1
|
Harbison RA, Pandey R, Considine M, Leone RD, Murray-Stewart T, Erbe R, Mandal R, Burns M, Casero RA, Seiwert T, Fakhry C, Pardoll D, Fertig E, Powell JD. Interrogation of T Cell-Enriched Tumors Reveals Prognostic and Immunotherapeutic Implications of Polyamine Metabolism. CANCER RESEARCH COMMUNICATIONS 2022; 2:639-652. [PMID: 36052016 PMCID: PMC9432485 DOI: 10.1158/2767-9764.crc-22-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/05/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Metabolic features of the tumor microenvironment (TME) antagonize anti-tumor immunity. We hypothesized that T cell infiltrated tumors with a known antigen should exhibit superior clinical outcomes, though some fare worse given unfavorable metabolic features leveraging T cell-infiltrated (Thi), human papillomavirus-related (HPV+) head and neck squamous cell carcinomas (HNSC) to test this hypothesis. Expression of 2,520 metabolic genes were analyzed among Thi HPV+ HNSCs stratified by high-risk molecular subtype. RNAseq data from The Cancer Genome Atlas (TCGA; 10 cancer types), single cell RNAseq data, and an immunotherapy-treated melanoma cohort were used to test the association between metabolic gene expression and clinical outcomes and contribution of tumor versus stromal cells to metabolic gene expression. Polyamine (PA) metabolism genes were overexpressed in high-risk, Thi HPV+ HNSCs. Genes involved in PA biosynthesis and transport were associated with T cell infiltration, recurrent or persistent cancer, overall survival status, primary site, molecular subtype, and MYC genomic alterations. PA biogenesis gene sets were associated with tumor intrinsic features while myeloid cells in HPV+ HNSCs were enriched in PA catabolism, regulatory, transport, putrescine, and spermidine gene set expression. PA gene set expression also correlated with IFNγ or cytotoxic T cell ssGSEA scores across TCGA tumor types. PA transport ssGSEA scores were associated with poor survival whereas putrescine ssGSEA scores portended better survival for several tumor types. Thi melanomas enriched in PA synthesis or combined gene set expression exhibited worse anti-PD-1 responses. These data address hurdles to anti-tumor immunity warranting further investigation of divergent polyamine metabolism in the TME.
Collapse
Affiliation(s)
- R. Alex Harbison
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajeev Pandey
- Department of Otolaryngology Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Considine
- Department of Otolaryngology Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert D. Leone
- Department of Otolaryngology Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tracy Murray-Stewart
- Department of Otolaryngology Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rossin Erbe
- Department of Otolaryngology Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raj Mandal
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Burns
- Aminex Therapeutics, Kirkland, Washington
| | - Robert A. Casero
- Department of Otolaryngology Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tanguy Seiwert
- Department of Otolaryngology Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carole Fakhry
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew Pardoll
- Department of Otolaryngology Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elana Fertig
- Department of Otolaryngology Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan D. Powell
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Wang X, Wang X, Zhu Y, Chen X. ADME/T-based strategies for paraquat detoxification: Transporters and enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118137. [PMID: 34536650 DOI: 10.1016/j.envpol.2021.118137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/26/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Paraquat (PQ) is a toxic, organic herbicide for which there is no specific antidote. Although banned in some countries, it is still used as an irreplaceable weed killer in others. The lack of understanding of the precise mechanism of its toxicity has hindered the development of treatments for PQ exposure. While toxicity is thought to be related to PQ-induced oxidative stress, antioxidants are limited in their ability to ameliorate the untoward biological responses to this agent. Summarized in this review are data on the absorption, distribution, metabolism, excretion, and toxicity (ADME/T) of PQ, focusing on the essential roles of individual transporters and enzymes in these processes. Based on these findings, strategies are proposed to design and test specific and effective antidotes for the clinical management of PQ poisoning.
Collapse
Affiliation(s)
- Xianzhe Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xumei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yanyan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
3
|
Hamouda NN, Van den Haute C, Vanhoutte R, Sannerud R, Azfar M, Mayer R, Cortés Calabuig Á, Swinnen JV, Agostinis P, Baekelandt V, Annaert W, Impens F, Verhelst SHL, Eggermont J, Martin S, Vangheluwe P. ATP13A3 is a major component of the enigmatic mammalian polyamine transport system. J Biol Chem 2020; 296:100182. [PMID: 33310703 PMCID: PMC7948421 DOI: 10.1074/jbc.ra120.013908] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Polyamines, such as putrescine, spermidine, and spermine, are physiologically important polycations, but the transporters responsible for their uptake in mammalian cells remain poorly characterized. Here, we reveal a new component of the mammalian polyamine transport system using CHO-MG cells, a widely used model to study alternative polyamine uptake routes and characterize polyamine transport inhibitors for therapy. CHO-MG cells present polyamine uptake deficiency and resistance to a toxic polyamine biosynthesis inhibitor methylglyoxal bis-(guanylhydrazone) (MGBG), but the molecular defects responsible for these cellular characteristics remain unknown. By genome sequencing of CHO-MG cells, we identified mutations in an unexplored gene, ATP13A3, and found disturbed mRNA and protein expression. ATP13A3 encodes for an orphan P5B-ATPase (ATP13A3), a P-type transport ATPase that represents a candidate polyamine transporter. Interestingly, ATP13A3 complemented the putrescine transport deficiency and MGBG resistance of CHO-MG cells, whereas its knockdown in WT cells induced a CHO-MG phenotype demonstrated as a decrease in putrescine uptake and MGBG sensitivity. Taken together, our findings identify ATP13A3, which has been previously genetically linked with pulmonary arterial hypertension, as a major component of the mammalian polyamine transport system that confers sensitivity to MGBG.
Collapse
Affiliation(s)
- Norin Nabil Hamouda
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Roeland Vanhoutte
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ragna Sannerud
- VIB-KU Leuven Laboratory of Membrane Trafficking, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Mujahid Azfar
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rupert Mayer
- Department for Biomolecular Medicine, VIB Center for Medical Biotechnology, VIB Proteomics Core, Ghent University, Ghent, Belgium
| | | | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Oncology, VIB-KU Leuven Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wim Annaert
- VIB-KU Leuven Laboratory of Membrane Trafficking, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Francis Impens
- Department for Biomolecular Medicine, VIB Center for Medical Biotechnology, VIB Proteomics Core, Ghent University, Ghent, Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Dortmund, Germany
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Shaun Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Gamble LD, Purgato S, Murray J, Xiao L, Yu DMT, Hanssen KM, Giorgi FM, Carter DR, Gifford AJ, Valli E, Milazzo G, Kamili A, Mayoh C, Liu B, Eden G, Sarraf S, Allan S, Di Giacomo S, Flemming CL, Russell AJ, Cheung BB, Oberthuer A, London WB, Fischer M, Trahair TN, Fletcher JI, Marshall GM, Ziegler DS, Hogarty MD, Burns MR, Perini G, Norris MD, Haber M. Inhibition of polyamine synthesis and uptake reduces tumor progression and prolongs survival in mouse models of neuroblastoma. Sci Transl Med 2020; 11:11/477/eaau1099. [PMID: 30700572 DOI: 10.1126/scitranslmed.aau1099] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
Abstract
Amplification of the MYCN oncogene is associated with an aggressive phenotype and poor outcome in childhood neuroblastoma. Polyamines are highly regulated essential cations that are frequently elevated in cancer cells, and the rate-limiting enzyme in polyamine synthesis, ornithine decarboxylase 1 (ODC1), is a direct transcriptional target of MYCN. Treatment of neuroblastoma cells with the ODC1 inhibitor difluoromethylornithine (DFMO), although a promising therapeutic strategy, is only partially effective at impeding neuroblastoma cell growth due to activation of compensatory mechanisms resulting in increased polyamine uptake from the surrounding microenvironment. In this study, we identified solute carrier family 3 member 2 (SLC3A2) as the key transporter involved in polyamine uptake in neuroblastoma. Knockdown of SLC3A2 in neuroblastoma cells reduced the uptake of the radiolabeled polyamine spermidine, and DFMO treatment increased SLC3A2 protein. In addition, MYCN directly increased polyamine synthesis and promoted neuroblastoma cell proliferation by regulating SLC3A2 and other regulatory components of the polyamine pathway. Inhibiting polyamine uptake with the small-molecule drug AMXT 1501, in combination with DFMO, prevented or delayed tumor development in neuroblastoma-prone mice and extended survival in rodent models of established tumors. Our findings suggest that combining AMXT 1501 and DFMO with standard chemotherapy might be an effective strategy for treating neuroblastoma.
Collapse
Affiliation(s)
- Laura D Gamble
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Stefania Purgato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Jayne Murray
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Lin Xiao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Denise M T Yu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Kimberley M Hanssen
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Daniel R Carter
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,School of Biomedical Engineering, University of Technology, Sydney, NSW 2007, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,Department of Anatomical Pathology (SEALS), Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Emanuele Valli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Alvin Kamili
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Bing Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Georgina Eden
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Sara Sarraf
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Sophie Allan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Claudia L Flemming
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Amanda J Russell
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Belamy B Cheung
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Andre Oberthuer
- Children's Hospital, Department of Pediatric Oncology and Hematology, University of Cologne, Kerpener Strasse 62, D-50924 Cologne, Germany
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA
| | - Matthias Fischer
- Children's Hospital, Department of Pediatric Oncology and Hematology, University of Cologne, Kerpener Strasse 62, D-50924 Cologne, Germany
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | - Michael D Hogarty
- Division of Oncology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA
| | - Mark R Burns
- Aminex Therapeutics, Aminex Therapeutics Inc., Kirkland, WA 98034, USA
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,University of New South Wales Centre for Childhood Cancer Research, Sydney, NSW 2052, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia. .,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| |
Collapse
|
5
|
Beneficial effects of spermidine on cardiovascular health and longevity suggest a cell type-specific import of polyamines by cardiomyocytes. Biochem Soc Trans 2018; 47:265-272. [PMID: 30578348 DOI: 10.1042/bst20180622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 01/04/2023]
Abstract
Recent and exciting in vivo studies show that supplementation with the polyamine spermidine (Spd) is cardioprotective and prolongs lifespan in both mice and humans. The mechanisms behind Spd-induced cardioprotection are supposed to involve Spd-evoked stimulation of autophagy, mitophagy and mitochondrial respiration and improved the mechano-elastical function of cardiomyocytes. Although cellular uptake of Spd was not characterized, these results suggest that Spd is imported by the cardiomyocytes and acts intracellularly. In the light of these new and thrilling data, we discuss in the present review cellular polyamine import with a special focus on mechanisms that may be relevant for Spd uptake by electrically excitable cells such as cardiomyocytes.
Collapse
|
6
|
Wang M, Phanstiel O, von Kalm L. Evaluation of Polyamine Transport Inhibitors in a Drosophila Epithelial Model Suggests the Existence of Multiple Transport Systems. ACTA ACUST UNITED AC 2017; 5:medsci5040027. [PMID: 29135915 PMCID: PMC5753656 DOI: 10.3390/medsci5040027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022]
Abstract
Increased polyamine biosynthesis activity and an active polyamine transport system are characteristics of many cancer cell lines and polyamine depletion has been shown to be a viable anticancer strategy. Polyamine levels can be depleted by difluoromethylornithine (DFMO), an inhibitor of the key polyamine biosynthesis enzyme ornithine decarboxylase (ODC). However, malignant cells frequently circumvent DFMO therapy by up-regulating polyamine import. Therefore, there is a need to develop compounds that inhibit polyamine transport. Collectively, DFMO and a polyamine transport inhibitor (PTI) provide the basis for a combination therapy leading to effective intracellular polyamine depletion. We have previously shown that the pattern of uptake of a series of polyamine analogues in a Drosophila model epithelium shares many characteristics with mammalian cells, indicating a high degree of similarity between the mammalian and Drosophila polyamine transport systems. In this report, we focused on the utility of the Drosophila epithelial model to identify and characterize polyamine transport inhibitors. We show that a previously identified inhibitor of transport in mammalian cells has a similar activity profile in Drosophila. The Drosophila model was also used to evaluate two additional transport inhibitors. We further demonstrate that a cocktail of polyamine transport inhibitors is more effective than individual inhibitors, suggesting the existence of multiple transport systems in Drosophila. Our findings reinforce the similarity between the Drosophila and mammalian transport systems and the value of the Drosophila model to provide inexpensive early screening of molecules targeting the transport system.
Collapse
Affiliation(s)
- Minpei Wang
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA.
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| | - Laurence von Kalm
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
7
|
Grossi M, Phanstiel O, Rippe C, Swärd K, Alajbegovic A, Albinsson S, Forte A, Persson L, Hellstrand P, Nilsson BO. Inhibition of Polyamine Uptake Potentiates the Anti-Proliferative Effect of Polyamine Synthesis Inhibition and Preserves the Contractile Phenotype of Vascular Smooth Muscle Cells. J Cell Physiol 2015; 231:1334-42. [PMID: 26529275 DOI: 10.1002/jcp.25236] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/29/2022]
Abstract
Increased vascular smooth muscle cell (VSMC) proliferation is a factor in atherosclerosis and injury-induced arterial (re) stenosis. Inhibition of polyamine synthesis by α-difluoro-methylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, attenuates VSMC proliferation with high sensitivity and specificity. However, cells can escape polyamine synthesis blockade by importing polyamines from the environment. To address this issue, polyamine transport inhibitors (PTIs) have been developed. We investigated the effects of the novel trimer44NMe (PTI-1) alone and in combination with DFMO on VSMC polyamine uptake, proliferation and phenotype regulation. PTI-1 efficiently inhibited polyamine uptake in primary mouse aortic and human coronary VSMCs in the absence as well as in the presence of DFMO. Interestingly, culture with DFMO for 2 days substantially (>95%) reduced putrescine (Put) and spermidine (Spd) contents without any effect on proliferation. Culture with PTI-1 alone had no effect on either polyamine levels or proliferation rate, but the combination of both treatments reduced Put and Spd levels below the detection limit and inhibited proliferation. Treatment with DFMO for a longer time period (4 days) reduced Put and Spd below their detection limits and reduced proliferation, showing that only a small pool of polyamines is needed to sustain VSMC proliferation. Inhibited proliferation by polyamine depletion was associated with maintained expression of contractile smooth marker genes. In cultured intact mouse aorta, PTI-1 potentiated the DFMO-induced inhibition of cell proliferation. The combination of endogenous polyamine synthesis inhibition with uptake blockade is thus a viable approach for targeting unwanted vascular cell proliferation in vivo, including vascular restenosis.
Collapse
Affiliation(s)
- Mario Grossi
- Department of Experimental Medical Science, Lund University, Sweden
| | - Otto Phanstiel
- Department of Medical Education, University of Central Florida, Orlando, Florida
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Sweden
| | - Azra Alajbegovic
- Department of Experimental Medical Science, Lund University, Sweden
| | | | - Amalia Forte
- Department of Experimental Medicine, Second University of Naples, Italy
| | - Lo Persson
- Department of Experimental Medical Science, Lund University, Sweden
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Sweden
| | | |
Collapse
|
8
|
Silva R, Carmo H, Vilas-Boas V, Barbosa DJ, Monteiro M, de Pinho PG, de Lourdes Bastos M, Remião F. Several transport systems contribute to the intestinal uptake of Paraquat, modulating its cytotoxic effects. Toxicol Lett 2015; 232:271-83. [DOI: 10.1016/j.toxlet.2014.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 11/29/2022]
|
9
|
Grossi M, Rippe C, Sathanoori R, Swärd K, Forte A, Erlinge D, Persson L, Hellstrand P, Nilsson BO. Vascular smooth muscle cell proliferation depends on caveolin-1-regulated polyamine uptake. Biosci Rep 2014; 34:e00153. [PMID: 25301005 PMCID: PMC4240025 DOI: 10.1042/bsr20140140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/09/2014] [Indexed: 12/11/2022] Open
Abstract
Much evidence highlights the importance of polyamines for VSMC (vascular smooth muscle cell) proliferation and migration. Cav-1 (caveolin-1) was recently reported to regulate polyamine uptake in intestinal epithelial cells. The aim of the present study was to assess the importance of Cav-1 for VSMC polyamine uptake and its impact on cell proliferation and migration. Cav-1 KO (knockout) mouse aortic cells showed increased polyamine uptake and elevated proliferation and migration compared with WT (wild-type) cells. Both Cav-1 KO and WT cells expressed the smooth muscle differentiation markers SM22 and calponin. Cell-cycle phase distribution analysis revealed a higher proportion of Cav-1 KO than WT cells in the S phase. Cav-1 KO cells were hyper-proliferative in the presence but not in the absence of extracellular polyamines, and, moreover, supplementation with exogenous polyamines promoted proliferation in Cav-1 KO but not in WT cells. Expression of the solute carrier transporters Slc7a1 and Slc43a1 was higher in Cav-1 KO than in WT cells. ODC (ornithine decarboxylase) protein and mRNA expression as well as ODC activity were similar in Cav-1 KO and WT cells showing unaltered synthesis of polyamines in Cav-1 KO cells. Cav-1 was reduced in migrating cells in vitro and in carotid lesions in vivo. Our data show that Cav-1 negatively regulates VSMC polyamine uptake and that the proliferative advantage of Cav-1 KO cells is critically dependent on polyamine uptake. We provide proof-of-principle for targeting Cav-1-regulated polyamine uptake as a strategy to fight unwanted VSMC proliferation as observed in restenosis.
Collapse
Key Words
- caveolin-1
- cell cycle
- ornithine decarboxylase
- polyamine transporter
- polyamine
- vascular smooth muscle cell
- asmc, aortic smooth muscle cell
- cav-1, caveolin-1
- cea, carotid endarterectomy
- dfmo, difluoromethylornithine
- dmem, dulbecco’s modified eagle’s medium
- hbss, hanks balanced salt solution
- [3h]put, [3h]putrescine
- hrp, horseradish peroxidise
- [3h]spd, [3h]spermidine
- hsp90, heat-shock protein 90
- ko, knockout
- odc, ornithine decarboxylase
- pi, propidium iodide
- qrt-pcr, quantitative real-time pcr
- vsmc, vascular smooth muscle cell
- wt, wild-type
Collapse
MESH Headings
- Amino Acid Transport Systems, Basic/genetics
- Amino Acid Transport Systems, Basic/metabolism
- Animals
- Blotting, Western
- Calcium-Binding Proteins/metabolism
- Carotid Arteries/metabolism
- Carotid Arteries/surgery
- Caveolin 1/genetics
- Caveolin 1/metabolism
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- DNA/biosynthesis
- Gene Expression
- Immunohistochemistry
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/metabolism
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Ornithine Decarboxylase/genetics
- Ornithine Decarboxylase/metabolism
- Polyamines/metabolism
- Polyamines/pharmacokinetics
- Polyamines/pharmacology
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Calponins
Collapse
Affiliation(s)
- Mario Grossi
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Catarina Rippe
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ramasri Sathanoori
- †Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Karl Swärd
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Amalia Forte
- ‡Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - David Erlinge
- †Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Lo Persson
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Per Hellstrand
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt-Olof Nilsson
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Abdulhussein AA, Wallace HM. Polyamines and membrane transporters. Amino Acids 2013; 46:655-60. [PMID: 23851697 DOI: 10.1007/s00726-013-1553-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/28/2013] [Indexed: 12/15/2022]
Abstract
In recent years, our understanding of the importance of membrane transporters (MTs) in the disposition of and response to drugs has increased significantly. MTs are proteins that regulate the transport of endogenous molecules and xenobiotics across the cell membrane. In mammals, two super-families have been identified: ATP-binding cassette (ABC) and solute carrier (SLC) transporters. There is evidence that MTs might mediate polyamines (PA) transport. PA are ubiquitous polycations which are found in all living cells. In mammalian cells, three major PA are synthesised: putrescine, spermidine and spermine; whilst the decarboxylated arginine (agmatine) is not produced by mammals but is synthesised by plants and bacteria. In addition, research in the PA field suggests that PA are transported into cells via a specific transporter, the polyamine transport system(s) (PTS). Although the PTS has not been fully defined, there is evidence that some of the known MTs might be involved in PA transport. In this mini review, eight SLC transporters will be reviewed and their potential to mediate PA transport in human cells discussed. These transporters are SLC22A1, SLC22A2, SLC22A3, SLC47A1, SLC7A1, SLC3A2, SLC12A8A, and SLC22A16. Preliminary data from our laboratory have revealed that SLC22A1 might be involved in the PA uptake; in addition to one member of ABC superfamily (MDR1 protein) might also mediate the efflux of polyamine like molecules.
Collapse
Affiliation(s)
- Ahmed A Abdulhussein
- Division of Applied Medicine, Kosterlitz Centre for Therapeutics, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | | |
Collapse
|
11
|
Fraser AV, Goodwin AC, Hacker-Prietz A, Sugar E, Woster PM, Casero RA. Knockdown of ornithine decarboxylase antizyme 1 causes loss of uptake regulation leading to increased N1, N11-bis(ethyl)norspermine (BENSpm) accumulation and toxicity in NCI H157 lung cancer cells. Amino Acids 2011; 42:529-38. [PMID: 21814790 DOI: 10.1007/s00726-011-1030-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/26/2011] [Indexed: 10/17/2022]
Abstract
Ornithine decarboxylase antizyme 1 (AZ1) is a major regulatory protein responsible for the regulation and degradation of ornithine decarboxylase (ODC). To better understand the role of AZ1 in polyamine metabolism and in modulating the response to anticancer polyamine analogues, a small interfering RNA strategy was used to create a series of stable clones in human H157 non-small cell lung cancer cells that expressed less than 5-10% of basal AZ1 levels. Antizyme 1 knockdown clones accumulated greater amounts of the polyamine analogue N (1),N (11)-bis(ethyl)norspermine (BENSpm) and were more sensitive to analogue treatment. The possibility of a loss of polyamine uptake regulation in the knockdown clones was confirmed by polyamine uptake analysis. These results are consistent with the hypothesis that AZ1 knockdown leads to dysregulation of polyamine uptake, resulting in increased analogue accumulation and toxicity. Importantly, there appears to be little difference between AZ1 knockdown cells and cells with normal levels of AZ1 with respect to ODC regulation, suggesting that another regulatory protein, potentially AZ2, compensates for the loss of AZ1. The results of these studies are important for the understanding of both the regulation of polyamine homeostasis and in understanding the factors that regulate tumor cell sensitivity to the anti-tumor polyamine analogues.
Collapse
Affiliation(s)
- Alison V Fraser
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Bunting-Blaustein Cancer Research Building 1, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|
12
|
Poulin R, Casero RA, Soulet D. Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids 2011; 42:711-23. [PMID: 21814785 DOI: 10.1007/s00726-011-0987-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/02/2011] [Indexed: 01/11/2023]
Abstract
Very limited molecular knowledge exists about the identity and protein components of the ubiquitous polyamine transporters found in animal cells. However, a number of reports have been published over the last 5 years on potential candidates for metazoan polyamine permeases. We review the available evidence on these putative polyamine permeases, as well as establish a useful "identikit picture" of the general polyamine transport system, based on its properties as found in a wide spectrum of mammalian cells. Any molecular candidate encoding a putative "general" polyamine permease should fit that provided portrait. The current models proposed for the mechanism of polyamine internalization in mammalian cells are also briefly reviewed.
Collapse
Affiliation(s)
- R Poulin
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada.
| | | | | |
Collapse
|
13
|
Boobis A, Watelet JB, Whomsley R, Benedetti MS, Demoly P, Tipton K. Drug interactions. Drug Metab Rev 2009; 41:486-527. [PMID: 19601724 DOI: 10.1080/10837450902891550] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drugs for allergy are often taken in combination with other drugs, either to treat allergy or other conditions. In common with many pharmaceuticals, most such drugs are subject to metabolism by P450 enzymes and to transmembrane transport. This gives rise to considerable potential for drug-drug interactions, to which must be added consideration of drug-diet interactions. The potential for metabolism-based drug interactions is increasingly being taken into account during drug development, using a variety of in silico and in vitro approaches. Prediction of transporter-based interactions is not as advanced. The clinical importance of a drug interaction will depend upon a number of factors, and it is important to address concerns quantitatively, taking into account the therapeutic index of the compound.
Collapse
Affiliation(s)
- Alan Boobis
- Department of Experimental Medicine and Toxicology, Division of Medicine, Imperial College London, Hammersmith Campus, London.
| | | | | | | | | | | |
Collapse
|
14
|
Daigle ND, Carpentier GA, Frenette-Cotton R, Simard MG, Lefoll MH, Noël M, Caron L, Noël J, Isenring P. Molecular characterization of a human cation-Cl−cotransporter (SLC12A8A, CCC9A) that promotes polyamine and amino acid transport. J Cell Physiol 2009; 220:680-9. [DOI: 10.1002/jcp.21814] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Grillo MA, Lanza A, Colombatto S. Transport of amino acids through the placenta and their role. Amino Acids 2008; 34:517-23. [PMID: 18172742 DOI: 10.1007/s00726-007-0006-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 11/13/2007] [Indexed: 01/01/2023]
Abstract
Amino acids are transported across the human placenta mediated by transporter proteins that differ in structure, mechanism and substrate specificity. Some of them are Na+-dependent systems, whereas others are Na+-independent. Among these there are transporters composed of a heavy chain, a glycoprotein, and a light chain. Moreover, they can be differently distributed in the two membranes forming the syncytiotrophoblast. The transport mechanisms involved and their regulation are only partially known. In the placenta itself, part of the amino acids is metabolized to form other compounds important for the fetus. This occurs for instance for arginine, which gives rise to polyamines and to NO. Interconversion occurs among few other amino acids Transport is altered in pregnancy complications, such as restricted fetal growth.
Collapse
Affiliation(s)
- M A Grillo
- Dipartimento di Medicina e Oncologia Sperimentale, Sezione di Biochimica, Università di Torino, Via Michelangelo 27, 10126 Torino, Italy.
| | | | | |
Collapse
|