1
|
Liu J, Wei F, Liu J, Sun W, Liu S, Chen S, Zhang D, Xu B, Ma S. Protective effects and mechanisms of HuDiChangRong capsule on TNBS-induced ulcerative colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118879. [PMID: 39369923 DOI: 10.1016/j.jep.2024.118879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE UC, characterized by chronic inflammation primarily affecting the colon and rectum, follows a protracted relapsing course marked by inflammation and an abundance of free radicals at the onset. Hudichangrong Capsule (HDCRC), a traditional Chinese medicinal formula, has long been employed in the treatment of UC and chronic bacillary dysentery, exhibiting positive therapeutic outcomes and a high rate of cure in clinical practice. AIM OF THE STUDY The precise mechanism underlying its efficacy for UC remains elusive. Our objective was to investigate the anti-inflammatory effect and underlying mechanisms of HDCRC on TNBS-induced UC. MATERIALS AND METHODS Here, we introduced HDCRC and induced UC using TNBS. SPF BALB/c mice were divided into 6 groups as follows: control group, colitis model group, colitis treated with sulfasalazine (400 mg/kg) group, and colitis treated with HDCRC (156, 312, and 624 mg/kg) groups. To assess the effects of HDCRC on colitis, we measured body weight loss, disease activity index (DAI), colon length, tissue damage, degree of inflammation, immune capacity, and oxidative stress. Additionally, we evaluated the TLR-4/MyD88 pathway and its downstream signaling using immunohistochemistry, real-time qPCR, and Western blot. Network pharmacology was used for main target prediction. 16s rRNA was employed for gut microbiota detechtion and UPLC-QTOF-MS was used for its and its metabonomics. RESULTS HDCRC significantly slowed weight loss, ameliorated DAI, restored colon length, alleviated TNBS-induced tissue damage. It exerted the therapeutic effects via reducing oxidative stress, restoring immune balance, normalizing the inflammatory mediator levels and restoring intestinal barrier integrity. Furthermore, HDCRC mainly alleviate UC via suppressing the TLR-4/MyD88 pathway and its downstream signaling. The key components of the downstream pathway, including TLR-4, MyD88, NF-κB p65, ERK, p-JNK, p38, p-JAK1, JAK1, p-STAT3, and STAT3, were improved, thereby ameliorating the TNBS-induced injury. In addition, HDCRC could regulate gut microbiota (eg. Erysipelaloclostridium,etc.) and its metabonomics (eg. Vitamin B6 metabolism) in UC mice. CONCLUSIONS In conclusion, HDCRC exerts a protective effect against TNBS-induced UC in mice by inhibiting the TLR-4/MyD88 pathway and its downstream signaling, and partially JAK1/STAT3, suppressing oxidative stress, regulating immunity, restoring intestinal barrier integrity, and regulating gut microbiota and its metabonomics.
Collapse
Affiliation(s)
- Jingjing Liu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jing Liu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Wenbin Sun
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Shusen Liu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Shengnan Chen
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Dongqi Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Beilei Xu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China; Engineering Research Center of Natural Anti-cancer Drugs, Ministry of Education, Harbin, 150076, China; Engineering Research Center of Chinese Medicine Production and New Drug Development, Beijing, 102488, China.
| | - Shuangcheng Ma
- Chinese Pharmacopoeia Commission, Beijing, 100061, China.
| |
Collapse
|
2
|
Hadžić K, Gregor A, Kofler B, Pignitter M, Duszka K. The beneficial impact of ketogenic diets on chemically-induced colitis in mice depends on the diet's lipid composition. J Nutr Biochem 2024; 134:109736. [PMID: 39128609 DOI: 10.1016/j.jnutbio.2024.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Previously, we showed that restrictive diets, including ketogenic diet (KD), have an anti-inflammatory impact on the healthy gastrointestinal tract of mice. Afterward, we found that energy-restricting diets mitigate inflammation in the dextran sodium sulfate (DSS) colitis mouse model. The current study aimed to verify the impact of KD on DSS colitis and assess if the diet's fat composition influences the outcomes of the intervention. Mice with mild chronic colitis were fed control chow, KD composed of long-chain triglycerides (KD LCT) or a KD containing a mix of LCT and medium-chain triglycerides (KD LCT/MCT). KDs did not reverse DSS-enhanced gut permeability and shortening of the colon. Both KDs had a similar impact on liver, cecum, and spleen weight, villi and colon length, the thickness of muscularis externa, and expression of ZO-1 and occludin. On the contrary, body weight, glutathione (GSH) and taurine-GSH levels, GSH-S transferase (GST), and myeloperoxidase (MPO) activity, as well as an abundance of several fecal bacteria, all were differentially affected by the two types of KDs. When compared to the DSS control diet, reduction in colon mucosa cytokines expression was stronger in KD LCT than in the KD LCT/MCT group. We conclude that the outcomes of the KD interventions in terms of potential therapeutical applications depend on lipid composition. KD LCT showed a strong positive impact on gut inflammation. A potential contribution of GSH to KD outcomes and a correlation between MPO activity and microbiota composition was identified.
Collapse
Affiliation(s)
- Kajs Hadžić
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - András Gregor
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Barbara Kofler
- Department of Pediatrics, Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Gregor A, Auñon-Lopez A, Pignitter M, Duszka K. The distinct mechanism regulating taurine homeostasis in mice: Nutrient availability affects taurine levels in the liver and energy restriction influences it in the intestine. Life Sci 2024; 359:123213. [PMID: 39488261 DOI: 10.1016/j.lfs.2024.123213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
AIMS Our previous findings indicate that caloric restriction (CR) stimulates the production and secretion of taurine-conjugated bile acids in mice. Subsequent processing by gut microbiota leads to increased levels of deconjugated bile acids, taurine, and various taurine conjugates in the intestine. Furthermore, we demonstrated that carbohydrate restriction and protein restriction, to a smaller extent, mirror the impact of CR in terms of hepatic production of bile acids but not their secretion. We hypothesized that modulating dietary macronutrient levels would influence taurine homeostasis in the liver and intestine of ad libitum-fed and CR animals. MATERIALS AND METHODS Ad libitum-fed male mice were allocated to receive either a control, low-protein (LP), low-fat (LF), or low-carbohydrate (LC) diet. Meanwhile, CR groups were given 80 % of their regular voluntary food intake as a control, high-protein (HP), high-fat (HF), or high-carbohydrate (HC) diet. KEY FINDINGS While CR did not affect the taurine levels and its conjugates in the liver, alteration in carbohydrates and protein intake impacted it. Conversely, in the intestine, CR increased the amount of free and conjugated taurine, whereas the various diets did not affect it or disrupt the CR-specific phenotype. Notably, variations in diet composition impacted the expression of the taurine transporter (Slc6a6) and glutathione-S transferases (GST) in the intestine as well as cysteine dioxygenase (Cdo) in the liver. SIGNIFICANCE The liver and the intestine show distinct responses to dietary interventions, with hepatic taurine being affected by the diet composition, while intestinal taurine is governed by energy availability.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria.
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
4
|
Zheng J, Zhang J, Zhou Y, Zhang D, Guo H, Li B, Cui S. Taurine Alleviates Experimental Colitis by Enhancing Intestinal Barrier Function and Inhibiting Inflammatory Response through TLR4/NF-κB Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12119-12129. [PMID: 38761152 DOI: 10.1021/acs.jafc.4c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Taurine (Tau) is a semiessential amino acid in mammals with preventive and therapeutic effects on several intestinal disorders. However, the exact function of taurine in ulcerative colitis (UC) is still largely unclear. In this study, we used two taurine-deficient mouse models (CSAD-/- and TauT-/- mice) to explore the influence of taurine on the progression of UC in both dextran sulfate sodium (DSS)-induced colitis and LPS-stimulated Caco-2 cells. We found that cysteine sulfinic acid decarboxylase (CSAD) and taurine transporter (TauT) expressions and taurine levels were markedly reduced in colonic tissues of mice treated with DSS. The CSAD and TauT knockouts exacerbated DSS-induced clinical symptoms and pathological damage and aggravated the intestinal barrier dysfunction and the colonic mucosal inflammatory response. Conversely, taurine pretreatment enhanced the intestinal barrier functions by increasing goblet cells and upregulating tight junction protein expression. Importantly, taurine bound with TLR4 and inhibited the TLR4/NF-κB pathway, ultimately reducing proinflammatory factors (TNF-α and IL-6) and oxidative stress. Our findings highlight the essential role of taurine in maintaining the intestinal barrier integrity and inhibiting intestinal inflammation, indicating that taurine is a promising supplement for colitis treatment.
Collapse
Affiliation(s)
- Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Jinglin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Hongzhou Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Bin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, People's Republic of China
| |
Collapse
|
5
|
Frascatani R, Mattogno A, Iannucci A, Marafini I, Monteleone G. Reduced Taurine Serum Levels in Inflammatory Bowel Disease. Nutrients 2024; 16:1593. [PMID: 38892527 PMCID: PMC11173840 DOI: 10.3390/nu16111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Taurine is a semi-essential micronutrient that acts as an anti-inflammatory molecule. The oral administration of taurine to colitic mice attenuates ongoing mucosal inflammation. This study aimed to determine whether inflammatory bowel diseases (IBDs) are marked by changes in the circulating levels of taurine. We measured the serum concentrations of taurine in 92 IBD patients [46 with ulcerative colitis (UC) and 46 with Crohn's disease (CD)] and 33 healthy controls with a commercial ELISA kit. The taurine levels were significantly decreased in both patients with UC and patients with CD compared to the controls, while there was no difference between CD and UC. Taurine levels declined with age in healthy controls but not in IBDs. IBD patients younger than 50 years had levels of taurine reduced compared to their age-matched controls. In the IBD group, taurine levels were not influenced by the body mass index of the patients and the consumption of taurine-rich nutrients, while they were significantly reduced in UC patients with clinically active disease compared to those in clinical remission. These findings indicate that IBDs are marked by serum taurine deficiency, which would seem to reflect the activity of the disease, at least in UC.
Collapse
Affiliation(s)
- Rachele Frascatani
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | | | - Andrea Iannucci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Irene Marafini
- Policlinico Universitario Tor Vergata, 00133 Rome, Italy (I.M.)
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Policlinico Universitario Tor Vergata, 00133 Rome, Italy (I.M.)
| |
Collapse
|
6
|
Guo H, Xie W, Ji Z, Wang B, Ren W, Gao W, Yuan B. Oyster Peptides Ameliorate Dextran Sulfate Sodium-Induced Ulcerative Colitis via Modulating the Gut Microbiota and Inhibiting the TLR4/NF-κB Pathway. Nutrients 2024; 16:1591. [PMID: 38892524 PMCID: PMC11175164 DOI: 10.3390/nu16111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with an increasing prevalence year over year, and the medications used to treat patients with UC clinically have severe side effects. Oyster peptides (OPs) have anti-inflammatory and antioxidant properties as functional foods that can alleviate a wide range of inflammatory conditions. However, the application of oyster peptides in ulcerative colitis is not well studied. In this work, an animal model of acute colitis was established using 3% dextran sulfate sodium (DSS), and the impact of OP therapy on colitis in mice was examined. Supplementing with OPs prevented DSS-induced colitis from worsening, reduced the expression of oxidative stress and inflammatory markers, and restored the intestinal barrier damage caused by DSS-induced colitis in mice. The 16S rDNA results showed that the OP treatment improved the gut microbiota structure of the UC mice, including increasing microbial diversity, increasing beneficial bacteria, and decreasing harmful bacteria. In the UC mice, the OP therapy decreased the relative abundance of Family_XIII_AD3011_group and Prevotella_9 and increased the relative abundance of Alistipes. In conclusion, OP treatment can inhibit the TLR4/NF-κB pathway and improve the intestinal microbiota in UC mice, which in turn alleviates DSS-induced colitis, providing a reference for the treatment of clinical UC patients.
Collapse
Affiliation(s)
- Haixiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wenyin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China
| | - Bingbing Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wenzhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| |
Collapse
|
7
|
Kim DH, Lee S, Ahn J, Kim JH, Lee E, Lee I, Byun S. Transcriptomic and metabolomic analysis unveils nanoplastic-induced gut barrier dysfunction via STAT1/6 and ERK pathways. ENVIRONMENTAL RESEARCH 2024; 249:118437. [PMID: 38346486 DOI: 10.1016/j.envres.2024.118437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
The widespread prevalence of micro and nanoplastics in the environment raises concerns about their potential impact on human health. Recent evidence demonstrates the presence of nanoplastics in human blood and tissues following ingestion and inhalation, yet the specific risks and mechanisms of nanoplastic toxicity remain inadequately understood. In this study, we aimed to explore the molecular mechanisms underlying the toxicity of nanoplastics at both systemic and molecular levels by analyzing the transcriptomic/metabolomic responses and signaling pathways in the intestines of mice after oral administration of nanoplastics. Transcriptome analysis in nanoplastic-administered mice revealed a notable upregulation of genes involved in pro-inflammatory immune responses. In addition, nanoplastics substantially reduced the expression of tight junction proteins, including occludin, zonula occluden-1, and tricellulin, which are crucial for maintaining gut barrier integrity and function. Importantly, nanoplastic administration increased gut permeability and exacerbated dextran sulfate sodium-induced colitis. Further investigation into the underlying molecular mechanisms highlighted significant activation of signaling transsducer and activator of transcription (STAT)1 and STAT6 by nanoplastic administration, which was in line with the elevation of interferon and JAK-STAT pathway signatures identified through transcriptome enrichment analysis. Additionally, the consumption of nanoplastics specifically induced nuclear factor kappa-B (NF-κB) and extracellular signal-regulated kinase (ERK)1/2 signaling pathways in the intestines. Collectively, this study identifies molecular mechanisms contributing to adverse effects mediated by nanoplastics in the intestine, providing novel insights into the pathophysiological consequences of nanoplastic exposure.
Collapse
Affiliation(s)
- Da Hyun Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungho Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jisong Ahn
- Research Group of Traditional Food, Korea Food Research Institute, Wanju, 55365, Republic of Korea; Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae Hwan Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunjung Lee
- Research Group of Traditional Food, Korea Food Research Institute, Wanju, 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea.
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
8
|
Kapur N, Alam MA, Hassan SA, Patel PH, Wempe LA, Bhogoju S, Goretsky T, Kim JH, Herzog J, Ge Y, Awuah SG, Byndloss M, Baumler AJ, Zadeh MM, Sartor RB, Barrett T. Enhanced mucosal mitochondrial function corrects dysbiosis and OXPHOS metabolism in IBD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584471. [PMID: 38559035 PMCID: PMC10979996 DOI: 10.1101/2024.03.14.584471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Mitochondrial (Mito) dysfunction in IBD reduces mucosal O2 consumption and increases O2 delivery to the microbiome. Increased enteric O2 promotes blooms of facultative anaerobes (eg. Proteobacteria ) and restricts obligate anaerobes (eg. Firmicutes ). Dysbiotic metabolites negatively affect host metabolism and immunity. Our novel compound (AuPhos) upregulates intestinal epithelial cell (IEC) mito function, attenuates colitis and corrects dysbiosis in humanized Il10-/- mice. We posit that AuPhos corrects IBD-associated dysbiotic metabolism. Methods Primary effect of AuPhos on mucosal Mito respiration and healing process was studied in ex vivo treated human colonic biopsies and piroxicam-accelerated (Px) Il10-/- mice. Secondary effect on microbiome was tested in DSS-colitis WT B6 and germ-free 129.SvEv WT or Il10-/- mice reconstituted with human IBD stool (Hu- Il10-/- ). Mice were treated orally with AuPhos (10- or 25- mg/kg; q3d) or vehicle, stool samples collected for fecal lipocalin-2 (f-LCN2) assay and microbiome analyses using 16S rRNA sequencing. AuPhos effect on microbial metabolites was determined using untargeted global metabolomics. AuPhos-induced hypoxia in IECs was assessed by Hypoxyprobe-1 staining in sections from pimonidazole HCl-infused DSS-mice. Effect of AuPhos on enteric oxygenation was assessed by E. coli Nissle 1917 WT (aerobic respiration-proficient) and cytochrome oxidase (cydA) mutant (aerobic respiration-deficient). Results Metagenomic (16S) analysis revealed AuPhos reduced relative abundances of Proteobacteria and increased blooms of Firmicutes in uninflamed B6 WT, DSS-colitis, Hu-WT and Hu- Il10-/- mice. AuPhos also increased hypoxyprobe-1 staining in surface IECs suggesting enhanced O2 utilization. AuPhos-induced anaerobiosis was confirmed by a significant increase in cydA mutant compared to WT (O2-utlizing) E.coli . Ex vivo treatment of human biopsies with AuPhos showed significant increase in Mito mass, and complexes I and IV. Further, gene expression analysis of AuPhos-treated biopsies showed increase in stem cell markers (Lgr4, Lgr5, Lrig1), with concomitant decreases in pro-inflammatory markers (IL1β,MCP1, RankL). Histological investigation of AuPhos-fed Px- Il10-/- mice showed significantly decreased colitis score in AuPhos-treated Px- Il10-/- mice, with decrease in mRNA of pro-inflammatory cytokines and increase in Mito complexes ( ND5 , ATP6 ). AuPhos significantly altered microbial metabolites associated with SCFA synthesis, FAO, TCA cycle, tryptophan and polyamine biosynthesis pathways. AuPhos increased pyruvate, 4-hydroxybutyrate, 2-hydroxyglutarate and succinate, suggesting an upregulation of pyruvate and glutarate pathways of butyrate production. AuPhos reduced IBD-associated primary bile acids (BA) with concomitant increase in secondary BA (SBA). AuPhos treatment significantly decreased acylcarnitines and increased L-carnitine reflective of enhanced FAO. AuPhos increases TCA cycle intermediates and creatine, energy reservoir substrates indicating enhanced OxPHOS. Besides, AuPhos also upregulates tryptophan metabolism, decreases Kynurenine and its derivatives, and increases polyamine biosynthesis pathway (Putresceine and Spermine). Conclusion These findings indicate that AuPhos-enhanced IEC mitochondrial function reduces enteric O2 delivery, which corrects disease-associated metabolomics by restoring short-chain fatty acids, SBA, AA and IEC energy metabolism. Graphical abstract
Collapse
|
9
|
Rizzello F, Saracino IM, Gionchetti P, Valerii MC, Ricci C, Imbesi V, Filippone E, Bellocchio I, Dussias NK, Dervieux T, Spisni E. Nutritional Biomarkers for the Prediction of Response to Anti-TNF-α Therapy in Crohn's Disease: New Tools for New Approaches. Nutrients 2024; 16:280. [PMID: 38257172 PMCID: PMC10818399 DOI: 10.3390/nu16020280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Crohn's disease (CD) is a chronic disorder of the digestive tract characterized by an uncontrolled immune-mediated inflammatory response in genetically predisposed individuals exposed to environmental risk factors. Although diet has been identified as one of the major environmental risk factors, the role of nutrients in the clinical management of CD patients has not yet been fully investigated. In this prospective observational study, fifty-four patients diagnosed with active Crohn's disease and undergoing anti-TNF-α biological therapy were enrolled and subjected to nutrient intake analysis through a daily food diary. Their nutrient intake and blood values were analyzed before and after 6 months of biological therapy. After 6 months of anti-TNF-α, four patients dropped out of the study, leaving 29 patients in clinical remission and 21 still with active disease that remained the same. The aim of this study was to identify nutrients whose intake or blood values may be associated with patients' responses to biological therapy. In the diet, patients remaining with active CD showed very similar nutrient dietary intake compared to patients achieving remission except for a trend for lower starting zinc intake, below the reference value. In the blood, instead, patients who did not respond to biological therapy showed significantly lower plasma values of iron and taurine before starting biological anti-TNF-α treatment.
Collapse
Affiliation(s)
- Fernando Rizzello
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Via Dr. Massarenti 9, 40138 Bologna, Italy; (F.R.); (P.G.); (V.I.); (E.F.); (N.K.D.)
- Department of Medical and Surgical and Sciences, University of Bologna, Via Dr. Massarenti 9, 40138 Bologna, Italy
| | - Ilaria Maria Saracino
- Microbiology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Via Dr. Massarenti 9, 40138 Bologna, Italy;
| | - Paolo Gionchetti
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Via Dr. Massarenti 9, 40138 Bologna, Italy; (F.R.); (P.G.); (V.I.); (E.F.); (N.K.D.)
- Department of Medical and Surgical and Sciences, University of Bologna, Via Dr. Massarenti 9, 40138 Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Dr. Selmi 3, 40126 Bologna, Italy; (I.B.); (E.S.)
| | - Chiara Ricci
- Gastroenterology Unit, ASST Spedali Civili di Brescia, University of Brescia, Piazza del Mercato 15, 25121 Brescia, Italy;
| | - Veronica Imbesi
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Via Dr. Massarenti 9, 40138 Bologna, Italy; (F.R.); (P.G.); (V.I.); (E.F.); (N.K.D.)
- Department of Medical and Surgical and Sciences, University of Bologna, Via Dr. Massarenti 9, 40138 Bologna, Italy
| | - Eleonora Filippone
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Via Dr. Massarenti 9, 40138 Bologna, Italy; (F.R.); (P.G.); (V.I.); (E.F.); (N.K.D.)
- Department of Medical and Surgical and Sciences, University of Bologna, Via Dr. Massarenti 9, 40138 Bologna, Italy
| | - Irene Bellocchio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Dr. Selmi 3, 40126 Bologna, Italy; (I.B.); (E.S.)
| | - Nikolas Konstantine Dussias
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Via Dr. Massarenti 9, 40138 Bologna, Italy; (F.R.); (P.G.); (V.I.); (E.F.); (N.K.D.)
- Department of Medical and Surgical and Sciences, University of Bologna, Via Dr. Massarenti 9, 40138 Bologna, Italy
| | - Thierry Dervieux
- Prometheus Laboratories, 9410 Carroll Park Dr., San Diego, CA 92121, USA;
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Dr. Selmi 3, 40126 Bologna, Italy; (I.B.); (E.S.)
| |
Collapse
|
10
|
Hadžić K, Gregor A, Auernigg-Haselmaier S, Longo V, Pignitter M, Duszka K. Restrictive diets have a beneficial impact on dextran sodium sulfate-induced colitis in male mice. J Nutr 2024; 154:121-132. [PMID: 37952777 DOI: 10.1016/j.tjnut.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Previously, we assessed the impact of restrictive diets, including caloric restriction (CR), intermittent fasting (IF), or fasting-mimicking diet (FMD), on a healthy gastrointestinal tract. We revealed that each of the diets shows anti-inflammatory outcomes. OBJECTIVE The current study aimed to verify the diets' applicability in treating colitis. METHODS We exposed a mouse model with mild chronic dextran sodium sulfate (DSS)-induced colitis to ad libitum control feeding, CR, IF, or FMD. The collected samples were analyzed for markers of inflammation. RESULTS The diets reduced DSS-triggered increases in spleen weight and myeloperoxidase (MPO) activity. Diet intervention also influenced occludin levels, small intestine morphology, as well as cytokine and inflammatory gene expression, mainly in the mucosa of the proximal colon. The diets did not reverse DSS-enhanced gut permeability and thickening of the colon muscularis externa. Concerning inflammatory gene expression, the impact of DSS and the dietary intervention was limited to the colon as we did not measure major changes in the jejunum mucosa, Peyer's patches, and mesenteric lymph nodes. Further, rather modest changes in the concentration of intestinal bile acids were observed in response to the diets, whereas taurine and its conjugates levels were strongly affected. CONCLUSIONS Despite the differences in the dietary protocol, the tested diets showed very similar impacts and, therefore, may be interchangeable when aiming to reduce inflammation in the colon. However, FMD showed the most consistent beneficial impact.
Collapse
Affiliation(s)
- Kajs Hadžić
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - András Gregor
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | | | - Valter Longo
- Longevity Institute, University of Southern California, Los Angeles, CA, United States
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Yang X, Li X, Gao Y, Wang J, Zheng N. Integrated Metabolomics and Lipidomics Analysis Reveals Lipid Metabolic Disorder in NCM460 Cells Caused by Aflatoxin B1 and Aflatoxin M1 Alone and in Combination. Toxins (Basel) 2023; 15:toxins15040255. [PMID: 37104193 PMCID: PMC10146203 DOI: 10.3390/toxins15040255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Aflatoxin B1 (AFB1) and aflatoxin M1 (AFM1) are universally found as environmental pollutants. AFB1 and AFM1 are group 1 human carcinogens. Previous sufficient toxicological data show that they pose a health risk. The intestine is vital for resistance to foreign pollutants. The enterotoxic mechanisms of AFB1 and AFM1 have not been clarified at the metabolism levels. In the present study, cytotoxicity evaluations of AFB1 and AFM1 were conducted in NCM 460 cells by obtaining their half-maximal inhibitory concentration (IC50). The toxic effects of 2.5 μM AFB1 and AFM1 were determined by comprehensive metabolomics and lipidomics analyses on NCM460 cells. A combination of AFB1 and AFM1 induced more extensive metabolic disturbances in NCM460 cells than either aflatoxin alone. AFB1 exerted a greater effect in the combination group. Metabolomics pathway analysis showed that glycerophospholipid metabolism, fatty acid degradation, and propanoate metabolism were dominant pathways that were interfered with by AFB1, AFM1, and AFB1+AFM1. Those results suggest that attention should be paid to lipid metabolism after AFB1 and AFM1 exposure. Further, lipidomics was used to explore the fluctuation of AFB1 and AFM1 in lipid metabolism. The 34 specific lipids that were differentially induced by AFB1 were mainly attributed to 14 species, of which cardiolipin (CL) and triacylglycerol (TAG) accounted for 41%. AFM1 mainly affected CL and phosphatidylglycerol, approximately 70% based on 11 specific lipids, while 30 specific lipids were found in AFB1+AFM1, mainly reflected in TAG up to 77%. This research found for the first time that the lipid metabolism disorder caused by AFB1 and AFM1 was one of the main causes contributing to enterotoxicity, which could provide new insights into the toxic mechanisms of AFB1 and AFM1 in animals and humans.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Li
- Research and Development Institute, Heilongjiang Feihe Dairy Co., Ltd., Qiqihar 161000, China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Qian W, Li M, Yu L, Tian F, Zhao J, Zhai Q. Effects of Taurine on Gut Microbiota Homeostasis: An Evaluation Based on Two Models of Gut Dysbiosis. Biomedicines 2023; 11:biomedicines11041048. [PMID: 37189666 DOI: 10.3390/biomedicines11041048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Taurine, an abundant free amino acid, plays multiple roles in the body, including bile acid conjugation, osmoregulation, oxidative stress, and inflammation prevention. Although the relationship between taurine and the gut has been briefly described, the effects of taurine on the reconstitution of intestinal flora homeostasis under conditions of gut dysbiosis and underlying mechanisms remain unclear. This study examined the effects of taurine on the intestinal flora and homeostasis of healthy mice and mice with dysbiosis caused by antibiotic treatment and pathogenic bacterial infections. The results showed that taurine supplementation could significantly regulate intestinal microflora, alter fecal bile acid composition, reverse the decrease in Lactobacillus abundance, boost intestinal immunity in response to antibiotic exposure, resist colonization by Citrobacter rodentium, and enhance the diversity of flora during infection. Our results indicate that taurine has the potential to shape the gut microbiota of mice and positively affect the restoration of intestinal homeostasis. Thus, taurine can be utilized as a targeted regulator to re-establish a normal microenvironment and to treat or prevent gut dysbiosis.
Collapse
|
13
|
Yu J, Liu T, Guo Q, Wang Z, Chen Y, Dong Y. Disruption of the Intestinal Mucosal Barrier Induced by High Fructose and Restraint Stress Is Regulated by the Intestinal Microbiota and Microbiota Metabolites. Microbiol Spectr 2023; 11:e0469822. [PMID: 36719201 PMCID: PMC10100858 DOI: 10.1128/spectrum.04698-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Environmental (restraint stress) and dietary (high fructose) factors are key triggers for flares of inflammatory bowel disease; however, the mechanisms involved in this phenomenon are not fully elucidated. This study aimed to investigate the mechanisms by which restraint stress and high fructose damage the intestinal mucosal immune barrier. The feces of C57BL/6J mice were subjected to 16S rRNA and untargeted metabolome sequencing, and the intestinal histological structure was analyzed by immunohistochemistry and immunofluorescence staining. The mRNA and protein levels of the intestinal protein were analyzed by reverse transcription-PCR (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). The metabolites of the microbiota were tested in vitro, and Akkermansia muciniphila was used for colonization in vivo. Dietary fructose exacerbated the development of restraint stress, with an extensive change in the composition of the gut microbiota and microbial metabolites. The disturbance of the microbiota composition led to an increase in the abundance of histamine and a decrease in the abundance of taurine, which inhibited the expression of tight junction and MUC2 proteins, destroyed the function of NLRP6, and reduced intestinal autophagy level; this in turn disrupted the function of colonic goblet cells to secrete mucus, leading to defects in the intestinal mucosal barrier, which ultimately codrives colon autoinflammation. However, A. muciniphila supplementation counteracted damage to the intestinal mucosal barrier by high fructose and restraint stress. Therefore, the gut microbiota and microbiota metabolites play an important role in maintaining microenvironment homeostasis of the intestinal mucosal barrier. IMPORTANCE A high-fructose diet aggravated restraint stress-induced changes in the composition of the intestinal microbiome, in which the abundance of A. muciniphila was significantly increased. The high-fructose diet exacerbated restraint stress-induced the changes in the composition of the microbial metabolites, with taurine abundance being downregulated and histamine abundance upregulated. High fructose and restraint stress induced colonic mucosal immune barrier damage, possibly due to changes in the abundance of the microbial metabolites taurine and histamine. Colonization with A. muciniphila stimulated the expression of the NLRP6 inflammasome and activated autophagy in goblet cells, thereby producing more new mucins, which could protect the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Jiayu Yu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Tianlong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Qingyun Guo
- Milu Conservation Research Unit, Beijing Milu Ecological Research Center, Beijing, People’s Republic of China
| | - Zixu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yaoxing Chen
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yulan Dong
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Duszka K. Versatile Triad Alliance: Bile Acid, Taurine and Microbiota. Cells 2022; 11:2337. [PMID: 35954180 PMCID: PMC9367564 DOI: 10.3390/cells11152337] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Taurine is the most abundant free amino acid in the body, and is mainly derived from the diet, but can also be produced endogenously from cysteine. It plays multiple essential roles in the body, including development, energy production, osmoregulation, prevention of oxidative stress, and inflammation. Taurine is also crucial as a molecule used to conjugate bile acids (BAs). In the gastrointestinal tract, BAs deconjugation by enteric bacteria results in high levels of unconjugated BAs and free taurine. Depending on conjugation status and other bacterial modifications, BAs constitute a pool of related but highly diverse molecules, each with different properties concerning solubility and toxicity, capacity to activate or inhibit receptors of BAs, and direct and indirect impact on microbiota and the host, whereas free taurine has a largely protective impact on the host, serves as a source of energy for microbiota, regulates bacterial colonization and defends from pathogens. Several remarkable examples of the interaction between taurine and gut microbiota have recently been described. This review will introduce the necessary background information and lay out the latest discoveries in the interaction of the co-reliant triad of BAs, taurine, and microbiota.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
15
|
Signaling Pathway of Taurine-Induced Upregulation of TXNIP. Metabolites 2022; 12:metabo12070636. [PMID: 35888758 PMCID: PMC9317136 DOI: 10.3390/metabo12070636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Taurine, a sulfur-containing β-amino acid, is present at high concentrations in mammalian tissues and plays an important role in several essential biological processes. However, the genetic mechanisms involved in these physiological processes associated with taurine remain unclear. In this study, we investigated the regulatory mechanism underlying the taurine-induced transcriptional enhancement of the thioredoxin-interacting protein (TXNIP). The results showed that taurine significantly increased the luciferase activity of the human TXNIP promoter. Further, deletion analysis of the TXNIP promoter showed that taurine induced luciferase activity only in the TXNIP promoter region (+200 to +218). Furthermore, by employing a bioinformatic analysis using the TRANSFAC database, we focused on Tst-1 and Ets-1 as candidates involved in taurine-induced transcription and found that the mutation in the Ets-1 sequence did not enhance transcriptional activity by taurine. Additionally, chromatin immunoprecipitation assays indicated that the binding of Ets-1 to the TXNIP promoter region was enhanced by taurine. Taurine also increased the levels of phosphorylated Ets-1, indicating activation of Ets-1 pathway by taurine. Moreover, an ERK cascade inhibitor significantly suppressed the taurine-induced increase in TXNIP mRNA levels and transcriptional enhancement of TXNIP. These results suggest that taurine enhances TXNIP expression by activating transcription factor Ets-1 via the ERK cascade.
Collapse
|
16
|
Li M, Yang L, Mu C, Sun Y, Gu Y, Chen D, Liu T, Cao H. Gut microbial metabolome in inflammatory bowel disease: From association to therapeutic perspectives. Comput Struct Biotechnol J 2022; 20:2402-2414. [PMID: 35664229 PMCID: PMC9125655 DOI: 10.1016/j.csbj.2022.03.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a set of clinically chronic, relapsing gastrointestinal inflammatory disease and lacks of an absolute cure. Although the precise etiology is unknown, developments in high-throughput microbial genomic sequencing significantly illuminate the changes in the intestinal microbial structure and functions in patients with IBD. The application of microbial metabolomics suggests that the microbiota can influence IBD pathogenesis by producing metabolites, which are implicated as crucial mediators of host-microbial crosstalk. This review aims to elaborate the current knowledge of perturbations of the microbiome-metabolome interface in IBD with description of altered composition and metabolite profiles of gut microbiota. We emphasized and elaborated recent findings of several potentially protective metabolite classes in IBD, including fatty acids, amino acids and derivatives and bile acids. This article will facilitate a deeper understanding of the new therapeutic approach for IBD by applying metabolome-based adjunctive treatment.
Collapse
Key Words
- AMPs, Antimicrobial peptides
- BAs, Bile acids
- BC, Bray Curtis
- CD, Crohn’s disease
- CDI, Clostridioides difficile infection
- DC, Diversion colitis
- DCA, Deoxycholic acid
- DSS, Dextran sulfate sodium
- FAs, Fatty acid
- FMT, Fecal microbiota transplantation
- FODMAP, Fermentable oligosaccharide, disaccharide, monosaccharide, and polyol
- GC–MS, Gas chromatography-mass spectrometry
- Gut microbiota
- HDAC, Histone deacetylase
- IBD, Inflammatory bowel disease
- Inflammatory bowel diseases
- LC-MS, Liquid chromatography-mass spectrometry
- LCA, Lithocholic acid
- LCFAs, Long-chain fatty acids
- MCFAs, Medium-chain fatty acids
- MD, Mediterranean diet
- MS, Mass spectrometry
- Metabolite
- Metabolomics
- Metagenomics
- Microbial therapeutics
- NMR, Nuclear magnetic resonance
- PBAs, Primary bile acids
- SBAs, Secondary bile acids
- SCD, Special carbohydrate diet
- SCFAs, Short-chain fatty acids
- TNBS, 2,4,6-trinitro-benzene sulfonic acid
- UC, Ulcerative colitis
- UDCA, Ursodeoxycholic acid
- UPLC-MS, ultraperformance liquid chromatography coupled to mass spectrometry
- UU, Unweighted UniFrac
- WMS, Whole-metagenome shotgun
Collapse
Affiliation(s)
| | | | | | - Yue Sun
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
17
|
Gregor A, Pignitter M, Trajanoski S, Auernigg-Haselmaier S, Somoza V, König J, Duszka K. Microbial contribution to the caloric restriction-triggered regulation of the intestinal levels of glutathione transferases, taurine, and bile acid. Gut Microbes 2022; 13:1992236. [PMID: 34693866 PMCID: PMC8547879 DOI: 10.1080/19490976.2021.1992236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recently we showed that caloric restriction (CR) triggers an increase in the levels of free taurine, taurine-conjugated bile acids (BA), and other taurine conjugates in intestinal mucosa while decreasing glutathione (GSH) levels in wild-type male mice. In the current project, we decided to investigate whether the microbiota is involved in the response to CR by depleting gut bacteria. The antibiotics treatment diminished CR-specific increase in the levels of free taurine and its conjugates as well as upregulated expression and activity of GSH transferases (GST) in the intestinal mucosa. Further, it diminished a CR-related increase in BAs levels in the liver, plasma, and intestinal mucosa. Transplant of microbiota from CR mice to ad libitum fed mice triggered CR-like changes in MGST1 expression, levels of taurine and taurine conjugates in the mucosa of the ileum. We show for the first time, that microbiota contributes to the intestinal response to CR-triggered changes in BA, taurine, and GST levels.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | | | - Veronika Somoza
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria,Leibniz-Institut for Food Systems Biology, Technical University of Munich, Munich, Germany
| | - Jürgen König
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria,CONTACT Kalina Duszka Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Ahmed O, Abdel-Halim M, Farid A, Elamir A. Taurine loaded chitosan-pectin nanoparticle shows curative effect against acetic acid-induced colitis in rats. Chem Biol Interact 2022; 351:109715. [PMID: 34695389 DOI: 10.1016/j.cbi.2021.109715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Owing to the poor outcomes and adverse side effects of existing ulcerative colitis drugs, the study aimed to develop an alternative nano-based treatment approach. The study was designed to characterize the in vitro and in vivo properties of taurine, taurine-loaded chitosan pectin nanoparticles (Tau-CS-PT-NPs) and chitosan pectin nanoparticles (CS-PT-NPs) in the therapy of acetic acid (AA)-induced colitis in rats. CS-PT-NPs and Tau-CS-PT-NPs were prepared by ionic gelation method then in vitro characterized, including transmission electron microscopy (TEM), polydispersity index (PDI), zeta potential, Fourier transform infrared (FTIR) spectroscopy, encapsulation efficiency (EE), and drug release profile. Following colitis induction, rats were orally administrated with free taurine, Tau-CS-PT-NPs, and CS-PT-NPs once per day for six days. The sizes of Tau-CS-PT-NPs and CS-PT-NPs were 74.17 ± 2.88 nm and 42.22 ± 2.41 nm, respectively. EE was about 69.09 ± 1.58%; furthermore, 60% of taurine was released in 4 h in simulated colon content. AA-induced colitis in untreated rats led to necrosis of colon tissues and a significant increase in interleukin-1beta (IL-1β), Tumor Necrosis Factor-alpha (TNF-α), myeloperoxidase (MPO), and malondialdehyde (MDA) levels associated with a remarkable reduction in glutathione (GSH) level in colon tissue in comparison to control group. Treatment with taurine, Tau-CS-PT-NPs, and CS-PT-NPs partly reversed these effects. The present study demonstrated that the administration of free taurine, CS-PT-NPs, and Tau-CS-PT-NPs exerted beneficial effects in acetic acid-induced colitis by their anti-inflammatory and antioxidant activities. The best therapeutic effect was observed in animals treated with taurine-loaded chitosan pectin nanoparticles.
Collapse
Affiliation(s)
- Osama Ahmed
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Mohammad Abdel-Halim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University, Cairo, 11835, Egypt
| | - Alyaa Farid
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Azza Elamir
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
19
|
Nguyen KH, Murakami S, Schaffer SW, Ito T. Examination of Taurine Chloramine and Taurine on LPS-Induced Acute Pulmonary Inflammatory in Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:23-29. [DOI: 10.1007/978-3-030-93337-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Satsu H, Fukumura M, Watari K. Regulation of CXCR4 Expression by Taurine in Macrophage-Like Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:41-49. [DOI: 10.1007/978-3-030-93337-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Gregor A, Pignitter M, Fahrngruber C, Bayer S, Somoza V, König J, Duszka K. Caloric restriction increases levels of taurine in the intestine and stimulates taurine uptake by conjugation to glutathione. J Nutr Biochem 2021; 96:108781. [PMID: 34022385 DOI: 10.1016/j.jnutbio.2021.108781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Our previous study indicated increased levels of taurine-conjugated bile acids (BA) in the intestine content of mice submitted to caloric restriction (CR). In the current project, we found increased levels of free taurine and taurine conjugates, including glutathione (GSH)-taurine, in CR compared to ad libitum fed animals in the mucosa along the intestine but not in the liver. The levels of free GSH were decreased in the intestine of CR compared to ad libitum fed mice. However, the levels of oxidized GSH were not affected and were complemented by the lack of changes in the antioxidative parameters. Glutathione-S transferases (GST) enzymatic activity was increased as was the expression of GST genes along the gastrointestinal tract of CR mice. In the CR intestine, addition of GSH to taurine solution enhanced taurine uptake. Accordingly, the expression of taurine transporter (TauT) was increased in the ileum of CR animals and the levels of free and BA-conjugated taurine were lower in the feces of CR compared to ad libitum fed mice. Fittingly, BA- and GSH-conjugated taurine levels were increased in the plasma of CR mice, however, free taurine remained unaffected. We conclude that CR-triggered production and release of taurine-conjugated BA in the intestine results in increased levels of free taurine what stimulates GST to conjugate and enhance uptake of taurine from the intestine.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria
| | | | - Sebastian Bayer
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria
| | - Veronika Somoza
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria; Leibniz-Institut for Food Systems Biology, Technical University of Munich, Freising, Germany
| | - Jürgen König
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Effect of short-time treatment with TNF-α on stem cell activity and barrier function in enteroids. Cytotechnology 2021; 73:669-682. [PMID: 34349355 DOI: 10.1007/s10616-021-00487-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Although tumor necrosis factor-α (TNF-α) is a known major inflammatory mediator in inflammatory bowel disease (IBD) and has various effects on intestinal epithelial cell (IEC) homeostasis, the changes in IECs in the early inflammatory state induced during short-time treatment (24 h) with TNF-α remain unclear. In this study, we investigated TNF-α-induced alterations in IECs in the early inflammatory state using mouse jejunal organoids (enteroids). Of the inflammatory cytokines, i.e., TNF-α, IL-1β, IL-6, and IL-17, only TNF-α markedly increased the mRNA level of macrophage inflammatory protein 2 (MIP-2; the mouse homologue of interleukin-8), which is induced in the early stages of inflammation. TNF-α stimulation (3 h and 6 h) decreased the mRNA level of the stem cell markers leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) and polycomb group ring finger 4 and the progenitor cell marker prominin-1, which is also known as CD133. In addition, TNF-α treatment (24 h) decreased the number of Lgr5-positive cells and enteroid proliferation. TNF-α stimulation at 3 h and 6 h also decreased the mRNA level of chromogranin A and mucin 2, which are respective markers of enteroendocrine and goblet cells. Moreover, enteroids treated with TNF-α (24 h) not only decreased the integrity of tight junctions and cytoskeletal components but also increased intercellular permeability in an influx test with fluorescent dextran, indicating disrupted intestinal barrier function. Taken together, our findings indicate that short-time treatment with TNF-α promotes the inflammatory response and decreases intestinal stem cell activity and barrier function. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00487-y.
Collapse
|
23
|
Manzini R, Schwarzfischer M, Bircher A, Niechcial A, Vavricka SR, Atrott K, Lang S, Scharl M, Spalinger MR. Energy Drink Administration Ameliorates Intestinal Epithelial Barrier Defects and Reduces Acute DSS Colitis. Inflamm Bowel Dis 2021; 27:1139-1152. [PMID: 33501991 DOI: 10.1093/ibd/izaa328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The rise in the prevalence of inflammatory bowel diseases in the past decades coincides with changes in nutritional habits, such as adaptation of a Western diet. However, it is largely unknown how certain nutritional habits, such as energy drink consumption, affect intestinal inflammation. Here, we assessed the effect of energy drink supplementation on the development of intestinal inflammation in vitro and in vivo. METHODS HT-29 and T84 intestinal epithelial cells and THP-1 monocytic cells were treated with IFNγ in presence or absence of different concentrations of an energy drink. Colitis was induced in C57BL/6 mice by addition of dextran sodium sulfate (DSS) to drinking water with or without supplementation of the energy drink. RESULTS Energy drink supplementation caused a dose-dependent decrease in IFNγ-induced epithelial barrier permeability, which was accompanied by upregulation of the pore-forming protein claudin-2. Administration of the energy drink reduced secretion of the pro-inflammatory cytokines interleukin-6 and tumor necrosis factor-α from HT-29, T84, and THP-1 cells. In vivo, energy drink administration reduced clinical symptoms of DSS-induced colitis and epithelial barrier permeability. Endoscopic and histologic colitis scores and expression of pro-inflammatory cytokines were significantly reduced by energy drink co-administration. CONCLUSION Energy drink consumption seems to exert an unexpected anti-inflammatory effect in vitro and in vivo in our experimental setting. However, our experimental approach focuses on intestinal inflammation and neglects additional effects of energy drink consumption on the body (eg, on metabolism or sleep). Therefore, the translation of our findings into the human situation must be taken with caution.
Collapse
Affiliation(s)
- Roberto Manzini
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna Bircher
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna Niechcial
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Division of Biomedical Research, School of Medicine, University of California Riverside, Riverside, California, USA
| |
Collapse
|
24
|
Walker A, Schmitt-Kopplin P. The role of fecal sulfur metabolome in inflammatory bowel diseases. Int J Med Microbiol 2021; 311:151513. [PMID: 34147944 DOI: 10.1016/j.ijmm.2021.151513] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfur metabolism and sulfur-containing metabolites play an important role in the human digestive system, and sulfur compounds and pathways are associated with inflammatory bowel diseases (IBD). In fact, cysteine metabolism results in the production of taurine and sulfate, and gut microbes catabolize them into hydrogen sulfide, a signaling molecule with various biological functions. Besides metabolites originating from sulfur metabolism, several other sulfur-containing metabolites of different classes were detected in human feces, consisting of non-volatile and volatile compounds. Sulfated steroids and bile acids such as taurine-conjugated bile acids are the major classes along with sulfur amino acids and sulfur-containing peptides. Indeed, sulfur-containing metabolites were described in stool samples from healthy subjects, patients suffering from colorectal cancer or IBD. In metabolomics-driven studies, around 50 known sulfur-containing metabolites were linked to IBD. Taurine, taurocholic acid, taurochenodeoxycholic acid, methionine, methanethiol and hydrogen sulfide were regularly reported in IBD studies, and most of them were elevated in stool samples from IBD patients. We summarized from this review that there is strong interplay between perturbed gut microbiota in IBD, and the consistently higher abundance of sulfur-containing metabolites, which potentially represent substrates for sulfidogenic bacteria such as Bilophila or Escherichia and promote their growth. These bacteria might shift their metabolism towards the degradation of taurine and cysteine and therefore to a higher hydrogen sulfide production.
Collapse
Affiliation(s)
- Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany; ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany; Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| |
Collapse
|
25
|
Dong Y, Li X, Liu Y, Gao J, Tao J. The molecular targets of taurine confer anti-hyperlipidemic effects. Life Sci 2021; 278:119579. [PMID: 33961852 DOI: 10.1016/j.lfs.2021.119579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Hyperlipidemia, an independent risk factor for atherosclerosis, is regarded as a lipid metabolism disorder associated with elevated plasma triglyceride and/or cholesterol. Genetic factors and unhealthy lifestyles, such as excess caloric intake and physical inactivity, can result in hyperlipidemia. Taurine, a sulfur-containing non-essential amino acid, is abundant in marine foods and has been associated with wide-ranging beneficial physiological effects, with special reference to regulating aberrant lipid metabolism. Its anti-hyperlipidemic mechanism is complex, which is related to many enzymes in the process of fat anabolism and catabolism (e.g., HMGCR, CYP7A1, LDLR, FXR, FAS and ACC). Anti-inflammatory and antioxidant molecular targets, lipid autophagy, metabolic reprogramming and gut microbiota will also be reviewed.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Xiaoling Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Yaling Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Jie Gao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China.
| |
Collapse
|
26
|
Baliou S, Sofopoulos M, Goulielmaki M, Spandidos DA, Ioannou P, Kyriakopoulos AM, Zoumpourlis V. Bromamine T, a stable active bromine compound, prevents the LPS‑induced inflammatory response. Int J Mol Med 2021; 47:37. [PMID: 33537817 PMCID: PMC7891821 DOI: 10.3892/ijmm.2021.4870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
Inflammation is the most common cause of most acute and chronic debilitating diseases. Towards unveiling novel therapeutic options for patients with such complications, N‑bromotaurine (TauNHBr) has emerged as a potential anti‑inflammatory agent; however, its therapeutic efficacy is hindered due to its relatively poor stability. To address this challenge, the present study focused on examining the effects of a stable active bromine compound, named bromamine T (BAT). The present study examined the protective properties of BAT against lipopolysaccharide (LPS)‑mediated inflammation in vitro, by using LPS‑stimulated murine J774.A1 macrophages (Mφs), as well as in vivo, by using a murine LPS‑mediated air‑pouch model. Additionally, its efficacy was compared with that of taurine, a known potent anti‑inflammatory molecule. In LPS‑stimulated J774A.1 Mφs, BAT and taurine were very effective in reducing the secretion of pro‑inflammatory mediators. The in vitro experiments indicated that LPS‑mediated inflammation was attenuated due to the protective properties of BAT and of taurine, probably through the inhibition of phosphorylated p65 NF‑κB subunit (Ser 536) nuclear translocation. The in vivo experiments also revealed that BAT and taurine inhibited LPS‑mediated inflammation by reducing total cell/polymorphonuclear cell (PMN) infiltration in the air‑pouch and by decreasing pouch wall thickness. The analysis of exudates obtained from pouches highlighted that the inhibitory effects of BAT and taurine on the secretion of pro‑inflammatory cytokines were similar to those observed in vitro. Notably, the effect of BAT at the highest concentration tested was superior to that of taurine at the highest concentration. Taken together, the findings of the present study indicate that BAT prevents the LPS‑induced inflammatory response both in vitro and in vivo.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Michael Sofopoulos
- Department of Surgical Pathology, Saint Savvas Anticancer Hospital of Athens, 11522 Athens, Greece
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | | |
Collapse
|
27
|
Kim SH, Yum HW, Kim SH, Kim W, Kim SJ, Kim C, Kim K, Suh YG, Surh YJ. Protective Effects of Taurine Chloramine on Experimentally Induced Colitis: NFκB, STAT3, and Nrf2 as Potential Targets. Antioxidants (Basel) 2021; 10:antiox10030479. [PMID: 33803551 PMCID: PMC8002934 DOI: 10.3390/antiox10030479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 01/27/2023] Open
Abstract
Taurine chloramine (TauCl) is an endogenous anti-inflammatory substance which is derived from taurine, a semi-essential sulfur-containing β-amino acid found in some foods including meat, fish, eggs and milk. In general, TauCl as well as its parent compound taurine downregulates production of tissue-damaging proinflammatory mediators, such as chemokines and cytokines in many different types of cells. In the present study, we investigated the protective effects of TauCl on experimentally induced colon inflammation. Oral administration of TauCl protected against mouse colitis caused by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TauCl administration attenuated apoptosis in the colonic mucosa of TNBS-treated mice. This was accompanied by reduced expression of an oxidative stress marker, 4-hydroxy-2-nonenal and proinflammatory molecules including tumor necrosis factor-α, interleukin-6 and cyclooxygenase-2 in mouse colon. TauCl also inhibited activation of NFκB and STAT3, two key transcription factors mediating proinflammatory signaling. Notably, the protective effect of TauCl on oxidative stress and inflammation in the colon of TNBS-treated mice was associated with elevated activation of Nrf2 and upregulation of its target genes encoding heme oxygenase-1, NAD(P)H:quinone oxidoreductase, glutamate cysteine ligase catalytic subunit, and glutathione S-transferase. Taken together, these results suggest that TauCl exerts the protective effect against colitis through upregulation of Nrf2-dependent cytoprotective gene expression while blocking the proinflammatory signaling mediated by NFκB and STAT3.
Collapse
Affiliation(s)
- Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.K.); (H.-W.Y.); (S.H.K.); (W.K.); (S.-J.K.); (K.K.)
| | - Hye-Won Yum
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.K.); (H.-W.Y.); (S.H.K.); (W.K.); (S.-J.K.); (K.K.)
| | - Seung Hyeon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.K.); (H.-W.Y.); (S.H.K.); (W.K.); (S.-J.K.); (K.K.)
- Cancer Research Institute, Seoul National University, Seoul 03087, Korea
| | - Wonki Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.K.); (H.-W.Y.); (S.H.K.); (W.K.); (S.-J.K.); (K.K.)
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.K.); (H.-W.Y.); (S.H.K.); (W.K.); (S.-J.K.); (K.K.)
| | - Chaekyun Kim
- Department of Pharmacology and Toxicology, College of Medicine, Inha University, Incheon 22212, Korea;
| | - Kyeojin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.K.); (H.-W.Y.); (S.H.K.); (W.K.); (S.-J.K.); (K.K.)
| | - Young-Ger Suh
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea;
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.K.); (H.-W.Y.); (S.H.K.); (W.K.); (S.-J.K.); (K.K.)
- Cancer Research Institute, Seoul National University, Seoul 03087, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Correspondence:
| |
Collapse
|
28
|
Baliou S, Kyriakopoulos AM, Spandidos DA, Zoumpourlis V. Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review). Int J Oncol 2020; 57:631-664. [PMID: 32705269 PMCID: PMC7384849 DOI: 10.3892/ijo.2020.5100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
For one century, taurine is considered as an end product of sulfur metabolism. In this review, we discuss the beneficial effect of taurine, its haloamines and taurine upregulated gene 1 (TUG1) long non‑coding RNA (lncRNA) in both cancer and inflammation. We outline how taurine or its haloamines (N‑Bromotaurine or N‑Chlorotaurine) can induce robust and efficient responses against inflammatory diseases, providing insight into their molecular mechanisms. We also provide information about the use of taurine as a therapeutic approach to cancer. Taurine can be combined with other chemotherapeutic drugs, not only mediating durable responses in various malignancies, but also circumventing the limitations met from chemotherapeutic drugs, thus improving the therapeutic outcome. Interestingly, the lncRNA TUG1 is regarded as a promising therapeutic approach, which can overcome acquired resistance of cancer cells to selected strategies. In this regard, we can translate basic knowledge about taurine and its TUG1 lncRNA into potential therapeutic options directed against specific oncogenic signaling targets, thereby bridging the gap between bench and bedside.
Collapse
Affiliation(s)
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | | |
Collapse
|
29
|
Ahmadi S, Wang S, Nagpal R, Wang B, Jain S, Razazan A, Mishra SP, Zhu X, Wang Z, Kavanagh K, Yadav H. A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating the microbiota/taurine/tight junction axis. JCI Insight 2020; 5:132055. [PMID: 32302292 DOI: 10.1172/jci.insight.132055] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
Inflammation is a major risk factor of morbidity and mortality in older adults. Although its precise etiology is unknown, low-grade inflammation in older adults is commonly associated with increased intestinal epithelial permeability (leaky gut) and abnormal (dysbiotic) gut microbiota. The increasing older population and lack of treatments to reduce aging-related microbiota dysbiosis, leaky gut, and inflammation culminates in a rise in aging-related comorbidities, constituting a significant public health concern. Here, we demonstrate that a human-origin probiotic cocktail containing 5 Lactobacillus and 5 Enterococcus strains isolated from healthy infant gut prevented high-fat diet-induced (HFD-induced) microbiota dysbiosis, leaky gut, inflammation, metabolic dysfunctions, and physical function decline in older mice. Probiotic-modulated gut microbiota primarily reduced leaky gut by increasing tight junctions, which in turn reduced inflammation. Mechanistically, probiotics modulated microbiota in a way to increase bile salt hydrolase activity, which in turn increased taurine abundance in the gut that stimulated tight junctions and suppressed gut leakiness. Furthermore, in Caenorhabditis elegans, taurine increased life span, reduced adiposity and leaky gut, and enhanced physical function. The results suggest that such probiotic therapies could prevent or treat aging-related leaky gut and inflammation in the elderly.
Collapse
Affiliation(s)
- Shokouh Ahmadi
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Shaohua Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Bo Wang
- Department of Chemistry, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Shalini Jain
- Department of Internal Medicine-Endocrinology and Metabolism.,Mouse Metabolic Phenotyping Core
| | - Atefeh Razazan
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sidharth P Mishra
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Xuewei Zhu
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Microbiology and Immunology, and
| | - Zhan Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kylie Kavanagh
- Department of Pathology-Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Biomedical Sciences, University of Tasmania, Hobart, Australia
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Microbiology and Immunology, and
| |
Collapse
|
30
|
Satsu H, Gondo Y, Shimanaka H, Watari K, Fukumura M, Shimizu M. Effect of Taurine on Cell Function via TXNIP Induction in Caco-2 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:163-172. [PMID: 31468395 DOI: 10.1007/978-981-13-8023-5_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Taurine (2-aminoethanesulfonic acid), a sulfur-containing β-amino acid, is a free amino acid present in high concentrations in mammalian tissues. Taurine has pivotal roles in anti-oxidation, membrane stabilization, osmoregulation, anti-inflammation, and other process. In a DNA microarray analysis, we previously found that taurine markedly increases the mRNA expression of thioredoxin interacting protein (TXNIP) in Caco-2 cells. In this study, we investigated the effect of these taurine-induced changes in TXNIP on the function of Caco-2 cells. We found that taurine decreases glucose uptake in a dose-dependent manner. The taurine-induced decrease in glucose uptake was completely abolished by transfection with siRNA against TXNIP, suggesting that TXNIP is involved in the taurine-induced down-regulation of glucose uptake. We also revealed that taurine induces AMPK activation and further increases the intracellular ATP content in Caco-2 cells. These results suggest that taurine could regulate the function of Caco-2 cells via TXNIP induction, leading to extend our understanding of the functions of taurine.
Collapse
Affiliation(s)
- Hideo Satsu
- Department of Biotechnology, Maebashi Institute of Technology, Maebashi, Japan.
| | - Yusuke Gondo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hana Shimanaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenji Watari
- Department of Biotechnology, Maebashi Institute of Technology, Maebashi, Japan
| | - Midori Fukumura
- Department of Biotechnology, Maebashi Institute of Technology, Maebashi, Japan
| | - Makoto Shimizu
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
31
|
Aïnad-Tabet S, Grar H, Haddi A, Negaoui H, Guermat A, Kheroua O, Saïdi D. Taurine administration prevents the intestine from the damage induced by beta-lactoglobulin sensitization in a murine model of food allergy. Allergol Immunopathol (Madr) 2019; 47:214-220. [PMID: 30270100 DOI: 10.1016/j.aller.2018.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Allergy to cow's milk proteins has often been associated with dysfunction of the intestinal mucosa caused by chronic inflammation in infants. This study evaluated the protective effect of taurine on intestinal damage induced by beta-lactoglobulin (β-Lg) in Balb/c mice used as an animal model of allergy to cow's milk proteins. METHODS Balb/c mice were treated with taurine administered orally by gavage (3mmol/kg/day) or intraperitoneally (100mg/kg/day) for two weeks, then sensitized intraperitoneally with β-Lg. The electrophysiological parameters: active ion transport of chloride (Short-circuit current: Isc) and the passive ion permeability (Conductance: G) were measured ex vivo in Ussing chamber by intestine challenge with β-Lg. Histological study was used to assess gut inflammation. Serum levels of TNF-α and IL-6 were measured. Serum IgG and IgE anti-β-Lg were determined by ELISA. RESULTS Compared with sensitized mice, β-Lg challenge of intestinal epithelium of taurine-pre-treated mice in Ussing chamber did not influence the intensity of Isc, nor produce any changes in the G, reflecting a reduction in the secretory response and epithelial permeability. Histological and morphometric analysis showed that taurine reduced the intestinal damage and limited intestine retraction caused by β-Lg sensitization. No statistically significant difference in the serum levels of TNF-α or IL-6 was found after oral or intraperitoneal administration of taurine. Treatment with taurine significantly decreased the IgG (p<0.001) and IgE anti β-Lg levels (p<0.05). CONCLUSIONS These results have for the first time provided evidence that pre-treatment with taurine appears to prevent intestinal damage induced by β-Lg.
Collapse
Affiliation(s)
- S Aïnad-Tabet
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University of Oran1 Ahmed Ben Bella, 31000 Oran, Algeria.
| | - H Grar
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University of Oran1 Ahmed Ben Bella, 31000 Oran, Algeria
| | - A Haddi
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University of Oran1 Ahmed Ben Bella, 31000 Oran, Algeria
| | - H Negaoui
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University of Oran1 Ahmed Ben Bella, 31000 Oran, Algeria
| | - A Guermat
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University of Oran1 Ahmed Ben Bella, 31000 Oran, Algeria
| | - O Kheroua
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University of Oran1 Ahmed Ben Bella, 31000 Oran, Algeria
| | - D Saïdi
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University of Oran1 Ahmed Ben Bella, 31000 Oran, Algeria
| |
Collapse
|
32
|
Sakai K, Maeda S, Yonezawa T, Matsuki N. Decreased plasma amino acid concentrations in cats with chronic gastrointestinal diseases and their possible contribution in the inflammatory response. Vet Immunol Immunopathol 2017; 195:1-6. [PMID: 29249312 DOI: 10.1016/j.vetimm.2017.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 02/01/2023]
Abstract
In humans, plasma amino acids (AAs) levels are used as dynamic nutritional markers. Moreover, some AAs are associated with chronic inflammation. In this study, we analyzed plasma AA profiles in cats with chronic gastrointestinal (GI) diseases. Eight healthy controls (HCs) and 12 client-owned cats with chronic GI diseases including chronic enteritis (n=8) and neoplasms (n=4) were recruited. Plasma albumin, total protein, and 22 AAs (11 essential and 11 non-essential AAs) levels were estimated. There was no significant difference in plasma albumin and total protein concentrations between the cats with chronic GI diseases and HCs. The plasma concentrations of 7 essential AAs (arginine, histidine, lysine, methionine, phenylalanine, taurine, and tryptophan) and 7 non-essential AAs (asparagine, aspartic acid, glutamic acid, glycine, hydroxyproline, proline, and serine) were significantly decreased in the cats with chronic GI diseases (P<0.05). Moreover, plasma histidine and tryptophan levels were inversely correlated with severity of symptoms (histidine: rs=-0.7781, P<0.005; tryptophan: rs=-0.6040, P<0.05). To examine the contribution of altered AAs levels in the inflammatory response, feline macrophages were stimulated by lipopolysaccharides (LPS) with or without histidine, and the expression of interleukin-8 (IL-8) mRNA was quantified. The expression of IL-8 mRNA was significantly increased in the LPS-stimulated feline macrophages (P<0.05). Histidine almost suppressed the LPS-induced IL-8 expression in the feline macrophages (P<0.05). Our findings suggest that plasma AAs levels are more sensitive nutritional markers than albumin and total protein levels in cats with chronic GI diseases. There is a possibility that the decrease of histidine levels in cats with GI diseases is associated with chronic inflammation.
Collapse
Affiliation(s)
- Kosei Sakai
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoaki Matsuki
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a single-batch fermentation system. PLoS One 2017; 12:e0180991. [PMID: 28700670 PMCID: PMC5507302 DOI: 10.1371/journal.pone.0180991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/23/2017] [Indexed: 01/12/2023] Open
Abstract
Accumulating evidence suggests that dietary taurine (2-aminoethanesulfonic acid) exerts beneficial anti-inflammatory effects in the large intestine. In this study, we investigated the possible impact of taurine on human colonic microbiota using our single-batch fermentation system (Kobe University Human Intestinal Microbiota Model; KUHIMM). Fecal samples from eight humans were individually cultivated with and without taurine in the KUHIMM. The results showed that taurine remained largely undegraded after 30 h of culturing in the absence of oxygen, although some 83% of the taurine was degraded after 30 h of culturing under aerobic conditions. Diversity in bacterial species in the cultures was analyzed by 16S rRNA gene sequencing, revealing that taurine caused no significant change in the diversity of the microbiota; both operational taxonomic unit and Shannon-Wiener index of the cultures were comparable to those of the respective source fecal samples. In addition, principal coordinate analysis indicated that taurine did not alter the composition of bacterial species, since the 16S rRNA gene profile of bacterial species in the original fecal sample was maintained in each of the cultures with and without taurine. Furthermore, metabolomic analysis revealed that taurine did not affect the composition of short-chain fatty acids produced in the cultures. These results, under these controlled but artificial conditions, suggested that the beneficial anti-inflammatory effects of dietary taurine in the large intestine are independent of the intestinal microbiota. We infer that dietary taurine may act directly in the large intestine to exert anti-inflammatory effects.
Collapse
|
34
|
Roles of Dietary Amino Acids and Their Metabolites in Pathogenesis of Inflammatory Bowel Disease. Mediators Inflamm 2017; 2017:6869259. [PMID: 28392631 PMCID: PMC5368367 DOI: 10.1155/2017/6869259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a kind of chronic inflammation, which has increasing incidence and prevalence in recent years. IBD mainly divides into Crohn's disease (CD) and ulcerative colitis (UC). It is hard to cure IBD completely, and novel therapies are urgently needed. Amino acids (AAs) and their metabolites are regarded as important nutrients for humans and animals and also play an important role in IBD amelioration. In the present study, the potential protective effects of AAs and their metabolites on IBD had been summarized with the objective to provide insights into IBD moderating using dietary AAs and their metabolites as a potential adjuvant therapy.
Collapse
|
35
|
Satsu H. Molecular and cellular studies on the absorption, function, and safety of food components in intestinal epithelial cells. Biosci Biotechnol Biochem 2017; 81:419-425. [DOI: 10.1080/09168451.2016.1259552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
The intestinal tract comes into direct contact with the external environment despite being inside the body. Intestinal epithelial cells, which line the inner face of the intestinal tract, have various important functions, including absorption of food substances, immune functions such as cytokine secretion, and barrier function against xenobiotics by means of detoxification enzymes. It is likely that the functions of intestinal epithelial cells are regulated or modulated by these components because they are frequently exposed to food components at high concentrations. This review summarizes our research on the interaction between intestinal epithelial cells and food components at cellular and molecular levels. The influence of xenobiotic contamination in foods on the cellular function of intestinal epithelial cells is also described in this review.
Collapse
Affiliation(s)
- Hideo Satsu
- Department of Biotechnology, Faculty of Engineering, Maebashi Institute of Technology, Maebashi, Japan
| |
Collapse
|
36
|
Shimizu M. Multifunctions of dietary polyphenols in the regulation of intestinal inflammation. J Food Drug Anal 2017; 25:93-99. [PMID: 28911547 PMCID: PMC9333418 DOI: 10.1016/j.jfda.2016.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/24/2016] [Indexed: 01/12/2023] Open
Abstract
Food for specified health use is a type of functional food approved by the Japanese government, with more than 1250 products in 10 health-claim categories being approved as of April 2016. Polyphenols are currently used as functional ingredients in seven of the 10 categories. Although they have not yet been used for the food-for-specified-health-use category of “gut health promotion,” polyphenols are expected to contribute to the future development of gut-modulating food. Intestinal functions include digestion/absorption, acting as a barrier, recognition of external factors, and signal transduction. Owing to incessant exposure to external stress factors including food substances, bacteria, and environmental chemicals, intestines are always inflammatory to some extent, which may cause damage to and dysfunction of intestinal tissues depending on the situation. We identified food factors that could suppress immoderate inflammation in the intestines. In addition to certain amino acids and peptides, polyphenols such as chlorogenic acid and isoflavones were found to suppress inflammation in intestinal cells. Intestinal inflammation is caused by various factors in diverse mechanisms. Recent studies revealed that activation of pattern recognition receptors, such as Toll-like receptors and nucleotide-binding oligomerization domain proteins, in epithelial cells triggers intestinal inflammation. Intracellular receptors or signaling molecules controlling the intestinal detoxification system are also involved in the regulation of inflammation. Differentiation of regulatory T cells by activating a transcription factor Foxp-3 is known to suppress intestinal inflammation. A variety of phytochemicals including polyphenols modulate these receptors and signaling molecules, and are thus anti-inflammatory. Polyphenols affect epigenetic changes occurring in intestinal tissues by interacting with the enzymes responsible for DNA methylation and histone acetylation. New types of anti-inflammatory food factors may be discovered by examining dietary substances that interact with the abovementioned target molecules.
Collapse
Affiliation(s)
- Makoto Shimizu
- Corresponding author: Department of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan. E-mail address:
| |
Collapse
|
37
|
Levy M, Thaiss CA, Zeevi D, Dohnalová L, Zilberman-Schapira G, Mahdi JA, David E, Savidor A, Korem T, Herzig Y, Pevsner-Fischer M, Shapiro H, Christ A, Harmelin A, Halpern Z, Latz E, Flavell RA, Amit I, Segal E, Elinav E. Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling. Cell 2016; 163:1428-43. [PMID: 26638072 DOI: 10.1016/j.cell.2015.10.048] [Citation(s) in RCA: 708] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023]
Abstract
Host-microbiome co-evolution drives homeostasis and disease susceptibility, yet regulatory principles governing the integrated intestinal host-commensal microenvironment remain obscure. While inflammasome signaling participates in these interactions, its activators and microbiome-modulating mechanisms are unknown. Here, we demonstrate that the microbiota-associated metabolites taurine, histamine, and spermine shape the host-microbiome interface by co-modulating NLRP6 inflammasome signaling, epithelial IL-18 secretion, and downstream anti-microbial peptide (AMP) profiles. Distortion of this balanced AMP landscape by inflammasome deficiency drives dysbiosis development. Upon fecal transfer, colitis-inducing microbiota hijacks this microenvironment-orchestrating machinery through metabolite-mediated inflammasome suppression, leading to distorted AMP balance favoring its preferential colonization. Restoration of the metabolite-inflammasome-AMP axis reinstates a normal microbiota and ameliorates colitis. Together, we identify microbial modulators of the NLRP6 inflammasome and highlight mechanisms by which microbiome-host interactions cooperatively drive microbial community stability through metabolite-mediated innate immune modulation. Therefore, targeted "postbiotic" metabolomic intervention may restore a normal microenvironment as treatment or prevention of dysbiosis-driven diseases.
Collapse
Affiliation(s)
- Maayan Levy
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Christoph A Thaiss
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Zeevi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lenka Dohnalová
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Jemal Ali Mahdi
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alon Savidor
- The Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Korem
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yonatan Herzig
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Hagit Shapiro
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anette Christ
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany; Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zamir Halpern
- Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Digestive Center, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany; Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA
| | - Richard A Flavell
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
38
|
De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M. Nutritional Keys for Intestinal Barrier Modulation. Front Immunol 2015; 6:612. [PMID: 26697008 PMCID: PMC4670985 DOI: 10.3389/fimmu.2015.00612] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/22/2015] [Indexed: 12/14/2022] Open
Abstract
The intestinal tract represents the largest interface between the external environment and the human body. Nutrient uptake mostly happens in the intestinal tract, where the epithelial surface is constantly exposed to dietary antigens. Since inflammatory response toward these antigens may be deleterious for the host, a plethora of protective mechanisms take place to avoid or attenuate local damage. For instance, the intestinal barrier is able to elicit a dynamic response that either promotes or impairs luminal antigens adhesion and crossing. Regulation of intestinal barrier is crucial to control intestinal permeability whose increase is associated with chronic inflammatory conditions. The cross talk among bacteria, immune, and dietary factors is able to modulate the mucosal barrier function, as well as the intestinal permeability. Several nutritional products have recently been proposed as regulators of the epithelial barrier, even if their effects are in part contradictory. At the same time, the metabolic function of the microbiota generates new products with different effects based on the dietary content. Besides conventional treatments, novel therapies based on complementary nutrients are now growing. Fecal therapy has been recently used for the clinical treatment of refractory Clostridium difficile infection instead of the classical antibiotic therapy. In the present review, we will outline the epithelial response to nutritional components derived from dietary intake and microbial fermentation focusing on the consequent effects on the integrity of the epithelial barrier.
Collapse
Affiliation(s)
- Stefania De Santis
- Laboratory of Experimental Immunopathology, IRCCS "De Bellis" , Castellana Grotte , Italy
| | - Elisabetta Cavalcanti
- Laboratory of Experimental Immunopathology, IRCCS "De Bellis" , Castellana Grotte , Italy
| | - Mauro Mastronardi
- Department of Gastroenterology, IRCCS "De Bellis" , Castellana Grotte , Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari , Bari , Italy
| | - Marcello Chieppa
- Laboratory of Experimental Immunopathology, IRCCS "De Bellis" , Castellana Grotte , Italy ; Istituto Comprensivo Bregante-Volta , Monopoli , Italy
| |
Collapse
|
39
|
Shin HS, Satsu H, Bae MJ, Zhao Z, Ogiwara H, Totsuka M, Shimizu M. Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chem 2014; 168:167-75. [PMID: 25172696 DOI: 10.1016/j.foodchem.2014.06.100] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/28/2014] [Accepted: 06/25/2014] [Indexed: 12/14/2022]
Abstract
Chlorogenic acid (CHA) is an antioxidant polyphenol prevalent in human diet, with coffee, fruits, and vegetables being its main source. Effects of CHA and CHA metabolites were evaluated on the IL-8 production in human intestinal Caco-2 cells induced by combined stimulation with tumour necrosis factor alpha (TNFα) and H2O2. CHA and caffeic acid (CA) inhibited TNFα- and H2O2-induced IL-8 production. We also examined the in vivo effects of CHA and CA using dextran sulphate sodium (DSS)-induced colitis in mice. CHA attenuated DSS-induced body weight loss, diarrhea, fecal blood, and shortening of colon and dramatically improved colitis histological scores. Furthermore, increases in the mRNA expression of colonic macrophage inflammatory protein 2 and IL-1β, which were induced by DSS, were significantly suppressed by CHA supplementation. These results suggest that dietary CHA use may aid in the prevention of intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Hee Soon Shin
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Functional Materials Research Group, Division of Metabolism and Functionality Research, Korea Food Research Institute, Republic of Korea
| | - Hideo Satsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Biotechnology, Faculty of Engineering, Maebashi Institute of Technology, Gunma, Japan.
| | - Min-Jung Bae
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Institute for Basic Science, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Zhaohui Zhao
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Haru Ogiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mamoru Totsuka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
40
|
Hiratsuka T, Inomata M, Hagiwara S, Kono Y, Shiraishi N, Noguchi T, Kitano S. Bolus injection of newly synthesized vitamin E derivative ETS-GS for the treatment of acute severe ulcerative colitis in a mouse model. New vitamin E derivative for acute severe UC. Int J Colorectal Dis 2013; 28:305-11. [PMID: 22847605 DOI: 10.1007/s00384-012-1502-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 02/04/2023]
Abstract
PURPOSE Vitamin E with its antioxidant action has therapeutic effects on ulcerative colitis (UC), but use of vitamin E is limited because of its insolubility in water. We developed ETS-GS (γ-L-glutamyl-S-[2-[[[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltri-decyl)-2 H-1-benzopyran-6-yl]oxy]carbonyl]-3-oxo-3-[(2-sulfoethyl)amino]propyl]-L-cysteinylglycine sodium salt), a newly synthesized soluble vitamin E derivative with strong antioxidant action. We evaluated the therapeutic effects of bolus injection of ETS-GS on acute severe UC in a mouse model. METHODS An animal model of acute severe UC was induced by feeding mice 5 % dextran sulfate sodium (DSS) for 5 days, followed by 1 % DSS on days 5-8, the experimental period. ETS-GS or saline was administered by subcutaneous bolus injection during the experimental period. We examined disease activity index (DAI) score, histological score, colon length, colon weight, and serum cytokines in the mice. RESULTS The following results at day 8 in the DSS + ETS-GS group were significantly lower than those in the DSS + Saline group: DAI score, 2.6 ± 0.6 vs. 3.1 ± 0.5; histological score, 2.1 ± 1.0 vs. 3.1 ± 0.8; serum interleukin (IL)-6, 15 ± 9.4 vs. 39 ± 23 pg/ml; and keratinocyte-derived chemokine (KC), 122 ± 61 vs. 228 ± 66 pg/ml (P < 0.05). Colon length, colon weight, and serum IL-10 in the DSS + ETS-GS group were significantly higher than those in the DSS + Saline group (88 ± 12 vs. 75 ± 5.7 mm, 0.48 ± 0.09 vs. 0.38 ± 0.05 g, and 55 ± 18 vs. 31 ± 10 pg/ml, respectively; P < 0.05). CONCLUSIONS Bolus injection of ETS-GS may be one therapeutic modality for acute severe UC. Its effects are associated with suppression of serum IL-6 and serum KC and promotion of serum IL-10.
Collapse
Affiliation(s)
- Takahiro Hiratsuka
- Department of Gastroenterological Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-city, Oita 879-5593, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Gondo Y, Satsu H, Ishimoto Y, Iwamoto T, Shimizu M. Effect of taurine on mRNA expression of thioredoxin interacting protein in Caco-2 cells. Biochem Biophys Res Commun 2012; 426:433-7. [PMID: 22960072 DOI: 10.1016/j.bbrc.2012.08.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/24/2022]
Abstract
Taurine (2-aminoethanesulfonic acid), a sulfur-containing β-amino acid, plays an important role in several essential biological processes; although, the underlying mechanisms for these regulatory functions remain to be elucidated, especially at the genetic level. We investigated the effects of taurine on the gene expression profile in Caco-2 cells using DNA microarray. Taurine increased the mRNA expression of thioredoxin interacting protein (TXNIP), which is involved in various metabolisms and diseases. β-Alanine or γ-aminobutyric acid (GABA), which are structurally or functionally related to taurine, did not increase TXNIP mRNA expression. These suggest the expression of TXNIP mRNA is induced specifically by taurine. β-Alanine is also known to be a substrate of taurine transporter (TAUT) and competitively inhibits taurine uptake. Inhibition of taurine uptake by β-alanine eliminated the up-regulation of TXNIP, which suggests TAUT is involved in inducing TXNIP mRNA expression. The up-regulation of TXNIP mRNA expression by taurine was also observed at the protein level. Furthermore, taurine significantly increased TXNIP promoter activity. Our present study demonstrated the taurine-specific phenomenon of TXNIP up-regulation, which sheds light on the physiological function of taurine.
Collapse
Affiliation(s)
- Yusuke Gondo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Ward RJ, Lallemand F, de Witte P, Crichton RR, Piette J, Tipton K, Hemmings K, Pitard A, Page M, Della Corte L, Taylor D, Dexter D. Anti-inflammatory actions of a taurine analogue, ethane β-sultam, in phagocytic cells, in vivo and in vitro. Biochem Pharmacol 2011; 81:743-51. [PMID: 21232527 DOI: 10.1016/j.bcp.2010.12.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 01/10/2023]
Abstract
The ability of a taurine prodrug, ethane β-sultam, to reduce cellular inflammation has been investigated, in vitro, in primary cultures of alveolar macrophages and an immortilised N9 microglial cell line and in vivo in an animal model of inflammation and control rats. Ethane β-sultam showed enhanced ability to reduce the inflammatory response in alveolar macrophages, as assayed by the lipopolysaccharide-stimulated-nitric oxide release, (LPS stimulated-NO), in comparison to taurine both in vitro (10 nM, 50 nM) and in vivo (0.15 mmol/kg/day by gavage). In addition, ethane β-sultam, (50, 100 and 1000 nM) significantly reduced LPS-stimulated glutamate release from N9 microglial cells to a greater extent than taurine. The anti-inflammatory response of taurine was shown to be mediated via stabilisation of IkBα. The use of a taurine prodrug as therapeutic agents, for the treatment of neurological conditions, such as Parkinson's and Alzheimer's disease and alcoholic brain damage, where activated phagocytic cells contribute to the pathogenesis, may be of great potential.
Collapse
Affiliation(s)
- Roberta J Ward
- Biologie du Comportement, Université Catholique de Louvain, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Moyes SM, Morris JF, Carr KE. Macrophages increase microparticle uptake by enterocyte-like Caco-2 cell monolayers. J Anat 2010; 217:740-54. [PMID: 20880316 DOI: 10.1111/j.1469-7580.2010.01304.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Caco-2 cells form an enterocyte-like monolayer that has been used to explore small intestinal microparticle uptake. They are a useful functional model for the investigation of in vivo drug delivery systems and the uptake of particulate environmental pollutants. The aim of this paper was to determine if the previously reported decrease in Caco-2 transepithelial resistance following exposure to macrophages was matched by increased microparticle uptake, especially as macrophage phagocytosis simulates removal of particles from the subepithelial compartment. Caco-2 cells were grown as a monoculture for 21 days on insert membranes. A compartmentalised model involved Caco-2 cells in the upper compartment, with THP-1-derived macrophages adhering to the base of the underlying well, the two cell populations communicating only through the shared culture medium. Caco-2 cells were also cultured in macrophage-conditioned medium and all groups were exposed apically to 2 μm latex particles for 5 or 60 min. Parameters measured were: transepithelial resistance; cytokine levels; cell dimensions and the distribution of nuclei, actin and junctional proteins. Subepithelial particle numbers, defined as those located below the insert membrane, were also counted and were significantly increased in the Caco-2/macrophage model, with over 90% associated with the macrophages. Other changes induced by the presence of macrophages included decreased transepithelial resistance levels, diffuse localisation of some junctional proteins, higher proinflammatory cytokine levels, disorganisation of cell shape and decreased cell height associated with actin reorganisation. Macrophage-conditioned medium produced a smaller transepithelial resistance decrease than the Caco-2/macrophage model and there were few other changes. In conclusion, culture of Caco-2 cells with underlying macrophages produced a lower, less organised epithelium and greater microparticle uptake.
Collapse
Affiliation(s)
- Siobhan M Moyes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
45
|
Coëffier M, Marion-Letellier R, Déchelotte P. Potential for amino acids supplementation during inflammatory bowel diseases. Inflamm Bowel Dis 2010; 16:518-24. [PMID: 19572337 DOI: 10.1002/ibd.21017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathophysiology of inflammatory bowel diseases (IBDs) is multifactorial and involves interactions of gut luminal content with mucosal barrier and especially immune cells. Malnutrition is a frequent issue during IBD flares, especially in Crohn's disease (CD) patients, and nutritional support is frequently used to treat malnutrition but also in an attempt to modulate intestinal inflammation. The use of oral or enteral nutrition intervention in IBDs may be effective, alone or in combination with drugs, to achieve and maintain remission. However, standard diets are less effective than new-generation biotherapies and could be improved by supplementation with specific immunomodulatory amino acids. Experimental studies evaluating glutamine, the preferential substrate for enterocytes, are promising. Some clinical studies with oral glutamine in CD are until now disappointing, but new formulations and targeting could enhance glutamine efficacy at the site of mucosal lesions. The role of arginine, involved in nitric oxide and polyamines synthesis, still remains debated. However, the effects of these amino acids in IBD have been poorly documented in humans. Other candidates like glycine, cysteine, histidine, or taurine should also be evaluated in the future.
Collapse
Affiliation(s)
- Moïse Coëffier
- Appareil Digestif Environnement Nutrition (ADEN EA4311), Institute for Biomedical Research, European Institute for Peptide Research (IFRMP 23), Rouen University and Rouen University Hospital, Rouen, France.
| | | | | |
Collapse
|
46
|
Shimizu M, Zhao Z, Ishimoto Y, Satsu H. Dietary taurine attenuates dextran sulfate sodium (DSS)-induced experimental colitis in mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 643:265-71. [PMID: 19239157 DOI: 10.1007/978-0-387-75681-3_27] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effects of dietary taurine on the experimental colitis induced by dextran sulfate sodium (DSS) were studied. C57BL/6 mice administrated taurine or placebo for 5 days were given 3% DSS to induce acute. The colitis was as-sessed using indices such as diarrhea/bleeding scores, colon length change, histological score and tissue myeloperoxidase (MPO) activity. Further, tissue mRNA levels of interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and macrophage inflammatory protein (MIP)-2, were determined by real-time PCR. Taurine supplementation significantly attenuated the severity of diarrhea, colon shortening, histological score, MPO activity elevation and abnormal MIP-2 gene expression, indicating that taurine prevents DSS-induced colitis. Taurine also inhibited the TNF-alpha-induced secretion of IL-8 (a human homologue of MIP-2) from human intestinal epithelial Caco-2 cells. Inhibition of chemokine secretion from intestinal cells may be involved in the mechanisms underlying the cytoprotective function of taurine in the intestinal epithelium.
Collapse
Affiliation(s)
- Makoto Shimizu
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
47
|
Satsu H, Hyun JS, Shin HS, Shimizu M. Suppressive effect of an isoflavone fraction on tumor necrosis factor-alpha-induced interleukin-8 production in human intestinal epithelial Caco-2 cells. J Nutr Sci Vitaminol (Tokyo) 2009; 55:442-6. [PMID: 19926933 DOI: 10.3177/jnsv.55.442] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study demonstrates the effect of soybean components on the tumor necrosis factor-alpha (TNF-alpha)-induced production of interleukin-8 (IL-8), one of the major inflammatory chemokines, in intestinal epithelial-like Caco-2 cells. Among the soybean components, an isoflavone fraction (IFF) suppressed the TNF-alpha-induced IL-8 secretion by Caco-2 cells in a dose-dependent manner, whereas a soyasaponin fraction and soypeptide fraction had no significant effect on TNF-alpha-induced IL-8 secretion. The IL-8 secretion induced by hydrogen peroxide and by IL-1beta was not suppressed by IFF, suggesting that the inhibitory effect of isoflavone was specific for the TNF-alpha-induced regulation of IL-8. The increased expression of IL-8 mRNA by TNF-alpha was almost completely suppressed by IFF. Furthermore, the transcriptional activity of the human IL-8 promoter was increased by the TNF-alpha treatment, and IFF significantly suppressed the IL-8 promoter activity. These results indicate that IFF suppressed TNF-alpha-induced IL-8 production at the transcriptional level in human intestinal Caco-2 cells, suggesting IFF of soybean as a promising food component for preventing intestinal inflammation such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Hideo Satsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
48
|
Matsushita A, Son DO, Satsu H, Takano Y, Kawakami H, Totsuka M, Shimizu M. Inhibitory effect of lactoperoxidase on the secretion of proinflammatory cytokine interleukin-8 in human intestinal epithelial Caco-2 cells. Int Dairy J 2008. [DOI: 10.1016/j.idairyj.2008.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Zhao Z, Shin HS, Satsu H, Totsuka M, Shimizu M. 5-caffeoylquinic acid and caffeic acid down-regulate the oxidative stress- and TNF-alpha-induced secretion of interleukin-8 from Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:3863-3868. [PMID: 18444659 DOI: 10.1021/jf073168d] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Although chlorogenic acid (CHA) easily reaches a millimolar level in the gastrointestinal tract because of its high concentration in coffee and fruits, its effects on intestinal epithelial cells have been little reported. We investigated in this study the down-regulative effects of 5-caffeoylquinic acid (CQA), the predominant isomer of CHA, on the H(2)O(2-) or TNF-alpha-induced secretion of interleukin (IL)-8, a central pro-inflammatory chemokine involved in the pathogenesis of inflammatory bowel diseases, in human intestinal epithelial Caco-2 cells. After the cells had been pre- and simultaneously treated with CQA, the oversecretion of IL-8 and overexpression of its mRNA induced by H(2)O(2) were significantly suppressed in a dose-dependent manner in the range of 0.25-2.00 mmol/L. We further found that a metabolite of CQA, caffeic acid (CA), but not quinic acid, significantly inhibited the H(2)O(2)-induced IL-8 secretion and its mRNA expression in the same dose-dependent manner. Both CQA and CA suppressed the TNF-alpha-induced IL-8 secretion as well. Caffeic acid at 2.00 mmol/l was able to absolutely block the H(2)O(2)- or TNF-alpha-induced oversecretion of IL-8 in Caco-2 cells. However, CQA and CA did not suppress the TNF-alpha-induced increase in the IL-8 mRNA expression, indicating that the suppressive mechanisms are different between TNF-alpha-induced and H(2)O(2)-induced IL-8 production models. These results suggest that the habit of drinking coffee and/or eating fruits with a high CHA content may be beneficial to humans in preventing the genesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Zhaohui Zhao
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|