1
|
Zhang X, Ni N, Fei Z, Li X, Yang W, Siqin Q, Wang Z, Zhang Z. Effect of L-cysteine on the physicochemical properties of heat-induced sheep plasma protein gels. Food Chem 2024; 444:138508. [PMID: 38340502 DOI: 10.1016/j.foodchem.2024.138508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The effects of different l-Cysteine additions (0-2 %) on the gel properties, microstructure and physicochemical stability of sheep plasma protein gels were studied. The introduction of l-Cys significantly improved the water retention capacity and whiteness of the plasma protein gel (p < 0.05). The addition of 0.2 %-0.4 % l-Cys increased gel strength, but l-Cys had no significant effect on gel elasticity (p < 0.05). Scanning electron microscopy confirmed that the addition of l-Cys also promoted the formation of a porous three-dimensional network structure in the gel. Raman spectroscopy and SDS-PAGE revealed that the addition of l-Cys generally reduced α-helix structures in protein gels and promoted the formation of β-folds. Addition of 0.2 % l-Cys treatment leading to the greatest increase in disulfide bonds, and its surface hydrophobicity and endogenous fluorescence intensity were the largest. At this time, the comprehensive performance of sheep plasma protein gel is the best performance.
Collapse
Affiliation(s)
- Xudong Zhang
- School of Life Sciences and Food, Inner Mongolia Minzu University, Tongliao 028000, China; Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Na Ni
- School of Life Sciences and Food, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Zixuan Fei
- School of Life Sciences and Food, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xiaoxue Li
- School of Life Sciences and Food, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Wanpeng Yang
- School of Life Sciences and Food, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Qimuge Siqin
- School of Life Sciences and Food, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhenyu Wang
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Zhiyong Zhang
- Tongliao Academy of Agricultural Sciences, Tongliao, Inner Mongolia 028015, China
| |
Collapse
|
2
|
Connolly ED, Wu G. Functions and Metabolism of Amino Acids in the Hair and Skin of Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:135-154. [PMID: 38625527 DOI: 10.1007/978-3-031-54192-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The hair and skin of domestic cats or dogs account for 2% and 12-24% of their body weight, respectively, depending on breed and age. These connective tissues contain protein as the major constituent and provide the first line of defense against external pathogens and toxins. Maintenance of the skin and hair in smooth and elastic states requires special nutritional support, particularly an adequate provision of amino acids (AAs). Keratin (rich in cysteine, serine and glycine) is the major protein both in the epidermis of the skin and in the hair. Filaggrin [rich in some AAs (e.g., serine, glutamate, glutamine, glycine, arginine, and histidine)] is another physiologically important protein in the epidermis of the skin. Collagen and elastin (rich in glycine and proline plus 4-hydroxyproline) are the predominant proteins in the dermis and hypodermis of the skin. Taurine and 4-hydroxyproline are abundant free AAs in the skin of dogs and cats, and 4-hydroxyproline is also an abundant free AA in their hair. The epidermis of the skin synthesizes melanin (the pigment in the skin and hair) from tyrosine and produces trans-urocanate from histidine. Qualitative requirements for proteinogenic AAs are similar between cats and dogs but not identical. Both animal species require the same AAs to nourish the hair and skin but the amounts differ. Other factors (e.g., breeds, coat color, and age) may affect the requirements of cats or dogs for nutrients. The development of a healthy coat, especially a black coat, as well as healthy skin critically depends on AAs [particularly arginine, glycine, histidine, proline, 4-hydroxyproline, and serine, sulfur AAs (methionine, cysteine, and taurine), phenylalanine, and tyrosine] and creatine. Although there are a myriad of studies on AA nutrition in cats and dogs, there is still much to learn about how each AA affects the growth, development and maintenance of the hair and skin. Animal-sourced foodstuffs (e.g., feather meal and poultry by-product meal) are excellent sources of the AAs that are crucial to maintain the normal structure and health of the skin and hair in dogs and cats.
Collapse
Affiliation(s)
- Erin D Connolly
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Lopez AN, Bazer FW, Wu G. Functions and Metabolism of Amino Acids in Bones and Joints of Cats and Dogs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:155-175. [PMID: 38625528 DOI: 10.1007/978-3-031-54192-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The bone is a large and complex organ (12-15% of body weight) consisting of specialized connective tissues (bone matrix and bone marrow), whereas joints are composed of cartilage, tendons, ligaments, synovial joint capsules and membranes, and a synovial joint cavity filled with synovial fluid. Maintaining healthy bones and joints is a dynamic and complex process, as bone deposition (formation of new bone materials) and resorption (breakdown of the bone matrix to release calcium and phosphorus) are the continuous processes to determine bone balance. Bones are required for locomotion, protection of internal organs, and have endocrine functions to maintain mineral homeostasis. Joints are responsible for resisting mechanical stress/trauma, aiding in locomotion, and supporting the overall musculoskeletal system. Amino acids have multiple regulatory, compositional, metabolic, and functional roles in maintaining the health of bones and joints. Their disorders are prevalent in mammals and significantly reduce the quality of life. These abnormalities in companion animals, specifically cats and dogs, commonly lead to elective euthanasia due to the poor quality of life. Multiple disorders of bones and joints result from genetic predisposition and are heritable, but other factors such as nutrition, growth rate, trauma, and physical activity affect how the disorder manifests. Treatments for cats and dogs are primarily to slow the progression of these disorders and assist in pain management. Therapeutic supplements such as Cosequin and formulated diets rich in amino acids are used commonly as treatments for companion animals to reduce pain and slow the progression of those diseases. Also, amino acids (e.g., taurine, arginine, glycine, proline, and 4-hydroxyproline), and glucosamine reduce inflammation and pain in animals with bone and joint disorders. Gaining insight into how amino acids function in maintaining bone and joint health can aid in developing preventative diets and therapeutic supplementations of amino acids to improve the quality of life in companion animals.
Collapse
Affiliation(s)
- Arianna N Lopez
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Zhu C, Wang L, Nie X, Yang X, Gao K, Jiang Z. Dietary dibutyryl cAMP supplementation regulates the fat deposition in adipose tissues of finishing pigs via cAMP/PKA pathway. Anim Biotechnol 2023; 34:921-934. [PMID: 34871537 DOI: 10.1080/10495398.2021.2003373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study investigated potential mechanism of dibutyryl-cAMP (db-cAMP) on porcine fat deposition. (1) Exp.1, 72 finishing pigs were allotted to 3 treatments (0, 10 or 20 mg/kg dbcAMP) with 6 replicates. dbcAMP increased the hormone sensitive lipase (HSL) activity and expression of β-adrenergic receptor (β-AR) and growth hormone receptor (GHR), but decreased expression of peroxisome proliferator-activated receptor gamma 2 (PPAR-γ2) and adipocyte fatty acid binding protein (A-FABP) in back fat. dbcAMP upregulated expression of β-AR, GHR, PPAR-γ2 and A-FABP, but decreased insulin receptor (INSR) expression in abdominal fat. Dietary dbcAMP increased HSL activity and expression of G protein-coupled receptor (GPCR), cAMP-response element-binding protein (CREB) and insulin-like growth factor-1 (IGF-1), but decreased fatty acid synthase (FAS) and lipoprotein lipase (LPL) activities, and expression of INSR, cAMP-response element-binding protein (C/EBP-α) and A-FABP in perirenal fat. (2) Exp. 2, dbcAMP suppressed the proliferation and differentiation of porcine preadipocytes in a time- and dose-dependent manner, which might be associated with increased activities of cAMP and protein kinase A (PKA), and expression of GPCR, β-AR, GHR and CREB via inhibiting C/EBP-α and PPAR-γ2 expression. Collectively, dbcAMP treatment may reduce fat deposition by regulating gene expression related to adipocyte differentiation and fat metabolism partially via cAMP-PKA pathway.
Collapse
Affiliation(s)
- Cui Zhu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
5
|
Li X, Bazer FW, Johnson GA, Burghardt RC, Wu G. Dietary supplementation with L-citrulline improves placental angiogenesis and embryonic survival in gilts. Exp Biol Med (Maywood) 2023; 248:702-711. [PMID: 37012677 PMCID: PMC10408550 DOI: 10.1177/15353702231157943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/17/2023] [Indexed: 04/05/2023] Open
Abstract
This study was conducted with gilts as an animal model to test the hypothesis that dietary supplementation with L-citrulline (Cit) improves placental angiogenesis and embryonic survival. Between Days 14 and 25 of gestation, each gilt was fed a corn- and soybean-meal-based diet (2 kg/day) supplemented with 0.4% Cit or an isonitrogenous amount of L-alanine (Control). On Day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Amniotic and allantoic fluids and placentae were analyzed for NOx [stable oxidation products of nitric oxide (NO)], polyamines, and amino acids (AAs). Placentae were also analyzed for syntheses of NO and polyamines; concentrations of AAs and related metabolites; and the expression of angiogenic factors and aquaporins (AQPs). Compared to the control group, Cit supplementation increased (P < 0.01) the number of viable fetuses by 2.0 per litter, the number and diameter of placental blood vessels (21% and 24%, respectively), placental weight (15%), and total allantoic and amniotic fluid volumes (20% and 47%, respectively). Cit supplementation also increased (P < 0.01) enzymatic activities of GTP-cyclohydrolase-1 (32%) and ornithine decarboxylase (27%) in placentae; syntheses of NO (29%) and polyamines (26%); concentrations of NOx (19%), tetrahydrobiopterin (28%), polyamines (22%), cAMP (26%), and cGMP (24%) in placentae; total amounts of NOx (22-40%), polyamines (23-40%), AAs (16-255%), glucose (22-44%), and fructose (22-43%) in allantoic and amniotic fluids. Furthermore, Cit supplementation increased (P < 0.05) placental mRNA levels for angiogenic factors (eNOS [84%], GTP-CH1 [55%], PGF [61%], VEGFA120 [26%], and VEGFR2 [137%], as well as AQPs - AQP1 [105%], AQP3 [53%], AQP5 [77%], AQP8 [57%], and AQP9 [31%]). Collectively, dietary Cit supplementation enhanced placental NO and polyamine syntheses as well as angiogenesis to improve conceptus development and survival.
Collapse
Affiliation(s)
- Xilong Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
6
|
Cai H, Cao X, Qin D, Liu Y, Liu Y, Hua J, Peng S. Gut microbiota supports male reproduction via nutrition, immunity, and signaling. Front Microbiol 2022; 13:977574. [PMID: 36060736 PMCID: PMC9434149 DOI: 10.3389/fmicb.2022.977574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota (GM) is a major component of the gastrointestinal tract. Growing evidence suggests that it has various effects on many distal organs including the male reproductive system in mammals. GM and testis form the gut-testis axis involving the production of key molecules through microbial metabolism or de novo synthesis. These molecules have nutrition, immunity, and hormone-related functions and promote the male reproductive system via the circulatory system. GM helps maintain the integral structure of testes and regulates testicular immunity to protect the spermatogenic environment. Factors damaging GM negatively impact male reproductive function, however, the related mechanism is unknown. Also, the correlation between GM and testis remains to be yet investigated. This review discusses the complex influence of GM on the male reproductive system highlighting the impact on male fertility.
Collapse
Affiliation(s)
- Hui Cai
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Xuanhong Cao
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Dezhe Qin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yundie Liu
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Yang Liu
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Sha Peng
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
- *Correspondence: Sha Peng,
| |
Collapse
|
7
|
Li ZG, Li XE, Chen HY. Sulfur Dioxide: An Emerging Signaling Molecule in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:891626. [PMID: 35615134 PMCID: PMC9125217 DOI: 10.3389/fpls.2022.891626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/25/2022] [Indexed: 05/20/2023]
Abstract
Sulfur dioxide (SO2) has long been viewed as toxic gas and air pollutant, but now is being verified as a signaling molecule in mammalian cells. SO2 can be endogenously produced and rapidly transformed into sulfur-containing compounds (e.g., hydrogen sulfide, cysteine, methionine, glutathione, glucosinolate, and phytochelatin) to maintain its homeostasis in plant cells. Exogenous application of SO2 in the form of gas or solution can trigger the expression of thousands of genes. The physiological functions of these genes are involved in the antioxidant defense, osmotic adjustment, and synthesis of stress proteins, secondary metabolites, and plant hormones, thus modulating numerous plant physiological processes. The modulated physiological processes by SO2 are implicated in seed germination, stomatal action, postharvest physiology, and plant response to environmental stresses. However, the review on the signaling role of SO2 in plants is little. In this review, the anabolism and catabolism of SO2 in plants were summarized. In addition, the signaling role of SO2 in seed germination, stomatal movement, fruit fresh-keeping, and plant response to environmental stresses (including drought, cold, heavy metal, and pathogen stresses) was discussed. Finally, the research direction of SO2 in plants is also proposed.
Collapse
Affiliation(s)
- Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
| | - Xiao-Er Li
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
| | - Hong-Yan Chen
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
| |
Collapse
|
8
|
Lachica M, Rojas-Cano M, Lara L, Haro A, Fernández-Fígares I. Net portal appearance of proteinogenic amino acids in Iberian pigs fed betaine and conjugated linoleic acid supplemented diets. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Supplementation with Proline Improves Haemato-Biochemical and Reproductive Indicators in Male Rabbits Affected by Environmental Heat-Stress. Animals (Basel) 2021; 11:ani11020373. [PMID: 33540779 PMCID: PMC7913087 DOI: 10.3390/ani11020373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The exposure of rabbits, such as other mammals, to environmental heat stress drastically affects homeostasis and reproductive function. The current trial indicates that a dietary supplementation with 50–100 mg/kg DM of proline improves redox status, blood metabolites, and reproductive traits of rabbit bucks. Abstract Twenty-four adult rabbit bucks (n = 6 per treatment) were fed a basal diet supplemented with 0 (control), 50, 100, and 150 mg proline/kg dry matter (DM) diet for 12 weeks to determine possible usefulness for alleviating the negative impact of environmental heat stress on redox status, haemato-biochaemical attributes and semen quality. There were significant dose–response effects, with increments in levels of dietary proline (LDP) quadratically improving red blood cell counts (p = 0.017), rectal temperature (p = 0.009), and respiratory rate (p < 0.001). Increasing LDP cubically affected superoxide dismutase activity in blood plasma (p = 0.012) and total antioxidant capacity in both blood and seminal plasma (p < 0.001 and p = 0.006, respectively). The optimal response was observed at 30 and 80 mg proline/kg DM for blood and seminal plasma, respectively. With regards to homeostasis indexes, increments in LDP cubically modified blood plasma concentrations of total protein (p = 0.002) and albumin (p < 0.001), with an optimal response found at 70 mg proline/kg DM. A linear relationship (p = 0.005) was also observed between LDP and blood plasma glucose concentrations, with the optimal response being found at 100 mg proline/kg DM. Increasing LDP also showed positive effects on reproductive traits, with quadratic increases in blood plasma testosterone and cortisol concentrations (p < 0.001; optimal responses at 50 and 60 mg proline/kg DM, respectively), a positive linear relationship with in libido, ejaculate volume, sperm concentration and total sperm count (p < 0.001 for all; optimal responses observed at 100 mg proline/kg DM) and a quadratic increase in total functional sperm fraction (p < 0.001; optimal response at 70 mg proline mg/kg DM). Hence, the optimal positive effects of dietary proline supplementation on redox status, blood metabolites, and reproductive traits of rabbit bucks may be achieved at 50–100 mg/kg DM.
Collapse
|
10
|
Role of L-Arginine in Nitric Oxide Synthesis and Health in Humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:167-187. [PMID: 34251644 DOI: 10.1007/978-3-030-74180-8_10] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As a functional amino acid (AA), L-arginine (Arg) serves not only as a building block of protein but also as an essential substrate for the synthesis of nitric oxide (NO), creatine, polyamines, homoarginine, and agmatine in mammals (including humans). NO (a major vasodilator) increases blood flow to tissues. Arg and its metabolites play important roles in metabolism and physiology. Arg is required to maintain the urea cycle in the active state to detoxify ammonia. This AA also activates cellular mechanistic target of rapamycin (MTOR) and focal adhesion kinase cell signaling pathways in mammals, thereby stimulating protein synthesis, inhibiting autophagy and proteolysis, enhancing cell migration and wound healing, promoting spermatogenesis and sperm quality, improving conceptus survival and growth, and augmenting the production of milk proteins. Although Arg is formed de novo from glutamine/glutamate and proline in humans, these synthetic pathways do not provide sufficient Arg in infants or adults. Thus, humans and other animals do have dietary needs of Arg for optimal growth, development, lactation, and fertility. Much evidence shows that oral administration of Arg within the physiological range can confer health benefits to both men and women by increasing NO synthesis and thus blood flow in tissues (e.g., skeletal muscle and the corpora cavernosa of the penis). NO is a vasodilator, a neurotransmitter, a regulator of nutrient metabolism, and a killer of bacteria, fungi, parasites, and viruses [including coronaviruses, such as SARS-CoV and SARS-CoV-2 (the virus causing COVID-19). Thus, Arg supplementation can enhance immunity, anti-infectious, and anti-oxidative responses, fertility, wound healing, ammonia detoxification, nutrient digestion and absorption, lean tissue mass, and brown adipose tissue development; ameliorate metabolic syndromes (including dyslipidemia, obesity, diabetes, and hypertension); and treat individuals with erectile dysfunction, sickle cell disease, muscular dystrophy, and pre-eclampsia.
Collapse
|
11
|
Amino Acids in Cell Signaling: Regulation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:17-33. [PMID: 34251636 DOI: 10.1007/978-3-030-74180-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids are the main building blocks for life. Aside from their roles in composing proteins, functional amino acids and their metabolites play regulatory roles in key metabolic cascades, gene expressions, and cell-to-cell communication via a variety of cell signaling pathways. These metabolic networks are necessary for maintenance, growth, reproduction, and immunity in humans and animals. These amino acids include, but are not limited to, arginine, glutamine, glutamate, glycine, leucine, proline, and tryptophan. We will discuss these functional amino acids in cell signaling pathways in mammals with a particular emphasis on mTORC1, AMPK, and MAPK pathways for protein synthesis, nutrient sensing, and anti-inflammatory responses, as well as cell survival, growth, and development.
Collapse
|
12
|
Yin G, Yu T, Gan Y, Zhou L, Liu M, Zhang Y, Li H, Yin P, Yao S. A novel fluorescent probe with dual-sites for simultaneously monitoring metabolisms of cysteine in living cells and zebrafishes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118602. [PMID: 32610213 DOI: 10.1016/j.saa.2020.118602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Understanding cellular metabolism holds immense potential for developing new drugs that regulate metabolic pathways. Two gas signal molecules, SO2 and H2S, are the main metabolites from cysteine (Cys) via oxidation and desulfurization pathways, respectively. However, a few fluorescent probes for real-time monitor of the metabolic pathways of cysteine have been reported. To understand metabolic alterations of cysteine, we have rationally designed and prepared a dual-signal fluorescent probe HN, which could differentiate SO2 and H2S through two different fluorescence channels simultaneously, along with similar reaction kinetics and both "off-on" fluorescence responses. Probe HN exhibits the potential to monitor the metabolism pathways of cysteine, and the distinguishment of cancer cells from normal cells could be realized. This methodology will promote further understanding of the physiological and pathological roles of cysteine.
Collapse
Affiliation(s)
- Guoxing Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ting Yu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Yabing Gan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Li Zhou
- Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, China.
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Peng Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
13
|
|
14
|
Pacífico C, Stauder A, Reisinger N, Schwartz-Zimmermann HE, Zebeli Q. Distinct serum metabolomic signatures of multiparous and primiparous dairy cows switched from a moderate to high-grain diet during early lactation. Metabolomics 2020; 16:96. [PMID: 32909121 PMCID: PMC7481167 DOI: 10.1007/s11306-020-01712-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Feeding of high-grain diets is common in cows during early lactation, but increases the odds of metabolic derailments, which can likely be detected as undesirable shifts in the serum metabolome signature. OBJECTIVES The present study aimed to identify the metabolic signatures of the serum metabolome of early lactation dairy cows switched from a moderate to a high-grain diet. METHODS Targeted ESI-LC-MS/MS-based metabolomics was used to characterize metabolic alterations in the serum of early lactation multiparous (MP, n = 16) and primiparous (PP, n = 8) Simmental cows, according to parity and feeding phase. Data were analysed using different data mining approaches. RESULTS Carnitine, acetylcarnitine, propionoylcarnitine, amino acid related compounds cis-4-hydroxyproline, trans-4-hydroxyproline, proline betaine, lysophosphatidylcholine PC a C16:1 and phosphatidylcholine PC ae C36:0 were identified as the key metabolites distinguishing MP from PP cows. A different serum metabolite composition during moderate and high-grain diet was also evident. Notably, cows fed high grain diet had higher serum concentrations of primary bile acids and triglycerides, but lower levels of conjugated bile acids and carboxylic acids during the first week in grain. Amino acids valine, cystine and taurine together with lysophosphatidylcholine PC a C26:0 and several phosphatidylcholines were classified as important features for cluster separation. CONCLUSIONS Our study greatly expands earlier observations on dietary effects on serum metabolome composition of cows. The altered metabolomic fingerprints clearly distinguishable by diet and cow parity hold potential to be used as early diagnostic tools for cows experiencing grain-induced metabolic disturbances.
Collapse
Affiliation(s)
- C Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - A Stauder
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - N Reisinger
- BIOMIN Research Center, BIOMIN Holding GmbH, Tulln, Austria
| | - H E Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Q Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
15
|
He W, Wu G. Metabolism of Amino Acids in the Brain and Their Roles in Regulating Food Intake. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:167-185. [PMID: 32761576 DOI: 10.1007/978-3-030-45328-2_10] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amino acids (AAs) and their metabolites play an important role in neurological health and function. They are not only the building blocks of protein but are also neurotransmitters. In the brain, glutamate and aspartate are the major excitatory neurotransmitters, whereas γ-aminobutyrate (GABA, a metabolite of glutamate) and glycine are the major inhibitory neurotransmitters. Nitric oxide (NO, a metabolite of arginine), H2S (a metabolite of cysteine), serotonin (a metabolite of tryptophan) and histamine (a metabolite of histidine), as well as dopamine and norepinephrine (metabolites of tyrosine) are neurotransmitters to modulate synaptic plasticity, neuronal activity, learning, motor control, motivational behavior, emotion, and executive function. Concentrations of glutamine (a precursor of glutamate and aspartate), branched-chain AAs (precursors of glutamate, glutamine and aspartate), L-serine (a precursor of glycine and D-serine), methionine and phenylalanine in plasma are capable of affecting neurotransmission through the syntheses of glutamate, aspartate, and glycine, as well as the competitive transport of tryptophan and tyrosine across from the blood-brain barrier. Adequate consumption of AAs is crucial to maintain their concentrations and the production of neurotransmitters in the central nervous system. Thus, the content and balance of AAs in diets have a profound impact on food intake by animals. Knowledge of AA transport and metabolism in the brain is beneficial for improving the health and well-being of humans and animals.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
16
|
Gao W, Ma Y, Lin W. Design of a FRET-based fluorescent probe for the reversible detection of SO 2and formaldehyde in living cells and mice. NEW J CHEM 2020. [DOI: 10.1039/d0nj03071f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Design of a FRET-based fluorescent probe for the reversible detection of SO2and formaldehyde in living cells and mice.
Collapse
Affiliation(s)
- Wenjie Gao
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Yanyan Ma
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|
17
|
Kar S, Shahshahan HR, Kambis TN, Yadav SK, Li Z, Lefer DJ, Mishra PK. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cardiac Remodeling and Dysfunction. Front Physiol 2019; 10:598. [PMID: 31178749 PMCID: PMC6544124 DOI: 10.3389/fphys.2019.00598] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes, a methionine-rich meat diet, or certain genetic polymorphisms show elevated levels of homocysteine (Hcy), which is strongly associated with the development of cardiovascular disease including diabetic cardiomyopathy. However, reducing Hcy levels with folate shows no beneficial cardiac effects. We have previously shown that a hydrogen sulfide (H2S), a by-product of Hcy through transsulfuration by cystathionine beta synthase (CBS), donor mitigates Hcy-induced hypertrophy in cardiomyocytes. However, the in vivo cardiac effects of H2S in the context of hyperhomocysteinemia (HHcy) have not been studied. We tested the hypothesis that HHcy causes cardiac remodeling and dysfunction in vivo, which is ameliorated by H2S. Twelve-week-old male CBS+/− (a model of HHcy) and sibling CBS+/+ (WT) mice were treated with SG1002 (a slow release H2S donor) diet for 4 months. The left ventricle of CBS+/− mice showed increased expression of early remodeling signals c-Jun and c-Fos, increased interstitial collagen deposition, and increased cellular hypertrophy. Notably, SG1002 treatment slightly reduced c-Jun and c-Fos expression, decreased interstitial fibrosis, and reduced cellular hypertrophy. Pressure volume loop analyses in CBS+/− mice revealed increased end systolic pressure with no change in stroke volume (SV) suggesting increased afterload, which was abolished by SG1002 treatment. Additionally, SG1002 treatment increased end-diastolic volume and SV in CBS+/− mice, suggesting increased ventricular filling. These results demonstrate SG1002 treatment alleviates cardiac remodeling and afterload in HHcy mice. H2S may be cardioprotective in conditions where H2S is reduced and Hcy is elevated.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hamid R Shahshahan
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Santosh K Yadav
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Zhen Li
- Department of Pharmacology and Experimental Therapeutics, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - David J Lefer
- Department of Pharmacology and Experimental Therapeutics, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
18
|
Wang Y, Liu L, Zhou XL, Wu MY. Lysosome-Targeted Single Fluorescence Probe for Two-Channel Imaging Intracellular SO₂ and Biothiols. Molecules 2019; 24:E618. [PMID: 30754613 PMCID: PMC6384543 DOI: 10.3390/molecules24030618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
As the members of reactive sulfur species, SO₂ and biothiols play a significant role in physiological and pathological processes and directly influence numerous diseases. Furthermore, SO₂ and biothiols can provide a reductive environment for lysosomes to carry out their optimal functionality. To this end, the development of single fluorescent probes for imaging SO₂ and biothiols from different emission channels is highly desirable for understanding their physiological nature. Here, a lysosome-targeted fluorescent probe (BPO-DNSP) with a dual reaction site for SO₂ and biothiols was presented. BPO-DNSP can sensitively and selectively respond to SO₂ in the green channel with a large Stokes shift over 105 nm, and to biothiols in the near-infrared emission channel with a large Stokes shift over 109 nm. The emission shift for the two channels was as high as 170 nm. Colocalization experiments verified that BPO-DNSP can selectively enrich lysosomes. Notably, BPO-DNSP can not only be used to image intracellular SO₂ and biothiols from two different channels, but also to monitor the conversion of biothiols to SO₂ without adding exogenous enzymes in living HeLa cells.
Collapse
Affiliation(s)
- Yue Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Li Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Ming-Yu Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
19
|
Chen X, Xiang L, Jia G, Liu G, Zhao H, Huang Z. Leucine regulates slow-twitch muscle fibers expression and mitochondrial function by Sirt1/AMPK signaling in porcine skeletal muscle satellite cells. Anim Sci J 2018; 90:255-263. [PMID: 30523660 DOI: 10.1111/asj.13146] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/27/2018] [Accepted: 11/02/2018] [Indexed: 11/29/2022]
Abstract
A previous study demonstrated that leucine upregulates the slow myosin heavy chain mRNA expression in C2C12 cells. However, the role of leucine in slow-twitch muscle fibers expression and mitochondrial function of porcine skeletal muscle satellite cells as well as its mechanism remain unclear. In this study, porcine skeletal muscle satellite cells cultured in differentiation medium were treated with 2 mM leucine for 3 days. Sirt1 inhibitor EX527, AMPK inhibitor compound C, and AMPKα1 siRNA were used to examine its underlying mechanism. Here we showed that leucine increased slow-twitch muscle fibers and mitochondrial function-related gene expression, as well as increased succinic dehydrogenase (SDH) and malate dehydrogenase (MDH) activities. Moreover, leucine increased the protein levels of Sirt1 and phospho-AMPK. We also found that AMPKα1 siRNA, AMPK inhibitor compound C, or Sirt1 inhibitor EX527 attenuated the positive effect of leucine on slow-twitch muscle fibers and mitochondrial function-related gene expression. Finally, we showed that Sirt1 was required for leucine-induced AMPK activation. Our results provide, for the first time, evidence that leucine induces slow-twitch muscle fibers expression and improves mitochondrial function through Sirt1/AMPK signaling pathway in porcine skeletal muscle satellite cells.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Lu Xiang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
20
|
Yao Y, Sun Q, Chen Z, Huang R, Zhang W, Qian J. A mitochondria-targeted near infrared ratiometric fluorescent probe for the detection of sulfite in aqueous and in living cells. Talanta 2018; 189:429-436. [DOI: 10.1016/j.talanta.2018.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 02/08/2023]
|
21
|
Andriamihaja M, Lan A, Beaumont M, Grauso M, Gotteland M, Pastene E, Cires MJ, Carrasco-Pozo C, Tomé D, Blachier F. Proanthocyanidin-containing polyphenol extracts from fruits prevent the inhibitory effect of hydrogen sulfide on human colonocyte oxygen consumption. Amino Acids 2018; 50:755-763. [DOI: 10.1007/s00726-018-2558-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022]
|
22
|
Wu MY, Wu J, Wang Y, Liu YH, Yu XQ. A Novel Colorimetric Fluorescent Probe for SO₂ and Its Application in Living Cells Imaging. Molecules 2018; 23:E871. [PMID: 29642650 PMCID: PMC6017954 DOI: 10.3390/molecules23040871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 11/16/2022] Open
Abstract
A novel chromenylium-based fluorescent probe was exploited for sulphur dioxide (SO₂) detecting. The probe displayed a remarkable fluorescence turn-on response towards SO₂ based on the nucleophilic addition reaction to the carbon-carbon double bond with 105 nm Stock shift. The probe was successfully applied for the quantification of SO₂.The linear detection range was from 0-160 μM with the detection limit as low as 99.27 nM. It also exhibited high selectivity for SO₂ than other reactive species and amino acids. Furthermore, cell staining experiments indicated that the probe was cell membrane permeable and could be used for high-performance imaging of SO₂ in living cells. The superior properties of the probe made it highly promising for use in chemical and biological applications.
Collapse
Affiliation(s)
- Ming-Yu Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jing Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yue Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
23
|
Wu MY, Wang Y, Liu YH, Yu XQ. Dual-site lysosome-targeted fluorescent probe for separate detection of endogenous biothiols and SO2 in living cells. J Mater Chem B 2018; 6:4232-4238. [DOI: 10.1039/c8tb01152d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel lysosome-targeted fluorescent probe was developed for the separate detection of endogenous biothiols and SO2 in living cells.
Collapse
Affiliation(s)
- Ming-Yu Wu
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yue Wang
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
24
|
Chen F, Han D, Liu H, Wang S, Li KB, Zhang S, Shi W. A tri-site fluorescent probe for simultaneous sensing of hydrogen sulfide and glutathione and its bioimaging applications. Analyst 2018; 143:440-448. [DOI: 10.1039/c7an01588g] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hydrogen sulfide (H2S) and biothiol molecules, such as glutathione (GSH), cysteine (Cys), and homocysteine (Hcy), play an important role in biology.
Collapse
Affiliation(s)
- Fengzao Chen
- Department of Chemistry
- Taizhou University
- Jiaojiang
- PR China
- College of Chemistry and Chemical Engineering
| | - Deman Han
- Department of Chemistry
- Taizhou University
- Jiaojiang
- PR China
| | - Heng Liu
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- PR China
| | - Shengfu Wang
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
- PR China
| | - Kai-Bin Li
- Department of Chemistry
- Taizhou University
- Jiaojiang
- PR China
| | - Siqi Zhang
- Department of Chemistry
- Taizhou University
- Jiaojiang
- PR China
| | - Wei Shi
- Department of Chemistry
- Taizhou University
- Jiaojiang
- PR China
| |
Collapse
|
25
|
Wu G, Bazer FW, Johnson GA, Herring C, Seo H, Dai Z, Wang J, Wu Z, Wang X. Functional amino acids in the development of the pig placenta. Mol Reprod Dev 2017; 84:870-882. [PMID: 28390193 DOI: 10.1002/mrd.22809] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022]
Abstract
The mammalian placenta is essential for supplying nutrients (e.g., amino acids and water) and oxygen from the mother to fetus and for removing fetal metabolites (e.g., ammonia and CO2 ) from fetus to mother. Thus, placental growth and development are determinants of fetal survival, growth, and development. Indeed, low birth weight is closely associated with reduced placental growth. Providing gestating gilts or sows with dietary supplementation of arginine and glutamine, increases placental growth (including vascular growth), improves embryonic/fetal growth and survival, and reduces the large variation in birth weight among litters. These two amino acids serve as building blocks for tissue protein as well as substrates for the production of polyamines and nitric oxide, which stimulate DNA and protein synthesis and angiogenesis and vascular growth in the placenta. These recent findings not only greatly advance the field of mammalian amino acid metabolism and nutrition, but also provide practical, mechanism-based methods to enhance reproductive efficiency in swine. These results may also help improve embryonic/fetal survival and growth in other livestock species (e.g., sheep and cattle) and in humans.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Cassandra Herring
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Xiaolong Wang
- Henan Yinfa Animal Husbandry Co., Ltd., Xinzheng, Henan, China
| |
Collapse
|
26
|
Yu W, Jin H, Tang C, Du J, Zhang Z. Sulfur-containing gaseous signal molecules, ion channels and cardiovascular diseases. Br J Pharmacol 2017; 175:1114-1125. [PMID: 28430359 DOI: 10.1111/bph.13829] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/23/2017] [Accepted: 04/11/2017] [Indexed: 01/05/2023] Open
Abstract
Sulfur-containing gaseous signal molecules including hydrogen sulphide and sulfur dioxide were previously recognized as toxic gases. However, extensive studies have revealed that they can be generated in the cardiovascular system via a sulfur-containing amino acid metabolic pathway, and have an important role in cardiovascular physiology and pathophysiology. Ion channels are pore-forming membrane proteins present in the membrane of all biological cells; their functions include the establishment of a resting membrane potential and the control of action potentials and other electrical signals by conducting ions across the cell membrane. Evidence has now accumulated suggesting that the sulfur-containing gaseous signal molecules are important regulators of ion channels and transporters. The aims of this review are (1) to discuss the recent experimental evidences in the cardiovascular system regarding the regulatory effects of sulfur-containing gaseous signal molecules on a variety of ion channels, including ATP-sensitive potassium, calcium-activated potassium, voltage-gated potassium, L- and T-type calcium, transient receptor potential and chloride and sodium channels, and (2) to understand how the gaseous signal molecules affect ion channels and cardiovascular diseases. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Wen Yu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Zhiren Zhang
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
27
|
Zhang H, Sun LW, Wang ZY, Deng MT, Zhang GM, Guo RH, Ma TW, Wang F. Dietary -carbamylglutamate and rumen-protected -arginine supplementation ameliorate fetal growth restriction in undernourished ewes. J Anim Sci 2017; 94:2072-85. [PMID: 27285704 DOI: 10.2527/jas.2015-9587] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was conducted with an ovine intrauterine growth restriction (IUGR) model to test the hypothesis that dietary -carbamylglutamate (NCG) and rumen-protected -Arg (RP-Arg) supplementation are effective in ameliorating fetal growth restriction in undernourished ewes. Beginning on d 35 of gestation, ewes were fed a diet providing 100% of NRC-recommended nutrient requirements, 50% of NRC recommendations (50% NRC), 50% of NRC recommendations supplemented with 20 g/d RP-Arg (providing 10 g/d of Arg), and 50% of NRC recommendations supplemented with 5 g/d NCG product (providing 2.5 g/d of NCG). On d 110, maternal, fetal, and placental tissues and fluids were collected and weighed. Ewe weights were lower ( < 0.05) in nutrient-restricted ewes compared with adequately fed ewes. Maternal RP-Arg or NCG supplementation did not alter ( = 0.26) maternal BW in nutrient-restricted ewes. Weights of most fetal organs were increased ( < 0.05) in RP-Arg-treated and NCG-treated underfed ewes compared with 50% NRC-fed ewes. Supplementation of RP-Arg or NCG reduced ( < 0.05) concentrations of β-hydroxybutyrate, triglycerides, and ammonia in serum of underfed ewes but had no effect on concentrations of lactate and GH. Maternal RP-Arg or NCG supplementation markedly improved ( < 0.05) concentrations of AA (particularly arginine-family AA and branched-chain AA) and polyamines in maternal and fetal plasma and in fetal allantoic and amniotic fluids within nutrient-restricted ewes. These novel results indicate that dietary NCG and RP-Arg supplementation to underfed ewes ameliorated fetal growth restriction, at least in part, by increasing the availability of AA in the conceptus and provide support for its clinical use to ameliorate IUGR in humans and sheep industry production.
Collapse
|
28
|
Ji Y, Wu Z, Dai Z, Wang X, Li J, Wang B, Wu G. Fetal and neonatal programming of postnatal growth and feed efficiency in swine. J Anim Sci Biotechnol 2017; 8:42. [PMID: 28484595 PMCID: PMC5420136 DOI: 10.1186/s40104-017-0173-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Maternal undernutrition or overnutrition during pregnancy alters organ structure, impairs prenatal and neonatal growth and development, and reduces feed efficiency for lean tissue gains in pigs. These adverse effects may be carried over to the next generation or beyond. This phenomenon of the transgenerational impacts is known as fetal programming, which is mediated by stable and heritable alterations of gene expression through covalent modifications of DNA and histones without changes in DNA sequences (namely, epigenetics). The mechanisms responsible for the epigenetic regulation of protein expression and functions include chromatin remodeling; DNA methylation (occurring at the 5´-position of cytosine residues within CpG dinucleotides); and histone modifications (acetylation, methylation, phosphorylation, and ubiquitination). Like maternal malnutrition, undernutrition during the neonatal period also reduces growth performance and feed efficiency (weight gain:feed intake; also known as weight-gain efficiency) in postweaning pigs by 5-10%, thereby increasing the days necessary to reach the market body-weight. Supplementing functional amino acids (e.g., arginine and glutamine) and vitamins (e.g., folate) play a key role in activating the mammalian target of rapamycin signaling and regulating the provision of methyl donors for DNA and protein methylation. Therefore, these nutrients are beneficial for the dietary treatment of metabolic disorders in offspring with intrauterine growth restriction or neonatal malnutrition. The mechanism-based strategies hold great promise for the improvement of the efficiency of pork production and the sustainability of the global swine industry.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China
| | - Xiaolong Wang
- Henan Yinfa Animal Husbandry Co., Ltd., Xinzheng, Henan 451100 China
| | - Ju Li
- Henan Yinfa Animal Husbandry Co., Ltd., Xinzheng, Henan 451100 China
| | - Binggen Wang
- Henan Yinfa Animal Husbandry Co., Ltd., Xinzheng, Henan 451100 China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China.,Department of Animal Science and Center for Animal Genomics, Texas A&M University, Room 212, College Station, TX 77843 USA
| |
Collapse
|
29
|
Gonzalez-Añover P, Gonzalez-Bulnes A. Maternal age modulates the effects of early-pregnancy L-proline supplementation on the birth-weight of piglets. Anim Reprod Sci 2017; 181:63-68. [PMID: 28385397 DOI: 10.1016/j.anireprosci.2017.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Previous results obtained in gilts maintained under experimental conditions suggest that amino acid supplementation during pregnancy may be a promising strategy for diminishing the incidence of embryo losses and low birth-weight newborn. The current study evaluated the effects of a short-term supplementation with L-proline, around implantational stages, on litter size and birth-weight of piglets in sows of different parities maintained under commercial farm conditions. There were no significant effects in mature sows with three or more parities, but the supplementation improved the reproductive efficiency of the high-prolific first-parity sows and of all the sows at second-parity. There were numerically higher litter size (of around two more live piglets; n.s.) and higher birth-weights (P<0.05) in the supplemented animals. The results of this study indicate that the effects of L-proline supplementation on litter size and birth-weight are strongly modulated by the maternal characteristics; specifically by parity and prolificacy and that supplementation may be cost-efficient for the management of females with compromised energy balance; specifically, sows at second farrowing and highly-prolific primiparous gilts.
Collapse
Affiliation(s)
- P Gonzalez-Añover
- Department of Toxicology and Pharmacology, Faculty of Veterinary Sciences, UCM, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; Miavit GmbH, Robert-Bosch-Straße 3, 49632 Essen (Oldb.), Germany
| | - A Gonzalez-Bulnes
- Comparative Physiology Lab, SGIT-INIA, Av. Puerta de Hierro s/n, 28040 Madrid, Spain.
| |
Collapse
|
30
|
Shi B, Liu J, Sun Z, Li T, Zhu W, Tang Z. The effects of different dietary crude protein level on faecal crude protein and amino acid flow and digestibility in growing pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2016. [DOI: 10.1080/09712119.2016.1260570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Baoshi Shi
- Key Laboratory for Bio-feed and Animal Nutrition, Southwest University, Chongqing, People’s Republic of China
| | - Jinyan Liu
- Key Laboratory for Bio-feed and Animal Nutrition, Southwest University, Chongqing, People’s Republic of China
| | - Zhihong Sun
- Key Laboratory for Bio-feed and Animal Nutrition, Southwest University, Chongqing, People’s Republic of China
| | - Tiejun Li
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Hunan, People’s Republic of China
| | - Weiwen Zhu
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Zhiru Tang
- Key Laboratory for Bio-feed and Animal Nutrition, Southwest University, Chongqing, People’s Republic of China
| |
Collapse
|
31
|
Chen Y, Guan R, Zhang C, Huang J, Ji L, Chao H. Two-photon luminescent metal complexes for bioimaging and cancer phototherapy. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Huang Y, Tang C, Du J, Jin H. Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8961951. [PMID: 26839635 PMCID: PMC4709694 DOI: 10.1155/2016/8961951] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/28/2015] [Indexed: 01/20/2023]
Abstract
Sulfur dioxide (SO2) was previously regarded as a toxic gas in atmospheric pollutants. But it has been found to be endogenously generated from metabolism of sulfur-containing amino acids in mammals through transamination by aspartate aminotransferase (AAT). SO2 could be produced in cardiovascular tissues catalyzed by its synthase AAT. In recent years, studies revealed that SO2 had physiological effects on the cardiovascular system, including vasorelaxation and cardiac function regulation. In addition, the pathophysiological effects of SO2 were also determined. For example, SO2 ameliorated systemic hypertension and pulmonary hypertension, prevented the development of atherosclerosis, and protected against myocardial ischemia-reperfusion (I/R) injury and isoproterenol-induced myocardial injury. These findings suggested that endogenous SO2 was a novel gasotransmitter in the cardiovascular system and provided a new therapy target for cardiovascular diseases.
Collapse
Affiliation(s)
- Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing 100191, China
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
33
|
Chang Y, Cai H, Liu G, Chang W, Zheng A, Zhang S, Liao R, Liu W, Li Y, Tian J. Effects of dietary leucine supplementation on the gene expression of mammalian target of rapamycin signaling pathway and intestinal development of broilers. ACTA ACUST UNITED AC 2015; 1:313-319. [PMID: 29767001 PMCID: PMC5941004 DOI: 10.1016/j.aninu.2015.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/11/2015] [Indexed: 10/26/2022]
Abstract
This experiment was to investigate the effects of dietary leucine supplementation on the gene expression of mammalian target of rapamycin (mTOR) signaling pathway and intestinal development of broilers. A total of 384 one-day-old broilers were randomly assigned into 4 treatments with 6 replicates (16 broilers per replicate). Broilers in these treatment groups were offered the following diets with 1.37, 1.77, 2.17 and 2.57% of leucine. These diet treatments were named 1.37TM, 1.77TM, 2.17TM, and 2.57TM. The experiment lasted 21 days and all birds had free access to feed and water. Results indicated that there was no significant difference in body weight, average daily gain and average feed intake among all treatments (P > 0.05). The broiler duodenal villus height in 2.57TM was the lowest, but the highest occurred in 1.37TM on d 7 and 14 (P < 0.05). The villus height in the jejunum and ileum increased along with leucine level from 1.37 to 2.17%. The villus height of jejunum was significantly higher in 2.17TM than in 1.37TM on d 7 and 14, and the ratio of villus height to crypt depth (V:C) in the duodenum, jejunum and ileum increased significantly (P < 0.05) on d 21. The gene expression level of mTOR in the duodenum decreased with increasing leucine level and was higher in 1.37TM than in 2.57TM on d 7 and 14 (P < 0.05). On d 14 and 21 of the trial, the expression of S6K1 in the duodenum was higher in 1.37TM than in 2.57TM (P < 0.05), and the expression of mTOR, S6K1 in the jejunum and ileum increased with increasing leucine level form 1.37 to 2.17%, whereas a significant difference occurred between 1.37TM and 2.17TM (P < 0.05). In conclusion, the addition of leucine fails to enhance the growth performance of broilers. However, leucine can improve intestinal development by enhancing villus height and V:C ratio in the jejunum and ileum. Moreover, the expression of mTOR, S6K1 increased as the level of dietary leucine was elevated from 1.37 to 2.17%.
Collapse
Affiliation(s)
- Yinlian Chang
- The Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiyi Cai
- The Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guohua Liu
- The Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenhuan Chang
- The Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aijuan Zheng
- The Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu Zhang
- The Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruibo Liao
- The Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Liu
- The Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Li
- The Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Tian
- The Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
34
|
Li G, Chen Y, Wang J, Wu J, Gasser G, Ji L, Chao H. Direct imaging of biological sulfur dioxide derivatives in vivo using a two-photon phosphorescent probe. Biomaterials 2015; 63:128-36. [DOI: 10.1016/j.biomaterials.2015.06.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022]
|
35
|
Bazer FW, Wang X, Johnson GA, Wu G. Select nutrients and their effects on conceptus development in mammals. ACTA ACUST UNITED AC 2015; 1:85-95. [PMID: 29767122 PMCID: PMC5945975 DOI: 10.1016/j.aninu.2015.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 11/30/2022]
Abstract
The dialogue between the mammalian conceptus (embryo/fetus and associated membranes) involves signaling for pregnancy recognition and maintenance of pregnancy during the critical peri-implantation period of pregnancy when the stage is set for implantation and placentation that precedes fetal development. Uterine epithelial cells secrete and/or transport a wide range of molecules, including nutrients, collectively referred to as histotroph that are transported into the fetal-placental vascular system to support growth and development of the conceptus. The availability of uterine-derived histotroph has long-term consequences for the health and well-being of the fetus and the prevention of adult onset of metabolic diseases. Histotroph includes numerous amino acids, but arginine plays a particularly important role as a source of nitric oxide and polyamines required for fetal-placental development in rodents, swine and humans through mechanisms that remain to be fully elucidated. Mechanisms whereby arginine regulates expression of genes via the mechanistic target of rapamycin cell signaling pathways critical to conceptus development, implantation and placentation are discussed in detail in this review.
Collapse
Affiliation(s)
- Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Xiaoqiu Wang
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Greg A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
36
|
Yin J, Ren W, Yang G, Duan J, Huang X, Fang R, Li C, Li T, Yin Y, Hou Y, Kim SW, Wu G. L-Cysteine metabolism and its nutritional implications. Mol Nutr Food Res 2015; 60:134-46. [PMID: 25929483 DOI: 10.1002/mnfr.201500031] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/08/2015] [Accepted: 04/23/2015] [Indexed: 01/17/2023]
Abstract
L-Cysteine is a nutritionally semiessential amino acid and is present mainly in the form of L-cystine in the extracellular space. With the help of a transport system, extracellular L-cystine crosses the plasma membrane and is reduced to L-cysteine within cells by thioredoxin and reduced glutathione (GSH). Intracellular L-cysteine plays an important role in cellular homeostasis as a precursor for protein synthesis, and for production of GSH, hydrogen sulfide (H(2)S), and taurine. L-Cysteine-dependent synthesis of GSH has been investigated in many pathological conditions, while the pathway for L-cysteine metabolism to form H(2)S has received little attention with regard to prevention and treatment of disease in humans. The main objective of this review is to highlight the metabolic pathways of L-cysteine catabolism to GSH, H(2)S, and taurine, with special emphasis on therapeutic and nutritional use of L-cysteine to improve the health and well-being of animals and humans.
Collapse
Affiliation(s)
- Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guan Yang
- Department of Animal Science, University of Florida, Gainesville, FL, USA
| | - Jielin Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingguo Huang
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Rejun Fang
- Department of Animal Science, Hunan Agriculture University, Changsha, China
| | - Chongyong Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Yongqing Hou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Guoyao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
37
|
Hou Y, Yin Y, Wu G. Dietary essentiality of "nutritionally non-essential amino acids" for animals and humans. Exp Biol Med (Maywood) 2015; 240:997-1007. [PMID: 26041391 DOI: 10.1177/1535370215587913] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Based on growth or nitrogen balance, amino acids (AA) had traditionally been classified as nutritionally essential (indispensable) or non-essential (dispensable) for animals and humans. Nutritionally essential AA (EAA) are defined as either those AA whose carbon skeletons cannot be synthesized de novo in animal cells or those that normally are insufficiently synthesized de novo by the animal organism relative to its needs for maintenance, growth, development, and health and which must be provided in the diet to meet requirements. In contrast, nutritionally non-essential AA (NEAA) are those AA which can be synthesized de novo in adequate amounts by the animal organism to meet requirements for maintenance, growth, development, and health and, therefore, need not be provided in the diet. Although EAA and NEAA had been described for over a century, there are no compelling data to substantiate the assumption that NEAA are synthesized sufficiently in animals and humans to meet the needs for maximal growth and optimal health. NEAA play important roles in regulating gene expression, cell signaling pathways, digestion and absorption of dietary nutrients, DNA and protein synthesis, proteolysis, metabolism of glucose and lipids, endocrine status, men and women fertility, acid-base balance, antioxidative responses, detoxification of xenobiotics and endogenous metabolites, neurotransmission, and immunity. Emerging evidence indicates dietary essentiality of "nutritionally non-essential amino acids" for animals and humans to achieve their full genetic potential for growth, development, reproduction, lactation, and resistance to metabolic and infectious diseases. This concept represents a new paradigm shift in protein nutrition to guide the feeding of mammals (including livestock), poultry, and fish.
Collapse
Affiliation(s)
- Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulong Yin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Guoyao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
38
|
Valgas da Silva CP, Delbin MA, La Guardia PG, Moura CS, Davel APC, Priviero FB, Zanesco A. Improvement of the physical performance is associated with activation of NO/PGC-1α/mtTFA signaling pathway and increased protein expressions of electron transport chain in gastrocnemius muscle from rats supplemented with L-arginine. Life Sci 2015; 125:63-70. [PMID: 25636591 DOI: 10.1016/j.lfs.2014.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/11/2014] [Accepted: 12/26/2014] [Indexed: 11/16/2022]
Abstract
AIM To examine the influence of l-arginine supplementation in combination with physical training on mitochondrial biomarkers from gastrocnemius muscle and its relationship with physical performance. MAIN METHODS Male Wistar rats were divided into four groups: control sedentary (SD), sedentary supplemented with l-arginine (SDLA), trained (TR) and trained supplemented with l-arginine (TRLA). Supplementation of l-arginine was administered by gavage (62.5mg/ml/day/rat). Physical training consisted of 60min/day, 5days/week, 0% grade, speed of 1.2km/h. The study lasted 8weeks. Skeletal muscle mitochondrial enriched fraction as well as cytoplasmic fractions were obtained for Western blotting and biochemical analyses. Protein expressions of transcriptor coactivator (PGC-1α), transcriptor factors (mtTFA), ATP synthase subunit c, cytochrome oxidase (COXIV), constitutive nitric oxide synthases (eNOS and nNOS), Cu/Zn-superoxide dismutase (SOD) and manganese-SOD (Mn-SOD) were evaluated. We also assessed in plasma: lipid profile, glycemia and malondialdehyde (MDA) levels. The nitrite/nitrate (NOx(-)) levels were measured in both plasma and cytosol fraction of the gastrocnemius muscle. KEY FINDINGS 8-week l-arginine supplementation associated with physical training was effective in promoting greater tolerance to exercise that was accompanied by up-regulation of the protein expressions of mtTFA, PGC-1α, ATP synthase subunit c, COXIV, Cu/Zn-SOD and Mn-SOD. The upstream pathway was associated with improvement of NO bioavailability, but not in NO production since no changes in nNOS or eNOS protein expressions were observed. SIGNIFICANCE This combination would be an alternative approach for preventing cardiometabolic diseases given that in overt diseases a profound impairment in the physical performance of the patients is observed.
Collapse
Affiliation(s)
- Carmem Peres Valgas da Silva
- Laboratory of cardiovascular Physiology and physical activity, Institute of Bioscience, Univ Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Maria Andréia Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Paolo G La Guardia
- Clinical Pathology, FCM, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carolina Soares Moura
- Department of Food and Nutrition, Faculty of Food Engineering, State University of Campinas, Campinas, SP, Brazil
| | - Ana Paula Couto Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Fernanda Bruschi Priviero
- Laboratory of cardiovascular Physiology and physical activity, Institute of Bioscience, Univ Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Angelina Zanesco
- Laboratory of cardiovascular Physiology and physical activity, Institute of Bioscience, Univ Estadual Paulista (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
39
|
Dai Z, Wu Z, Hang S, Zhu W, Wu G. Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol Hum Reprod 2015; 21:389-409. [PMID: 25609213 DOI: 10.1093/molehr/gav003] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/15/2015] [Indexed: 12/13/2022] Open
Abstract
Reproduction is vital for producing offspring and preserving genetic resources. However, incidences of many reproductive disorders (e.g. miscarriage, intrauterine growth restriction, premature delivery and lower sperm quality) have either increased dramatically or remained at high rates over the last decades. Mounting evidence shows a strong correlation between enteral protein nutrition and reproduction. Besides serving as major nutrients in the diet, amino acids (AA) are signaling molecules in the regulation of diverse physiological processes, ranging from spermatogenesis to oocyte fertilization and to embryo implantation. Notably, the numbers of bacteria in the intestine exceed the numbers of host cells by 10 times. Microbes in the small-intestinal lumen actively metabolize large amounts of dietary AA and, therefore, affect the entry of AA into the portal circulation for whole-body utilization. Changes in the composition and abundance of AA-metabolizing bacteria in the gut during pregnancy, as well as their translocation to the uterus, may alter uterine function and epigenetic modifications of maternal physiology and metabolism, which are crucial for pregnancy recognition and fetal development. Thus, the presence of the maternal gut microbiota and AA metabolites in the intrauterine environments (e.g. endometrium and placenta) and breast milk is likely a unique signature for the programming of the whole-body microbiome and metabolism in both the fetus and infant. Dietary intervention with functional AA, probiotics and prebiotics to alter the abundance and activity of intestinal bacteria may ameliorate or prevent the development of metabolic syndrome, while improving reproductive performance in both males and females as well as their offspring.
Collapse
Affiliation(s)
- Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Suqin Hang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
40
|
Yang Y, Wu Z, Meininger CJ, Wu G. L-Leucine and NO-mediated cardiovascular function. Amino Acids 2015; 47:435-47. [PMID: 25552397 DOI: 10.1007/s00726-014-1904-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/13/2014] [Indexed: 02/06/2023]
Abstract
Reduced availability of nitric oxide (NO) in the vasculature is a major factor contributing to the impaired action of insulin on blood flow and, therefore, insulin resistance in obese and diabetic subjects. Available evidence shows that vascular insulin resistance plays an important role in the pathogenesis of cardiovascular disease, the leading cause of death in developed nations. Interestingly, increased concentrations of L-leucine in the plasma occur in obese humans and other animals with vascular dysfunction. Among branched-chain amino acids, L-leucine is unique in inhibiting NO synthesis from L-arginine in endothelial cells and may modulate cardiovascular homeostasis in insulin resistance. Results of recent studies indicate that L-leucine is an activator of glutamine:fructose-6-phosphate aminotransferase (GFAT), which is the first and a rate-controlling enzyme in the synthesis of glucosamine (an inhibitor of endothelial NO synthesis). Through stimulating the mammalian target of rapamycin signaling pathway and thus protein synthesis, L-leucine may enhance GFAT protein expression, thereby inhibiting NO synthesis in endothelial cells. We propose that reducing circulating levels of L-leucine or endothelial GFAT activity may provide a potentially novel strategy for preventing and/or treating cardiovascular disease in obese and diabetic subjects. Such means may include dietary supplementation with either α-ketoglutarate to enhance the catabolism of L-leucine in the small intestine and other tissues or with N-ethyl-L-glutamine to inhibit GFAT activity in endothelial cells. Preventing leucine-induced activation of GFAT by nutritional supplements or pharmaceutical drugs may contribute to improved cardiovascular function by enhancing vascular NO synthesis.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China,
| | | | | | | |
Collapse
|
41
|
Bazer FW, Johnson GA, Wu G. Amino Acids and Conceptus Development During the Peri-Implantation Period of Pregnancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:23-52. [DOI: 10.1007/978-1-4939-2480-6_2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Teunissen-Beekman KFM, Dopheide J, Geleijnse JM, Bakker SJL, Brink EJ, de Leeuw PW, Serroyen J, van Baak MA. Differential effects of proteins and carbohydrates on postprandial blood pressure-related responses. Br J Nutr 2014; 112:600-8. [PMID: 24893214 DOI: 10.1017/s0007114514001251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diet composition may affect blood pressure (BP), but the mechanisms are unclear. The aim of the present study was to compare postprandial BP-related responses to the ingestion of pea protein, milk protein and egg-white protein. In addition, postprandial BP-related responses to the ingestion of maltodextrin were compared with those to the ingestion of sucrose and a protein mix. We hypothesised that lower postprandial total peripheral resistance (TPR) and BP levels would be accompanied by higher plasma concentrations of nitric oxide, insulin, glucagon-like peptide 1 (GLP-1) and glucagon. On separate occasions, six meals were tested in a randomised order in forty-eight overweight or obese adults with untreated elevated BP. Postprandial responses of TPR, BP and plasma concentrations of insulin, glucagon, GLP-1 and nitrite, nitroso compounds (RXNO) and S-nitrosothiols (NO(x)) were measured for 4 h. No differences were observed in TPR responses. Postprandial BP levels were higher after the ingestion of the egg-white-protein meal than after that of meals containing the other two proteins (P≤ 0·01). The ingestion of the pea-protein meal induced the highest NO(x) response (P≤ 0·006). Insulin and glucagon concentrations were lowest after the ingestion of the egg-white-protein meal (P≤ 0·009). Postprandial BP levels were lower after the ingestion of the maltodextrin meal than after that of the protein mix and sucrose meals (P≤ 0·004), while postprandial insulin concentrations were higher after the ingestion of the maltodextrin meal than after that of the sucrose and protein mix meals after 1-2 h (P≤ 0·0001). Postprandial NO(x), GLP-1 and glucagon concentrations were lower after the ingestion of the maltodextrin meal than after that of the protein mix meal (P≤ 0·008). In conclusion, different protein and carbohydrate sources induce different postprandial BP-related responses, which may be important for BP management. Lower postprandial BP levels are not necessarily accompanied by higher NO(x), insulin, glucagon or GLP-1 responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter W de Leeuw
- Department of Medicine,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center,Maastricht,The Netherlands
| | - Jan Serroyen
- Department of Methodology & Statistics,Maastricht University,Maastricht,The Netherlands
| | | |
Collapse
|
43
|
Tsou CC, Chiu WC, Ke CH, Tsai JC, Wang YM, Chiang MH, Liaw WF. Iron(III) Bound by Hydrosulfide Anion Ligands: NO-Promoted Stabilization of the [FeIII–SH] Motif. J Am Chem Soc 2014; 136:9424-33. [DOI: 10.1021/ja503683y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chih-Chin Tsou
- Department
of Chemistry and Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Chun Chiu
- Department
of Chemistry and Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Hung Ke
- Department
of Chemistry and Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jia-Chun Tsai
- Department
of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yun-Ming Wang
- Department
of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Ming-Hsi Chiang
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wen-Feng Liaw
- Department
of Chemistry and Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
44
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
45
|
Next-generation sequencing analysis of gene regulation in the rat model of retinopathy of prematurity. Doc Ophthalmol 2013; 127:13-31. [PMID: 23775346 DOI: 10.1007/s10633-013-9396-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/03/2013] [Indexed: 01/01/2023]
Abstract
PURPOSE The purpose of this study was to identify the genes, biochemical signaling pathways, and biological themes involved in the pathogenesis of retinopathy of prematurity (ROP). METHODS Next-generation sequencing (NGS) was performed on the RNA transcriptome of rats with the Penn et al. (Pediatr Res 36:724-731, 1994) oxygen-induced retinopathy model of ROP at the height of vascular abnormality, postnatal day (P) 19, and normalized to age-matched, room-air-reared littermate controls. Eight custom-developed pathways with potential relevance to known ROP sequelae were evaluated for significant regulation in ROP: The three major Wnt signaling pathways, canonical, planar cell polarity (PCP), and Wnt/Ca(2+); two signaling pathways mediated by the Rho GTPases RhoA and Cdc42, which are, respectively, thought to intersect with canonical and non-canonical Wnt signaling; nitric oxide signaling pathways mediated by two nitric oxide synthase (NOS) enzymes, neuronal (nNOS) and endothelial (eNOS); and the retinoic acid (RA) signaling pathway. Regulation of other biological pathways and themes was detected by gene ontology using the Kyoto Encyclopedia of Genes and Genomes and the NIH's Database for Annotation, Visualization, and Integrated Discovery's GO terms databases. RESULTS Canonical Wnt signaling was found to be regulated, but the non-canonical PCP and Wnt/Ca(2+) pathways were not. Nitric oxide signaling, as measured by the activation of nNOS and eNOS, was also regulated, as was RA signaling. Biological themes related to protein translation (ribosomes), neural signaling, inflammation and immunity, cell cycle, and cell death were (among others) highly regulated in ROP rats. CONCLUSIONS These several genes and pathways identified by NGS might provide novel targets for intervention in ROP.
Collapse
|
46
|
Wu G, Bazer FW, Satterfield MC, Li X, Wang X, Johnson GA, Burghardt RC, Dai Z, Wang J, Wu Z. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 2013; 45:241-56. [DOI: 10.1007/s00726-013-1515-z] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 12/15/2022]
|
47
|
Effects of dietary l-lysine intake on the intestinal mucosa and expression of CAT genes in weaned piglets. Amino Acids 2013; 45:383-91. [DOI: 10.1007/s00726-013-1514-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/14/2013] [Indexed: 12/15/2022]
|
48
|
Rezaei R, Wang W, Wu Z, Dai Z, Wang J, Wu G. Biochemical and physiological bases for utilization of dietary amino acids by young Pigs. J Anim Sci Biotechnol 2013; 4:7. [PMID: 23445937 PMCID: PMC3599606 DOI: 10.1186/2049-1891-4-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 02/19/2013] [Indexed: 11/10/2022] Open
Abstract
Protein is quantitatively the most expensive nutrient in swine diets. Hence it is imperative to understand the physiological roles played by amino acids in growth, development, lactation, reproduction, and health of pigs to improve their protein nutrition and reduce the costs of pork production. Due to incomplete knowledge of amino acid biochemistry and nutrition, it was traditionally assumed that neonatal, post-weaning, growing-finishing, and gestating pigs could synthesize sufficient amounts of all "nutritionally nonessential amino acids" (NEAA) to support maximum production performance. Therefore, over the past 50 years, much emphasis has been placed on dietary requirements of nutritionally essential amino acids as building blocks for tissue proteins. However, a large body of literature shows that NEAA, particularly glutamine, glutamate, arginine and proline regulate physiological functions via cell signaling pathways, such as mammalian target of rapamycin, AMP-activated protein kinase, extracellular signal-related kinase, Jun kinase, mitogen-activated protein kinase, and NEAA-derived gaseous molecules (e.g., nitric oxide, carbon monoxide, and hydrogen sulfide). Available evidence shows that under current feeding programs, only 70% and 55% of dietary amino acids are deposited as tissue proteins in 14-day-old sow-reared piglets and in 30-day-old pigs weaned at 21 days of age, respectively. Therefore, there is an urgent need to understand the roles and dietary requirements of NEAA in swine nutrition. This review highlights the basic biochemistry and physiology of absorption and utilization of amino acids in young pigs to enhance the efficacy of utilization of dietary protein and to minimize excretion of nitrogenous wastes from the body.
Collapse
Affiliation(s)
- Reza Rezaei
- Department of Animal Science, Texas A&M University, College Station, Texas, 77843, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Factors supporting cysteine tolerance and sulfite production in Candida albicans. EUKARYOTIC CELL 2013; 12:604-13. [PMID: 23417561 DOI: 10.1128/ec.00336-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeast Candida albicans excretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine in C. albicans relies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of the CDG1 gene in C. albicans, but also the expression of SSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion of SSU1 resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened a C. albicans library of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducible SSU1 and CDG1 gene expression. cdg1Δ and ssu1Δ mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity of C. albicans. Moreover, cdg1Δ mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production by C. albicans suggests diverse roles during host adaptation and pathogenicity.
Collapse
|
50
|
Li G, Chen Y, Wang J, Lin Q, Zhao J, Ji L, Chao H. A dinuclear iridium(iii) complex as a visual specific phosphorescent probe for endogenous sulphite and bisulphite in living cells. Chem Sci 2013. [DOI: 10.1039/c3sc52301b] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|