Shimaa Mustafa Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Samar M Shewaikh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Fatma El-Shaarawy
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, El-Arish, 45511, Egypt.
| |
Collapse
|
3
|
Feng R, Liang W, Liu Y, Luo Y, Tan Y, Hong H. Protein oxidation affected the digestibility and modification sites of myofibrillar proteins from bighead carp fillets treated with hydroxyl radicals and endogenous oxidizing system. Food Chem 2023; 409:135279. [PMID: 36603476 DOI: 10.1016/j.foodchem.2022.135279] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
This study aimed to investigate the effect of hydroxyl radical oxidizing system (HROS) and endogenous oxidizing system (EOS, i.e., frozen storage at -20 °C) on protein oxidation, digestive properties, and peptide modification of myofibrillar proteins (MPs) in bighead carp (Hypophthalmichthys nobilis) fillets. The oxidation degree increased with the frozen time and H2O2 concentration as evidenced by carbonyl group generation and sulfhydryl group loss in MPs. The digestibility of protein declined gradually during frozen storage, while it increased after treatment with 5 mM H2O2 compared with no H2O2 intervention. More modification numbers and types were observed in the EOS group than HROS in digested MPs peptides, which might be due to the complexity of the frozen fillet system such as the presence of lipid. The potential conversion of α-aminoadipic semialdehyde (AAS) to α-aminoadipic acids (AAA) was observed in HROS. Additionally, the myosin heavy chain was more susceptible to oxidation among all MPs by EOS oxidation.
Collapse
Affiliation(s)
- Ruifang Feng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Wenyu Liang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Yueyue Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China; National Research and Development Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China.
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China; Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China.
| |
Collapse
|
4
|
Tarannum A, Arif Z, Mustafa M, Abul Qais F, Habib S, Uddin M, Alam K. Studies on the synergistic action of methylglyoxal and peroxynitrite on structure and function of human serum albumin. J Biomol Struct Dyn 2023; 41:67-80. [PMID: 34842044 DOI: 10.1080/07391102.2021.2003865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Albumin, an important serum protein, is continuously exposed to various oxidizing/nitrating and glycating agents. Depending upon the nature/concentration of reactive species present, the protein may be glycated, oxidized/nitroxidized or glyco-nitro-oxidized. Peroxynitrite is a powerful nitroxidant and has been reported to damage a wide array of macromolecules. On the other hand, methylglyoxal is a very strong reactive dicarbonyl and a potent precursor for the formation of advanced glycation end products under pathological conditions. In certain pathological conditions albumin may be modified by peroxynitrite and methylglyoxal simultaneously. There is dearth of literature suggests that structural/conformational and functional alteration in albumin upon glycation and oxidation/nitroxidation, however the alterations produced by glyco-nitro-oxidation has not yet been explored. Therefore, in this study, simultaneous effect of glycation and nitroxidation on the structure and conformation, vis-a-vis function of albumin was explored. Glyco-nitro-oxidized albumin showed decreased free amino acid content together with decreased affinity of albumin towards cobalt. Molecular docking model and molecular dynamic simulations showed close interaction and formation of stable complexes between methylglyoxal, peroxynitrite and albumin. Formation of carboxymethyl lysine and 3-nitrotyrosine in glyco-nitro-oxidized albumin were confirmed by MALDI-TOF MS and UP-LC MS. Aggregate formation in glyco-nitro-oxidized albumin was visualized by transmission electron microscopy. On the basis of these results, it may be speculated that, albumin modified with endogenously generated methylglyoxal and peroxynitrite might be a driving factor in the progression of heightened inflammatory autoimmune responses. The work presents a ground to study the role of glyco-nitro-oxidized albumin in the pathogenesis and progression of various autoimmune diseases including rheumatoid arthritis. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhlas Tarannum
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Zarina Arif
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Mustafa
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Faizan Abul Qais
- Dept of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moin Uddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Khursheed Alam
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
5
|
Soheili M, Alinaghipour A, Salami M. Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations. Life Sci 2022; 301:120605. [DOI: 10.1016/j.lfs.2022.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
|
6
|
Kosmachevskaya OV, Nasybullina EI, Shumaev KB, Novikova NN, Topunov AF. Protective Effect of Dinitrosyl Iron Complexes Bound with Hemoglobin on Oxidative Modification by Peroxynitrite. Int J Mol Sci 2021; 22:13649. [PMID: 34948445 PMCID: PMC8703631 DOI: 10.3390/ijms222413649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Dinitrosyl iron complexes (DNICs) are a physiological form of nitric oxide (•NO) in an organism. They are able not only to deposit and transport •NO, but are also to act as antioxidant and antiradical agents. However, the mechanics of hemoglobin-bound DNICs (Hb-DNICs) protecting Hb against peroxynitrite-caused, mediated oxidative modification have not yet been scrutinized. Through EPR spectroscopy we show that Hb-DNICs are destroyed under the peroxynitrite action in a dose-dependent manner. At the same time, DNICs inhibit the oxidation of tryptophan and tyrosine residues and formation of carbonyl derivatives. They also prevent the formation of covalent crosslinks between Hb subunits and degradation of a heme group. These effects can arise from the oxoferryl heme form being reduced, and they can be connected with the ability of DNICs to directly intercept peroxynitrite and free radicals, which emerge due to its homolysis. These data show that DNICs may ensure protection from myocardial ischemia.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, 119071 Moscow, Russia; (O.V.K.); (E.I.N.); (K.B.S.)
| | - Elvira I. Nasybullina
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, 119071 Moscow, Russia; (O.V.K.); (E.I.N.); (K.B.S.)
| | - Konstantin B. Shumaev
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, 119071 Moscow, Russia; (O.V.K.); (E.I.N.); (K.B.S.)
| | | | - Alexey F. Topunov
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, 119071 Moscow, Russia; (O.V.K.); (E.I.N.); (K.B.S.)
| |
Collapse
|
7
|
Kosmachevskaya OV, Nasybullina EI, Shumaev KB, Chumikina LV, Arabova LI, Yaglova NV, Obernikhin SS, Topunov AF. Dinitrosyl Iron Complexes with Glutathione Ligands Intercept Peroxynitrite and Protect Hemoglobin from Oxidative Modification. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Ruiz‐May E, Segura‐Cabrera A, Elizalde‐Contreras JM, Shannon LM, Loyola‐Vargas VM. A recent advance in the intracellular and extracellular redox post‐translational modification of proteins in plants. J Mol Recognit 2018; 32:e2754. [DOI: 10.1002/jmr.2754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Eliel Ruiz‐May
- Red de Estudios Moleculares AvanzadosInstituto de Ecología A. C., Cluster BioMimic® Xalapa Veracruz Mexico
| | - Aldo Segura‐Cabrera
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute, Wellcome Genome Campus Hinxton Cambridgeshire UK
| | - Jose M. Elizalde‐Contreras
- Red de Estudios Moleculares AvanzadosInstituto de Ecología A. C., Cluster BioMimic® Xalapa Veracruz Mexico
| | - Laura M. Shannon
- Department of Horticultural ScienceUniversity of Minnesota Saint Paul MN USA
| | - Víctor M. Loyola‐Vargas
- Unidad de Bioquímica y Biología Molecular de PlantasCentro de Investigación Científica de Yucatán Mérida Yucatán Mexico
| |
Collapse
|
9
|
Lin YW. Structure and function of heme proteins regulated by diverse post-translational modifications. Arch Biochem Biophys 2018; 641:1-30. [DOI: 10.1016/j.abb.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
|
10
|
Giménez-Garzó C, Urios A, Agustí A, Mangas-Losada A, García-García R, Escudero-García D, Kosenko E, Ordoño JF, Tosca J, Giner-Durán R, Serra MA, Felipo V, Montoliu C. Cirrhotic patients with minimal hepatic encephalopathy have increased capacity to eliminate superoxide and peroxynitrite in lymphocytes, associated with cognitive impairment. Free Radic Res 2017; 52:118-133. [PMID: 29262736 DOI: 10.1080/10715762.2017.1420183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Patients with minimal hepatic encephalopathy (MHE) show increased oxidative stress in blood. We aimed to assess whether MHE patients show alterations in different types of blood cells in (a) basal reactive oxygen and nitrogen species levels; (b) capacity to metabolise these species. To assess the mechanisms involved in the altered capacity to metabolise these species we also analysed: (c) peroxynitrite formation and d) peroxynitrite reaction with biological molecules. Levels of reactive oxygen and nitrogen species were measured by flow cytometry in blood cell populations from cirrhotic patients with and without MHE and controls, under basal conditions and after adding generators of superoxide (plumbagin) or nitric oxide (NOR-1) to assess the capacity to eliminate them. Under basal conditions, MHE patients show reduced superoxide and peroxynitrite levels and increased nitric oxide (NO) and nitrotyrosine levels. In patients without MHE plumbagin strongly increases cellular superoxide, moderately peroxynitrite and reduces NO levels. In MHE patients, plumbagin increases slightly superoxide and strongly peroxynitrite levels and affects slightly NO levels. NOR-1 increases NO levels much less in patients with than without MHE. These data show that the mechanisms and the capacity to eliminate cellular superoxide, NO and peroxynitrite are enhanced in MHE patients. Superoxide elimination is enhanced through reaction with NO to form peroxynitrite which, in turn, is eliminated by enhanced reaction with biological molecules, which could contribute to cognitive impairment in MHE. The data show that basal free radical levels do not reflect the oxidative stress status in MHE.
Collapse
Affiliation(s)
- Carla Giménez-Garzó
- a Laboratory of Neurobiology , Centro Investigación Príncipe Felipe de Valencia , Valencia , Spain
| | - Amparo Urios
- a Laboratory of Neurobiology , Centro Investigación Príncipe Felipe de Valencia , Valencia , Spain.,b Fundación Investigación Hospital Clínico de Valencia, Instituto de Investigación Sanitaria-INCLIVA , Valencia , Spain
| | - Ana Agustí
- b Fundación Investigación Hospital Clínico de Valencia, Instituto de Investigación Sanitaria-INCLIVA , Valencia , Spain
| | - Alba Mangas-Losada
- b Fundación Investigación Hospital Clínico de Valencia, Instituto de Investigación Sanitaria-INCLIVA , Valencia , Spain
| | - Raquel García-García
- a Laboratory of Neurobiology , Centro Investigación Príncipe Felipe de Valencia , Valencia , Spain
| | - Desamparados Escudero-García
- c Unidad de Digestivo, Hospital Clínico de Valencia , Departamento de Medicina, Universidad de Valencia , Valencia , Spain
| | - Elena Kosenko
- d Laboratory of Modeling and Bioinformatics , Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences , Pushchino , Russia
| | - Juan Fermín Ordoño
- e Servicio Neurofisiología , Hospital Arnau de Vilanova , Valencia , Spain.,f Psychopatology and Neurophysiology Unit , Paterna Mental Health Center, CIBERSAM , Valencia , Spain
| | - Joan Tosca
- c Unidad de Digestivo, Hospital Clínico de Valencia , Departamento de Medicina, Universidad de Valencia , Valencia , Spain
| | | | - Miguel Angel Serra
- c Unidad de Digestivo, Hospital Clínico de Valencia , Departamento de Medicina, Universidad de Valencia , Valencia , Spain
| | - Vicente Felipo
- a Laboratory of Neurobiology , Centro Investigación Príncipe Felipe de Valencia , Valencia , Spain
| | - Carmina Montoliu
- b Fundación Investigación Hospital Clínico de Valencia, Instituto de Investigación Sanitaria-INCLIVA , Valencia , Spain.,h Departamento de Patología, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| |
Collapse
|
11
|
Karmakar S, Datta A. Understanding the Reactivity of CO3·– and NO2· Radicals toward S-Containing and Aromatic Amino Acids. J Phys Chem B 2017; 121:7621-7632. [DOI: 10.1021/acs.jpcb.7b05186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sharmistha Karmakar
- Department of Spectroscopy, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road,
Jadavpur, 700032 Kolkata, West Bengal, India
| | - Ayan Datta
- Department of Spectroscopy, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road,
Jadavpur, 700032 Kolkata, West Bengal, India
| |
Collapse
|
12
|
Tiensomjitr K, Prabpai S, Kongsaeree P. Characterization of the selective alkylation site in hemoglobin A by dihydroartemisinin with tandem mass spectrometry. Int J Biol Macromol 2017; 99:358-364. [PMID: 28259625 DOI: 10.1016/j.ijbiomac.2017.02.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
The reaction between the antimalarial drug dihydroartemisinin (DHA) and hemoglobin A (HbA) was investigated in vitro. A fluorescein-tagged artemisinin analog reacted with HbA and fluorescent HbA-drug adducts could be visualized on SDS-PAGE to confirm stable covalent reaction adducts and necessity of the endoperoxide moiety and Fe(II). Mass spectrometric analyses revealed that DHA favourably alkylated protein part rather than heme and the modification site was identified to be at Tyr35 of the beta globin chain.
Collapse
Affiliation(s)
- Khomsan Tiensomjitr
- Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Samran Prabpai
- Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Palangpon Kongsaeree
- Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
13
|
Abdelkarem HM, Fadda LM, Kaml OR. Alleviation of bone markers in rats induced nano-zinc oxide by qurecetin and α-lipolic acid. Toxicol Mech Methods 2016; 26:692-699. [PMID: 27785948 DOI: 10.1080/15376516.2016.1236424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to evaluate the potential protective effect of qurecetin (Qur) and α-lipolic acid (ALA) to modulate the perturbation of bone turnover which is induced by nano-zinc oxide (n-ZnO). Rats were fasted overnight and randomly divided into two groups: G1, normal healthy animals and the other rats were administered zinc oxide nanoparticles orally by guava in a dose of 600 mg/kg body weight/d for 5 sequential days in Wistar albino male rats. N-ZnO-exposed animals were randomly sub-divided into three groups: G2, n-ZnO-exposed animals; G3, n-ZnO-exposed animals co-treated with Qur (200 mg/kg daily); and G4, n-ZnO-exposed animals co-treated with ALA (200 mg/kg). Qur and ALA were administered orally by guava daily for three sequential weeks from the beginning of the experiment. The results revealed a significant reduction of nitiric oxide (NO) and serum level and comet assay in n-ZnO exposure rats after treatment of Qur and ALA. It was found the alteration of pro-inflammatory markers (tumor necrosis factor alpha; TNF-α, interleukin-6; IL-6 and C-reactive protein; CRP), bone alkaline phosphatase (B-ALP, bone formation marker), and C-terminal peptide type I collagen (CTx, bone resorption marker) levels compared with the normal group. Co-administration of Qur and ALA in n-ZnO-exposed rats significantly alleviated the mentioned alterations of biochemical parameters. These results suggest that Qur and ALA as antioxidant agents may be a candidate for preventive and treatment applications of impaired bone markers induced bone loss caused by nano-particles of metal oxide.
Collapse
Affiliation(s)
- Hala M Abdelkarem
- a Nutrition Department , National Research Center , Dokki , Cairo , Egypt
| | - Laila M Fadda
- b Pharmaceutical Department, Faculty of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Omyma R Kaml
- c Biochemistry Department , National Organization for Drug Control and Research (NODCAR) , Giza , Egypt
| |
Collapse
|
14
|
Abstract
Cerium oxide nanoparticles (CeO2 NPs) have been shown to possess a substantial oxygen storage capacity via the interchangeable surface reduction and oxidation of cerium atoms, cycling between the Ce(4+) and Ce(3+) redox states. It has been well established in many studies that depending on their reactivity and surface chemistry, CeO2 NPs can effectively convert both reactive oxygen species (superoxide, O2 (•-), and hydrogen peroxide) into more inert species and scavenge reactive nitrogen species (RNS)(nitric oxide, •NO), both in vitro and in vivo. Since much of damage attributed to •NO and O2 (•-) is actually the result of oxidation or nitration by peroxynitrite or its breakdown products and due to the multiple species that these nanoparticles target in vivo, it was logical to test their interaction with the highly reactive molecule peroxynitrite (ONOO(-)). Here, we report that CeO2 NPs significantly accelerated the decay of ONOO(-) by three independent methods. Additionally, our data suggest the ability of CeO2 NPs to interact with ONOO(-) is independent of the Ce(3+)/Ce(4+) ratio on the surface of the CeO2 NPs. The accelerated decay was not observed when reactions were carried out in an inert gas (argon), suggesting strongly that the decay of peroxynitrite is being accelerated due to a reaction of CeNPs with the carbonate radical anion. These results suggest that one of the protective effects of CeO2 NPs during RNS is likely due to reduction in peroxynitrite or its reactive breakdown products.
Collapse
|
15
|
Szuba A, Kasprowicz-Maluśki A, Wojtaszek P. Nitration of plant apoplastic proteins from cell suspension cultures. J Proteomics 2015; 120:158-68. [PMID: 25805245 DOI: 10.1016/j.jprot.2015.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/20/2015] [Accepted: 03/03/2015] [Indexed: 12/27/2022]
Abstract
Nitric oxide causes numerous protein modifications including nitration of tyrosine residues. This modification, though one of the greatest biological importance, is poorly recognized in plants and is usually associated with stress conditions. In this study we analyzed nitrotyrosines from suspension cultures of Arabidopsis thaliana and Nicotiana tabacum, treated with NO modulators and exposed to osmotic stress, as well as of BY2 cells long-term adapted to osmotic stress conditions. Using confocal microscopy, we showed that the cell wall area is one of the compartments most enriched in nitrotyrosines within a plant cell. Subsequently, we analyzed nitration of ionically-bound cell-wall proteins and identified selected proteins with MALDI-TOF spectrometry. Proteomic analysis indicated that there was no significant increase in the amount of nitrated proteins under the influence of NO modulators, among them 3-morpholinosydnonimine (SIN-1), considered a donor of nitrating agent, peroxynitrite. Moreover, osmotic stress conditions did not increase the level of nitration in cell wall proteins isolated from suspension cells, and in cultures long-term adapted to stress conditions; that level was even reduced in comparison with control samples. Among identified nitrotyrosine-containing proteins dominated the ones associated with carbon circulation as well as the numerous proteins responding to stress conditions, mainly peroxidases. BIOLOGICAL SIGNIFICANCE High concentrations of nitric oxide found in the cell wall and the ability to produce large amounts of ROS make the apoplast a site highly enriched in nitrotyrosines, as presented in this paper. Analysis of ionically bound fraction of the cell wall proteins indicating generally unchanged amounts of nitrotyrosines under influence of NO modulators and osmotic stress, is noticeably different from literature data concerning, however, the total plant proteins analysis. This observation is supplemented by further nitroproteome analysis, for cells long-term adapted to stressful conditions, and results showing that such conditions did not always cause an increase in nitrotyrosine content. These findings may be interpreted as characteristic features of apoplastic protein nitration.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik Poland.
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-613 Poznań, Poland
| | - Przemysław Wojtaszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-613 Poznań, Poland
| |
Collapse
|
16
|
Martorell M, Capó X, Bibiloni MM, Sureda A, Mestre-Alfaro A, Batle JM, Llompart I, Tur JA, Pons A. Docosahexaenoic acid supplementation promotes erythrocyte antioxidant defense and reduces protein nitrosative damage in male athletes. Lipids 2014; 50:131-48. [PMID: 25503390 DOI: 10.1007/s11745-014-3976-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 11/25/2014] [Indexed: 01/24/2023]
Abstract
The aim of this study was to determine the influence of long-term docosahexaenoic acid (DHA) dietary supplementation on the erythrocyte fatty acid profile and oxidative balance in soccer players after training and acute exercise. Fifteen volunteer male athletes (age 20.0 ± 0.5 years) were randomly assigned to a placebo group that consumed an almond-based beverage (n = 6), or to an experimental group that consumed the same beverage enriched with DHA (n = 9) for 8 weeks. Blood samples were taken in resting conditions at the beginning and after 8 weeks of nutritional intervention and training in resting and in post-exercise conditions. Oxidative damage markers (malonyldialdehyde, carbonyl and nitrotyrosine indexes) and the activity and protein level of antioxidant enzymes (catalase, superoxide dismutase, glutathione reductase and peroxidase) were assessed. The results showed that training increased antioxidant enzyme activities in erythrocytes. The experimental beverage increased DHA from 34.0 ± 3.6 to 43.0 ± 3.6 nmol/10(9) erythrocytes. DHA supplementation increased the catalytic activity of superoxide dismutase from 1.48 ± 0.40 to 10.5 ± 0.35 pkat/10(9) erythrocytes, and brought about a reduction in peroxidative damage induced by training or exercise. In conclusion, dietary supplementation with DHA changed the erythrocyte membrane composition, provided antioxidant defense and reduced protein peroxidative damage in the red blood cells of professional athletes after an 8-week training season and acute exercise.
Collapse
Affiliation(s)
- M Martorell
- Laboratori de Ciències de l'Activitat Física, Universitat de les Illes Balears, Crtra. Valldemossa, km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kosmachevskaya OV, Shumaev KB, Nasybullina EI, Topunov AF. Formation of nitri- and nitrosylhemoglobin in systems modeling the Maillard reaction. Clin Chem Lab Med 2014; 52:161-8. [PMID: 23979125 DOI: 10.1515/cclm-2012-0792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/26/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND Nitric oxide (NO) and its metabolites can nitrosylate hemoglobin (Hb) through the heme iron. Nitrihemoglobin (nitriHb) can be formed as result of porphyrin vinyl group modification with nitrite. However, in those with diabetes the non-enzymatic glycation of Hb amino acids residues (the Maillard reaction) can take place. The objectives of this study were to investigate effects of the Maillard reaction on the interaction of methemoglobin (metHb) with S-nitrosoglutathione (GSNO) and nitrite. METHODS Nitrosylhemoglobin production was registered using increasing optical density at 572 nm and compared with 592 nm, and with EPR spectroscopy. Formation of nitriHb was determined using an absorbance band of reduced hemochromogen (582 nm) in the alkaline pyridine solution. Accumulation of fluorescent advanced glycation end-products of Hb was measured through increasing of fluorescence at 385-395 nm (excitation λ=320 nm). RESULTS We determined that NO metabolites such as GSNO and nitrite at physiological pH values and aerobic conditions caused modification of metHb porphyrin vinyl groups with nitriHb formation. It was ascertained that this formation was inhibited by superoxide dismutase. In microaerobic conditions metHb was nitrosylated under the action of GSNO or GSNO with methylglyoxal. Nitrite nitrosylated metHb only in the presence of methylglyoxal. It was shown that GSNO inhibited accumulation of fluorescent products which formed during Hb glycation with methylglyoxal. CONCLUSIONS The assumption was made that intermediates of the Hb glycation reaction play an important role both in vinyl group nitration and in heme iron nitrosylation. Oxygen content in reaction medium is an important factor influencing these processes. These effects can play an important role in pathogenesis of the diseases connected with carbonyl, oxidative and nitrosative stresses.
Collapse
|
18
|
Subedi H, Brasch NE. Mechanistic Studies on the Reaction of Nitroxylcobalamin with Dioxygen: Evidence for Formation of a Peroxynitritocob(III)alamin Intermediate. Inorg Chem 2013; 52:11608-17. [DOI: 10.1021/ic401975f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Harishchandra Subedi
- Department of Chemistry and Biochemistry and ‡School of Biomedical
Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Nicola E. Brasch
- Department of Chemistry and Biochemistry and ‡School of Biomedical
Sciences, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
19
|
Bala Sakthi Janani MM, Selvakumar K, Suganya S, Fariya Yasmine AB, Krishnamoorthy G, Arunakaran J. Protective role of lycopene against PCBs-induced nitrosative stress in cerebral cortex of adult male rats. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.biomag.2012.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Dowding JM, Dosani T, Kumar A, Seal S, Self WT. Cerium oxide nanoparticles scavenge nitric oxide radical (˙NO). Chem Commun (Camb) 2012; 48:4896-8. [DOI: 10.1039/c2cc30485f] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Mukherjee R, Brasch NE. Mechanistic studies on the reaction between cob(II)alamin and peroxynitrite: evidence for a dual role for cob(II)alamin as a scavenger of peroxynitrous acid and nitrogen dioxide. Chemistry 2011; 17:11805-12. [PMID: 21922568 DOI: 10.1002/chem.201100223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/22/2011] [Indexed: 12/28/2022]
Abstract
Peroxynitrite/peroxynitrous acid (ONOO(-)/ONOOH; pK(a(ONOOH)) =6.8) is implicated in multiple chronic inflammatory and neurodegenerative diseases. Both mammalian B(12)-dependent enzymes are inactivated under oxidative stress conditions. We report studies on the kinetics of the reaction between peroxynitrite/peroxynitrous acid and a major intracellular vitamin B(12) form, cob(II)alamin (Cbl(II)), using stopped-flow spectroscopy. The pH dependence of the reaction is consistent with peroxynitrous acid reacting directly with Cbl(II) to give cob(III)alamin (Cbl(III)) and (.)NO(2) , followed by a subsequent rapid reaction between (.)NO(2) and a second molecule of Cbl(II) to primarily form nitrocobalamin. In support of this mechanism, a Cbl(II)/ONOO(H) stoichiometry of 2:1 is observed at pH 7.35 and 12.0. The final major Cbl(III) product observed (nitrocobalamin or hydroxycobalamin) depends on the solution pH. Analysis of the reaction products in the presence of tyrosine-a well-established (.)NO(2) scavenger-reveals that Cbl(II) reacts with (.)NO(2) at least an order of magnitude faster than tyrosine itself. Given that protein-bound Cbl is accessible to small molecules, it is likely that enzyme-bound and free intracellular Cbl(II) molecules are rapidly oxidized to inactive Cbl(III) upon exposure to peroxynitrite or (.)NO(2).
Collapse
Affiliation(s)
- Riya Mukherjee
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | | |
Collapse
|
22
|
Mukherjee R, Brasch NE. Kinetic studies on the reaction between cob(I)alamin and peroxynitrite: rapid oxidation of cob(I)alamin to cob(II)alamin by peroxynitrous acid. Chemistry 2011; 17:11723-7. [PMID: 21922587 DOI: 10.1002/chem.201102267] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Riya Mukherjee
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | | |
Collapse
|
23
|
Huang K, Huang Y, Frankel J, Addis C, Jaswani L, Wehner PS, Mangiarua EI, McCumbee WD. The short-term consumption of a moderately high-fat diet alters nitric oxide bioavailability in lean female Zucker rats. Can J Physiol Pharmacol 2011; 89:245-57. [PMID: 21539468 DOI: 10.1139/y11-016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether short-term consumption of a moderately high-fat diet (MHFD) affects nitric oxide (NO) production, the concentration of stable NO metabolites (NOx) in urine and plasma of rats fed a MHFD (15.6 %g fat) or control diet (4.5 %g fat) was measured weekly for 4 weeks. Plasma and urine NOx levels were significantly depressed in the MHFD group by week 1 and remained so for the duration of the study. Decreased NO bioavailability may result from a decrease in NO production or the scavenging of NO by reactive oxygen species (ROS). Because endothelial NOS (eNOS) is the major contributor to NO production and circulating levels of NOx, eNOS expression was measured in several tissues. At week 1, there was a MHFD-associated decrease in eNOS expression in the liver. Subsequently, eNOS expression declined in the heart and kidney medulla of MHFD-fed rats at weeks 3 and 4, respectively. The expression of eNOS in the kidney cortex and adipose tissue did not change. These results suggest that a MHFD alters eNOS expression in a time-dependent and tissue-specific manner. In the liver, NOS activity and tissue levels of NOx and nitrotyrosine were measured. Nitrotyrosine levels were used as an indirect measure of the NO scavenged by ROS. There was a decrease in NOS activity, suggesting that the low levels of hepatic NOx were due, in part, to a decrease in NO production. In addition, there was a dramatic increase in nitrotyrosine formation, suggesting that the decline in hepatic NOx was also due to an increased interaction of NO with ROS. Tyrosine nitration commonly has detrimental effects on proteins. The decrease in NO and increase in protein nitration could potentially have adverse effects on tissue function.
Collapse
Affiliation(s)
- Kan Huang
- Departments of Pharmacology, Physiology, and Toxicology, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25755, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Munk MB, Huvaere K, Van Bocxlaer J, Skibsted LH. Mechanism of light-induced oxidation of nitrosylmyoglobin. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.12.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Rodríguez-Roldán V, García-Heredia JM, Navarro JA, Rosa MADL, Hervás M. Effect of Nitration on the Physicochemical and Kinetic Features of Wild-Type and Monotyrosine Mutants of Human Respiratory Cytochrome c. Biochemistry 2008. [DOI: 10.1021/bi801329s] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vicente Rodríguez-Roldán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - José Manuel García-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - José A. Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Miguel A. De la Rosa
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| |
Collapse
|
26
|
Ptolemy AS, Lee R, Britz-McKibbin P. Strategies for comprehensive analysis of amino acid biomarkers of oxidative stress. Amino Acids 2007; 33:3-18. [PMID: 17514495 DOI: 10.1007/s00726-007-0542-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 03/03/2007] [Indexed: 12/17/2022]
Abstract
Despite the wide interest in using modified amino acids as putative biomarkers of oxidative stress, many issues remain as to their overall reliability for early detection and diagnosis of diseases. In contrast to conventional single biomarker studies, comprehensive analysis of biomarkers offers an unbiased strategy for global assessment of modified amino acid metabolism due to reactive oxygen and nitrogen species. This review examines recent analytical techniques amenable for analysis of modified amino acids in biological samples reported during 2003-2007. Particular attention is devoted to the need for validated methods applicable to high-throughput analysis of multiple amino acid biomarkers, as well as consideration of sample pretreatment protocols on artifact formation for improved clinical relevance.
Collapse
Affiliation(s)
- A S Ptolemy
- Department of Chemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
27
|
Irreversible Inactivation of Glutaredoxins 1 and 2 by Peroxynitrite. B KOREAN CHEM SOC 2007. [DOI: 10.5012/bkcs.2007.28.1.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Peroxynitrite: In vivo and In vitro synthesis and oxidant degradative action on biological systems regarding biomolecular injury and inflammatory processes. CHEMICAL PAPERS 2007. [DOI: 10.2478/s11696-007-0058-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractThis review summarizes all significant data regarding peroxynitrite chemistry, the ways of its synthetic preparation as well as the degradative action of this species on biomolecules, in particular glycosaminoglycans, among which the hyaluronan degradation by peroxynitrite has recently been the subject of greater interest than ever before. The complex chemical behavior of a peroxynitrite molecule is strongly influenced by a few factors; conformational structural forms, active intermediates release, presence of CO2 and trace transition metals, different reaction conditions, as well as the rules of kinetics. Special attention was focused on monitoring of the kinetics of the degradative action of peroxynitrite in or without the presence of residual hydrogen peroxide on high-molar-mass hyaluronan.
Collapse
|
29
|
Muzandu K, Ishizuka M, Sakamoto KQ, Shaban Z, El Bohi K, Kazusaka A, Fujita S. Effect of lycopene and β-carotene on peroxynitrite-mediated cellular modifications. Toxicol Appl Pharmacol 2006; 215:330-40. [PMID: 16647730 DOI: 10.1016/j.taap.2006.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 03/16/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
Peroxynitrite formed by the reaction of superoxide and nitric oxide is a highly reactive species with a role in various pathological processes such as cancer, chronic inflammation, and cardiovascular and neurological diseases. In the present study, the effect of the carotenoids, lycopene and beta-carotene, on peroxynitrite-mediated modifications in plasmid DNA as well as cellular DNA and proteins were investigated. In pUC18 plasmid DNA, these carotenoids strongly inhibited DNA strand breaks caused by peroxynitrite generated from 3-morpholinosydnonimine (SIN-1). SIN-1 was also used to determine effects on DNA damage and protein tyrosine nitration in Chinese hamster lung fibroblasts. SIN-1 dose-dependently increased nitration of proteins in cells above basal levels as determined by Western blotting. This nitration was inhibited in the presence of the uric acid as well as lycopene. Physiological concentrations (0.31-10 microM) of lycopene and beta-carotene also had protective effects on DNA damage, as measured by the comet assay. Lycopene significantly reduced DNA damage particularly, in the median range of concentrations (2.5 microM). The protective effects of lycopene and beta-carotene could be due to their scavenging of reactive oxygen (ROS) and/or nitrogen species (RNS) as they reduce the amount of intracellular ROS/RNS produced following treatment with SIN-1 by as much as 47.5% and 42.4%, respectively. The results obtained in this study suggest that carotenoids may alleviate some of the deleterious effects of peroxynitrite and possibly other reactive nitrogen species as well in vivo.
Collapse
Affiliation(s)
- Kaampwe Muzandu
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Zinchuk VV, Stepuro TL. The effect of peroxynitrite on the affinity of hemoglobin for oxygen in vitro. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906010040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Kim JY, Lee KH, Lee BK, Ro JY. Peroxynitrite Modulates Release of Inflammatory Mediators from Guinea Pig Lung Mast Cells Activated by Antigen-Antibody Reaction. Int Arch Allergy Immunol 2005; 137:104-14. [PMID: 15855792 DOI: 10.1159/000085465] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 01/19/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Peroxynitrite (ONOO-), the product of the reaction between the superoxide anion (*O2-) and nitric oxide (NO), is produced during inflammatory disease and may be a major cytotoxic agent. No reports are available as to whether ONOO- generates or modulates inflammatory mediator release from activated guinea pig lung mast cells. In this study, we explored the modulatory role of intracellular ONOO- on inflammatory mediator release (histamine and leukotrienes) from activated mast cells. METHODS Guinea pig lung mast cells were purified by the enzyme digestion, and by using the rough and discontinuous Percoll density gradients. Mast cells were sensitized with IgG1 (anti-ovalbumin) antibody and challenged with ovalbumin (OVA). The intracellular ROS formation was determined by following the oxidative production of 2', 7'-dichlorofluorescein diacetate (DCFH-DA), dihydrorhodamine 123 (DHR), and anti-nitrotyrosine antibody immunofluorescence. Histamine was assayed using a fluorometric analyzer, leukotrienes by radioimmunoassay, intracellular Ca2+ levels by confocal scanning microscopy, and PLA(2) activity using prelabeling of [3H]arachidonic acid. RESULTS ROS detected by DCFH-DA weakly increased in mast cells activated with OVA (1.0 g/ml), and the ROS so generated was inhibited by ebselen (50 microM). However, the ROS detected by DHR increased 3-fold under the same conditions. Peroxynitrite scavengers sL-MT, DMTU, and inhibitor FeTPPS inhibited ROS formation but the NADPH oxidase inhibitor diphenyleneiodonium (DPI) only partially inhibited this formation. Dimethyl thiourea (DMTU) and seleno-L-methionine (sL-MT) inhibited the tyrosine nitration of cytosolic proteins, the release of histamine and leukotrienes, Ca2+ influx, and the PLA(2) activity evoked by mast cell activation. CONCLUSION The data obtained suggests that the ROS generated by the antigen/antibody reaction activated mast cells is ONOO-, and that this modulates the release of inflammatory mediators via Ca2+ -dependent PLA(2) activity.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Pharmacology,Center for Molecular Medicine, SBRI,Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | | | | |
Collapse
|
32
|
Kucherenko Y, Browning J, Tattersall A, Ellory JC, Gibson JS. Effect of Peroxynitrite on Passive K + Transport in Human Red Blood Cells. Cell Physiol Biochem 2005; 15:271-80. [PMID: 16037692 DOI: 10.1159/000087237] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2005] [Indexed: 11/19/2022] Open
Abstract
Peroxynitrite is generated in vivo by the reaction between nitric oxide, from endothelial and other cells, and the superoxide anion. It is therefore pertinent to examine its effects on the membrane permeability of red blood cells. Treatment of human red blood cells with peroxynitrite (nominally 1 mM) markedly stimulated passive K+ permeability. The main effect was on a Cl(-)-independent K+ pathway, which remains unidentified. Although K+-Cl- cotransport (KCC) was stimulated, this was dependent on saline composition, being inhibited by physiological levels of glucose (IC50 4 mM), and also by sucrose and MOPS. Effects on the Cl(-)-independent K+ pathway were less dependent on saline composition, and were not inhibited by amiloride, ethylisopropylamiloride, dimethylamiloride or gadolinium. Na+-K+-2Cl- cotransporter was inhibited whilst there was little effect on the Gardos channel (Ca2+-activated K+ channel). Peroxynitrite was markedly more effective in oxygenated cells than deoxygenated ones. Treatment with peroxynitrite per se did not affect initial cell volume. Anisotonic swelling modestly increased the Cl(-)-independent K+ influx, but did not affect peroxynitrite-stimulated KCC. Decreasing extracellular pH from 7.4 to 7.2 or 7.0 increased KCC stimulation, whilst the Cl(-)-independent component of K+ transport was lowest at pH 7.2. Finally, protein phosphatase inhibition with calyculin A (100 nM) inhibited KCC, implying that, as with other KCC stimuli, peroxynitrite acts via decreased protein phosphorylation; pre-treatment with calyculin A also inhibited the Cl(-)-independent component of K+ transport. These findings are relevant to the actions of peroxynitrite in vivo.
Collapse
|
33
|
Turan NN, Ark M, Demiryurek AT. Comparison of spectrophotometric, HPLC and chemilumines-cence methods for 3-nitrotyrosine and peroxynitrite interaction. Arch Pharm Res 2005; 28:358-63. [PMID: 15832826 DOI: 10.1007/bf02977805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have studied the interaction of 3-nitrotyrosine with peroxynitrite using three different methods; chemiluminescence, spectrophotometry and HPLC. Peroxynitrite-induced luminol or lucigenin chemiluminescence were significantly decreased by 3-nitrotyrosine, in concentration-dependent manners. The intensity of the peroxynitrite spectrum was also markedly reduced in the presence of 3-nitrotyrosine in the spectrophometric assay. However, there was no attenuation of the 3-nitrotyrosine signal in the HPLC assay after mixing with peroxynitrite. The interaction of 3-nitrotyrosine and hypochlorous acid (HOCl) was also studied via the chemiluminescence assay, where the HOCl-induced responses were markedly inhibited by 3-nitrotyrosine. These results suggest that caution should be taken when studying the levels or interactions of 3-nitrotyrosine.
Collapse
Affiliation(s)
- Nilufer Nermin Turan
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, 06330 Etiler, Ankara, Turkey.
| | | | | |
Collapse
|
34
|
Goldstein S, Merenyi G, Samuni A. Kinetics and Mechanism of•NO2Reacting with Various Oxidation States of Myoglobin. J Am Chem Soc 2004; 126:15694-701. [PMID: 15571391 DOI: 10.1021/ja046186+] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrogen dioxide ((*)NO(2)) participates in a variety of biological reactions. Of great interest are the reactions of (*)NO(2) with oxymyoglobin and oxyhemoglobin, which are the predominant hemeproteins in biological systems. Although these reactions occur rapidly during the nitrite-catalyzed autoxidation of hemeproteins, their roles in systems producing (*)NO(2) in the presence of these hemeproteins have been greatly underestimated. In the present study, we employed pulse radiolysis to study directly the kinetics and mechanism of the reaction of oxymyoglobin (MbFe(II)O(2)) with (*)NO(2). The rate constant of this reaction was determined to be (4.5 +/- 0.3) x 10(7) M(-1)s(-1), and is among the highest rate constants measured for (*)NO(2) with any biomolecule at pH 7.4. The interconversion among the various oxidation states of myoglobin that is prompted by nitrogen oxide species is remarkable. The reaction of MbFe(II)O(2) with (*)NO(2) forms MbFe(III)OONO(2), which undergoes rapid heterolysis along the O-O bond to yield MbFe(V)=O and NO(3-). The perferryl-myoglobin (MbFe(V)=O) transforms rapidly into the ferryl species that has a radical site on the globin ((*)MbFe(IV)=O). The latter oxidizes another oxymyoglobin (10(4) M(-1)s(-1) < k(17) < 10(7) M(-1)s(-1)) and generates equal amounts of ferrylmyoglobin and metmyoglobin. At much longer times, the ferrylmyoglobin disappears through a relatively slow comproportionation with oxymyoglobin (k(18) = 21.3 +/- 5.3 M(-1)s(-1)). Eventually, each (*)NO(2) radical converts three oxymyoglobin molecules into metmyoglobin. The same intermediate, namely MbFe(III)OONO(2), is also formed via the reaction peroxynitrate (O(2)NOO(-)/O(2)NOOH) with metmyoglobin (k(19) = (4.6 +/- 0.3) x 10(4) M(-1)s(-1)). The reaction of (*)NO(2) with ferrylmyoglobin (k(20) = (1.2 +/- 0.2) x 10(7) M(-1)s(-1)) yields MbFe(III)ONO(2), which in turn dissociates (k(21) = 190 +/- 20 s(-1)) into metmyoglobin and NO(3-). This rate constant was found to be the same as that measured for the decay of the intermediate formed in the reaction of MbFe(II)O(2) with (*)NO, which suggests that MbFe(III)ONO(2) is the intermediate observed in both processes. This conclusion is supported by thermokinetic arguments. The present results suggest that hemeproteins may detoxify (*)NO(2) and thus preempt deleterious processes, such as nitration of proteins. Such a possibility is substantiated by the observation that the reactions of (*)NO(2) with the various oxidation states of myoglobin lead to the formation of metmyoglobin, which, though not functional in the gas transport, is nevertheless nontoxic at physiological pH.
Collapse
Affiliation(s)
- Sara Goldstein
- Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
35
|
Boccini F, Domazou AS, Herold S. Pulse Radiolysis Studies of the Reactions of Carbonate Radical Anion with Myoglobin and Hemoglobin. J Phys Chem A 2004. [DOI: 10.1021/jp049063k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|