1
|
Ramírez-Rendón D, Guzmán-Chávez F, García-Ausencio C, Rodríguez-Sanoja R, Sánchez S. The untapped potential of actinobacterial lanthipeptides as therapeutic agents. Mol Biol Rep 2023; 50:10605-10616. [PMID: 37934370 PMCID: PMC10676316 DOI: 10.1007/s11033-023-08880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023]
Abstract
The increase in bacterial resistance generated by the indiscriminate use of antibiotics in medical practice set new challenges for discovering bioactive natural products as alternatives for therapeutics. Lanthipeptides are an attractive natural product group that has been only partially explored and shows engaging biological activities. These molecules are small peptides with potential application as therapeutic agents. Some members show antibiotic activity against problematic drug-resistant pathogens and against a wide variety of viruses. Nevertheless, their biological activities are not restricted to antimicrobials, as their contribution to the treatment of cystic fibrosis, cancer, pain symptoms, control of inflammation, and blood pressure has been demonstrated. The study of biosynthetic gene clusters through genome mining has contributed to accelerating the discovery, enlargement, and diversification of this group of natural products. In this review, we provide insight into the recent advances in the development and research of actinobacterial lanthipeptides that hold great potential as therapeutics.
Collapse
Affiliation(s)
- Dulce Ramírez-Rendón
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Fernando Guzmán-Chávez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Carlos García-Ausencio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México.
| |
Collapse
|
2
|
William N, Osmani R, Acker JP. Towards the crux of sex-dependent variability in red cell concentrates. Transfus Apher Sci 2023; 62:103827. [PMID: 37793959 DOI: 10.1016/j.transci.2023.103827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Donor sex can alter the RBC 'storage lesion' progression, contributing to dissimilarities in blood product quality, and thus adverse post-transfusion reactions. The mechanisms underlying the reduced sensitivity of female RBCs to storage-induced stress are partially ascribed to the differential effects of testosterone, progesterone, and estrogen on hemolytic propensity. Contributing to this is the increased proportion of more robust, biologically 'young' subpopulations of RBCs in females. Herein, we discuss the impact of sex hormones on RBCs and the relevance of these biological subpopulations to provide further insight into sex-dependent blood product variability.
Collapse
Affiliation(s)
- Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Rafay Osmani
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Metelerkamp Cappenberg T, De Schepper S, Vangestel C, De Lombaerde S, Wyffels L, Van den Wyngaert T, Mattis J, Gray B, Pak K, Stroobants S, Elvas F. First-in-human study of a novel cell death tracer [ 99mTc]Tc-Duramycin: safety, biodistribution and radiation dosimetry in healthy volunteers. EJNMMI Radiopharm Chem 2023; 8:20. [PMID: 37646865 PMCID: PMC10468453 DOI: 10.1186/s41181-023-00207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Imaging of cell death can provide an early indication of treatment response in cancer. [99mTc]Tc-Duramycin is a small-peptide SPECT tracer that recognizes both apoptotic and necrotic cells by binding to phosphatidylethanolamine present in the cell membrane. Preclinically, this tracer has shown to have favorable pharmacokinetics and selective tumor accumulation early after the onset of anticancer therapy. In this first-in-human study, we report the safety, biodistribution and internal radiation dosimetry of [99mTc]Tc-Duramycin in healthy human volunteers. RESULTS Six healthy volunteers (3 males, 3 females) were injected intravenously with [99mTc]Tc-Duramycin (dose: 6 MBq/kg; 473 ± 36 MBq). [99mTc]Tc-Duramycin was well tolerated in all subjects, with no serious adverse events reported. Following injection, a 30-min dynamic planar imaging of the abdomen was performed, and whole-body (WB) planar scans were acquired at 1, 2, 3, 6 and 23 h post-injection (PI), with SPECT acquisitions after each WB scan and one low-dose CT after the first SPECT. In vivo 99mTc activities were determined from semi-quantitative analysis of the images, and time-activity curves were generated. Residence times were calculated from the dynamic and WB planar scans. The mean effective dose was 7.61 ± 0.75 µSv/MBq, with the kidneys receiving the highest absorbed dose (planar analysis: 43.82 ± 4.07 µGy/MBq, SPECT analysis: 19.72 ± 3.42 μGy/MBq), followed by liver and spleen. The median effective dose was 3.61 mSv (range, 2.85-4.14). The tracer cleared slowly from the blood (effective half-life of 2.0 ± 0.4 h) due to high plasma protein binding with < 5% free tracer 3 h PI. Excretion was almost exclusively renal. CONCLUSION [99mTc]Tc-Duramycin demonstrated acceptable dosimetry (< 5 mSv) and a favorable safety profile. Due to slow blood clearance, optimal target-to-background ratios are expected 5 h PI. These data support the further assessment of [99mTc]Tc-Duramycin for clinical treatment response evaluation. TRIAL REGISTRATION NCT05177640, Registered April 30, 2021, https://clinicaltrials.gov/study/NCT05177640 .
Collapse
Affiliation(s)
| | - Stijn De Schepper
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Christel Vangestel
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Stef De Lombaerde
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Leonie Wyffels
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Tim Van den Wyngaert
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Jeffrey Mattis
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Brian Gray
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Koon Pak
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Sigrid Stroobants
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Filipe Elvas
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium.
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
4
|
Amoscato AA, Anthonymuthu T, Kapralov O, Sparvero LJ, Shrivastava IH, Mikulska-Ruminska K, Tyurin VA, Shvedova AA, Tyurina YY, Bahar I, Wenzel S, Bayir H, Kagan VE. Formation of protein adducts with Hydroperoxy-PE electrophilic cleavage products during ferroptosis. Redox Biol 2023; 63:102758. [PMID: 37245287 PMCID: PMC10238881 DOI: 10.1016/j.redox.2023.102758] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023] Open
Abstract
Ferroptosis is an iron dependent form of cell death, that is triggered by the discoordination of iron, lipids, and thiols. Its unique signature that distinguishes it from other forms of cell death is the formation and accumulation of lipid hydroperoxides, particularly oxidized forms of polyunsaturated phosphatidylethanolamines (PEs), which drives cell death. These readily undergo iron-catalyzed secondary free radical reactions leading to truncated products which retain the signature PE headgroup and which can readily react with nucleophilic moieties in proteins via their truncated electrophilic acyl chains. Using a redox lipidomics approach, we have identified oxidatively-truncated PE species (trPEox) in enzymatic and non-enzymatic model systems. Further, using a model peptide we demonstrate adduct formation with Cys as the preferred nucleophilic residue and PE(26:2) +2 oxygens, as one of the most reactive truncated PE-electrophiles produced. In cells stimulated to undergo ferroptosis we identified PE-truncated species with sn-2 truncations ranging from 5 to 9 carbons. Taking advantage of the free PE headgroup, we have developed a new technology using the lantibiotic duramycin, to enrich and identify the PE-lipoxidated proteins. Our results indicate that several dozens of proteins for each cell type, are PE-lipoxidated in HT-22, MLE, and H9c2 cells and M2 macrophages after they were induced to undergo ferroptosis. Pretreatment of cells with the strong nucleophile, 2-mercaptoethanol, prevented the formation of PE-lipoxidated proteins and blocked ferroptotic death. Finally, our docking simulations showed that the truncated PE species bound at least as good to several of the lantibiotic-identified proteins, as compared to the non-truncated parent molecule, stearoyl-arachidonoyl PE (SAPE), indicating that these oxidatively-truncated species favor/promote the formation of PEox-protein adducts. The identification of PEox-protein adducts during ferroptosis suggests that they are participants in the ferroptotic process preventable by 2-mercaptoethanol and may contribute to a point of no return in the ferroptotic death process.
Collapse
Affiliation(s)
- A A Amoscato
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA.
| | - T Anthonymuthu
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA; Adeptrix Corp, 100 Cummings Center, Suite 339c, Beverly, MA, 01915, USA
| | - O Kapralov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - L J Sparvero
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - I H Shrivastava
- NIOSH/HELD/EAB, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - K Mikulska-Ruminska
- Institute of Physics, Faculty of Physics Astronomy and Informatics, Nicolaus Copernicus University in Toruń, PL87100, Toruń, Poland
| | - V A Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - A A Shvedova
- NIOSH/HELD/EAB, 1095 Willowdale Road, Morgantown, WV, 26505, USA; Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Y Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - I Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch I Bldg., 3420 Forbes Avenue, Pittsburgh, PA, 15213, USA; Laufer Center for Physical and Quantitative Biology, Laufer Center, Z-5252, Stony Brook University, Stony Brook, NY, 11794, USA
| | - S Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh Asthma and Environmental Lung Health Institute at UPMC, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - H Bayir
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA; Department of Pediatrics Critical Care, Columbia University, 3959 Broadway, CHN-10, New York, NY, 10032, USA
| | - V E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA; Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str, 11999, Moscow, Russia.
| |
Collapse
|
5
|
Saito K, Mukai K, Kaweewan I, Nakagawa H, Hosaka T, Kodani S. Heterologous Production and Structure Determination of a New Lanthipeptide Sinosporapeptin Using a Cryptic Gene Cluster in an Actinobacterium Sinosporangium siamense. J Microbiol 2023; 61:641-648. [PMID: 37306831 DOI: 10.1007/s12275-023-00059-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
Lipolanthine is a subclass of lanthipeptide that has the modification of lipid moiety at the N-terminus. A cryptic biosynthetic gene cluster comprising four genes (sinA, sinKC, sinD, and sinE) involved in the biosynthesis of lipolanthine was identified in the genome of an actinobacterium Sinosporangium siamense. Heterologous coexpression of a precursor peptide coding gene sinA and lanthipeptide synthetase coding gene sinKC in the host Escherichia coli strain BL21(DE3) resulted in the synthesis of a new lanthipeptide, sinosporapeptin. It contained unusual amino acids, including one labionin and two dehydrobutyrine residues, as determined using NMR and MS analyses. Another coexpression experiment with two additional genes of decarboxylase (sinD) and N-acetyl transferase (sinE) resulted in the production of a lipolanthine-like modified sinosporapeptin.
Collapse
Affiliation(s)
- Keita Saito
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Keiichiro Mukai
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Issara Kaweewan
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroyuki Nakagawa
- Research Center for Advanced Analysis, Core Technology Research Headquarters, National Agriculture and Food Research Organization (NARO), Ibaraki, 305-8642, Japan
| | - Takeshi Hosaka
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
6
|
Roney IJ, Rudner DZ. The DedA superfamily member PetA is required for the transbilayer distribution of phosphatidylethanolamine in bacterial membranes. Proc Natl Acad Sci U S A 2023; 120:e2301979120. [PMID: 37155911 PMCID: PMC10193950 DOI: 10.1073/pnas.2301979120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
The sorting of phospholipids between the inner and outer leaflets of the membrane bilayer is a fundamental problem in all organisms. Despite years of investigation, most of the enzymes that catalyze phospholipid reorientation in bacteria remain unknown. Studies from almost half a century ago in Bacillus subtilis and Bacillus megaterium revealed that newly synthesized phosphatidylethanolamine (PE) is rapidly translocated to the outer leaflet of the bilayer [Rothman & Kennedy, Proc. Natl. Acad. Sci. U.S.A. 74, 1821-1825 (1977)] but the identity of the putative PE flippase has eluded discovery. Recently, members of the DedA superfamily have been implicated in flipping the bacterial lipid carrier undecaprenyl phosphate and in scrambling eukaryotic phospholipids in vitro. Here, using the antimicrobial peptide duramycin that targets outward-facing PE, we show that Bacillus subtilis cells lacking the DedA paralog PetA (formerly YbfM) have increased resistance to duramycin. Sensitivity to duramycin is restored by expression of B. subtilis PetA or homologs from other bacteria. Analysis of duramycin-mediated killing upon induction of PE synthesis indicates that PetA is required for efficient PE transport. Finally, using fluorescently labeled duramycin we demonstrate that cells lacking PetA have reduced PE in their outer leaflet compared to wildtype. We conclude that PetA is the long-sought PE transporter. These data combined with bioinformatic analysis of other DedA paralogs argue that the primary role of DedA superfamily members is transporting distinct lipids across the membrane bilayer.
Collapse
Affiliation(s)
- Ian J. Roney
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
7
|
Kaur G, Shukla J, Sood A, Prakash G, Krishnaraju VS, Rana N, Pandey S, Singh H, Kumar R, Bal A, Mittal BR. Potential Role of 68Ga-NOTA-Duramycin PET/CT Imaging for Early Response Evaluation in a Lymphoma Patient: A Case Report. Clin Nucl Med 2023; 48:e19-e21. [PMID: 36469075 DOI: 10.1097/rlu.0000000000004462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT Duramycin, a 19 amino acids peptide, is known for its potential to target phosphatidylethanolamine. During cell death (apoptosis), rearrangement of membrane phospholipids results in the externalization of phosphatidylethanolamine to the outer leaflet of the cell membrane, which can be imaged using 68Ga-NOTA-duramycin. We report 68Ga-NOTA-duramycin imaging in a 50-year-old man with biopsy-proven diffuse large B-cell lymphoma planned for anthracycline-based chemotherapy. 68Ga-NOTA-duramycin PET/CT imaging along with 18F-FDG PET/CT was performed before and after 2 cycles of chemotherapy. The tracer avidity in interim 68Ga-NOTA-duramycin PET/CT showed its diagnostic potential to assess early response to chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Amanjit Bal
- Histopathology Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
8
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
9
|
Sukmarini L. Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092619. [PMID: 35565968 PMCID: PMC9101517 DOI: 10.3390/molecules27092619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
The marine environment presents a favorable avenue for potential therapeutic agents as a reservoir of new bioactive natural products. Due to their numerous potential pharmacological effects, marine-derived natural products—particularly marine peptides—have gained considerable attention. These peptides have shown a broad spectrum of biological functions, such as antimicrobial, antiviral, cytotoxic, immunomodulatory, and analgesic effects. The emergence of new virus strains and viral resistance leads to continuing efforts to develop more effective antiviral drugs. Interestingly, antimicrobial peptides (AMPs) that possess antiviral properties and are alternatively regarded as antiviral peptides (AVPs) demonstrate vast potential as alternative peptide-based drug candidates available for viral infection treatments. Hence, AVPs obtained from various marine organisms have been evaluated. This brief review features recent updates of marine-derived AVPs from 2011 to 2021. Moreover, the biosynthesis of this class of compounds and their possible mechanisms of action are also discussed. Selected peptides from various marine organisms possessing antiviral activities against important human viruses—such as human immunodeficiency viruses, herpes simplex viruses, influenza viruses, hepatitis C virus, and coronaviruses—are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, West Java, Indonesia
| |
Collapse
|
10
|
Zhang D, Gao M, Jin Q, Ni Y, Li H, Jiang C, Zhang J. Development of Duramycin-Based Molecular Probes for Cell Death Imaging. Mol Imaging Biol 2022; 24:612-629. [PMID: 35142992 DOI: 10.1007/s11307-022-01707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Cell death is involved in numerous pathological conditions such as cardiovascular disorders, ischemic stroke and organ transplant rejection, and plays a critical role in the treatment of cancer. Cell death imaging can serve as a noninvasive means to detect the severity of tissue damage, monitor the progression of diseases, and evaluate the effectiveness of treatments, which help to provide prognostic information and guide the formulation of individualized treatment plans. The high abundance of phosphatidylethanolamine (PE), which is predominantly confined to the inner leaflet of the lipid bilayer membrane in healthy mammalian cells, becomes exposed on the cell surface in the early stages of apoptosis or accessible to the extracellular milieu when the cell suffers from necrosis, thus representing an attractive target for cell death imaging. Duramycin is a tetracyclic polypeptide that contains 19 amino acids and can bind to PE with excellent affinity and specificity. Additionally, this peptide has several favorable structural traits including relatively low molecular weight, stability to enzymatic hydrolysis, and ease of conjugation and labeling. All these highlight the potential of duramycin as a candidate ligand for developing PE-specific molecular probes. By far, a couple of duramycin-based molecular probes such as Tc-99 m-, F-18-, or Ga-68-labeled duramycin have been developed to target exposed PE for in vivo noninvasive imaging of cell death in different animal models. In this review article, we describe the state of the art with respect to in vivo imaging of cell death using duramycin-based molecular probes, as validated by immunohistopathology.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, 3000, Leuven, Leuven, KU, Belgium
| | - Huailiang Li
- Department of General Surgery, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, Jiangsu Province, People's Republic of China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| |
Collapse
|
11
|
Tocchetti A, Iorio M, Hamid Z, Armirotti A, Reggiani A, Donadio S. Understanding the Mechanism of Action of NAI-112, a Lanthipeptide with Potent Antinociceptive Activity. Molecules 2021; 26:molecules26226764. [PMID: 34833857 PMCID: PMC8624038 DOI: 10.3390/molecules26226764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
NAI-112, a glycosylated, labionine-containing lanthipeptide with weak antibacterial activity, has demonstrated analgesic activity in relevant mouse models of nociceptive and neuropathic pain. However, the mechanism(s) through which NAI-112 exerts its analgesic and antibacterial activities is not known. In this study, we analyzed changes in the spinal cord lipidome resulting from treatment with NAI-112 of naive and in-pain mice. Notably, NAI-112 led to an increase in phosphatidic acid levels in both no-pain and pain models and to a decrease in lysophosphatidic acid levels in the pain model only. We also showed that NAI-112 can form complexes with dipalmitoyl-phosphatidic acid and that Staphylococcus aureus can become resistant to NAI-112 through serial passages at sub-inhibitory concentrations of the compound. The resulting resistant mutants were phenotypically and genotypically related to vancomycin-insensitive S. aureus strains, suggesting that NAI-112 binds to the peptidoglycan intermediate lipid II. Altogether, our results suggest that NAI-112 binds to phosphate-containing lipids and blocks pain sensation by decreasing levels of lysophosphatidic acid in the TRPV1 pathway.
Collapse
Affiliation(s)
| | - Marianna Iorio
- Naicons Srl, Viale Ortles 22/4, 20139 Milan, Italy; (A.T.); (S.D.)
- Correspondence:
| | - Zeeshan Hamid
- D3 Validation, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (Z.H.); (A.R.)
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy;
| | - Angelo Reggiani
- D3 Validation, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (Z.H.); (A.R.)
| | - Stefano Donadio
- Naicons Srl, Viale Ortles 22/4, 20139 Milan, Italy; (A.T.); (S.D.)
| |
Collapse
|
12
|
Wong HY, Langlotz M, Gan-Schreier H, Xu W, Staffer S, Tuma-Kellner S, Liebisch G, Merle U, Chamulitrat W. Constitutive oxidants from hepatocytes of male iPLA2β-null mice increases the externalization of phosphatidylethanolamine on plasma membrane. Free Radic Res 2021; 55:625-633. [PMID: 34696671 DOI: 10.1080/10715762.2021.1987426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We have found that group VIA calcium-independent phospholipase A2 (iPLA2β) has specificity for hydrolysis of phosphatidylethanolamine (PE) in mouse livers. Phospholipids (PLs) are transported to plasma membrane and some PLs including PE are externalized to maintain membrane PL asymmetry. Here we demonstrated that hepatocytes of iPLA2β-null (KO) mice showed an increase in PE containing palmitate and oleate. We aimed to examine whether externalization of PE on the outer leaflets could be affected by iPLA2β deficiency and its modulation by reactive oxygen species (ROS) or apoptosis. As duramycin has high affinity to PE, we used duramycin conjugated with biotin (DLB) and streptavidin 488 as a probe for detection of externalized PE. Compared to WT, naïve KO hepatocytes showed an increase in both PE externalization and ROS generation. These events were observed in male but not in female KO mice. Hydrogen peroxide or menadione treatment enhanced PE externalization to the same extent for both male/female WT and KO hepatocytes. By indirect immunofluorescence, DLB-streptavidin staining was observed as small punctuated spots on the cell surface of menadione-treated KO hepatocytes. Unlike the reported PS externalization, CD95/FasL treatment did not lead to any increase in PE externalization, and iPLA2β deficiency-dependent PE externalization was also not correlated with apoptosis. Thus, constitutive (but not induced) ROS generation in iPLA2β-deficient hepatocytes leads to PE externalization observed only in male mice. Such PE externalization may imply detrimental effects regarding further oxidation of PE fatty acids and the binding with pathogens on the outer leaflets of hepatocyte plasma membrane.
Collapse
Affiliation(s)
| | - Monika Langlotz
- Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
| | | | - Weihong Xu
- Heidelberg University Hospital, Heidelberg, Germany
| | | | | | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Regensburg, Germany
| | - Uta Merle
- Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
13
|
Jayachandran B, Chanda K, Balamurali MM. Overview of Pathogenesis, Diagnostics, and Therapeutics of Infectious Diseases: Dengue and Zika. ACS OMEGA 2021; 6:22487-22496. [PMID: 34514221 PMCID: PMC8427640 DOI: 10.1021/acsomega.1c03536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
The emergence of more virulent SARS virus has made scientists look back at other so-called neglected diseases such as dengue, Zika, and chikungunya, etc. Until recently these neglected diseases have not received much attention for their control or elimination from society. Over the past decade several attempts to investigate the pathogenicity, diagnostic, and therapeutic strategies for flavivirus caused diseases have been made. Herein we have reviewed the progress made toward the detection and treatment of two diseases-dengue and Zika. The above flavivirus related pathogenesis is concerned with the host immune system and known to be mediated through various receptors along with antibody-mediated disease enhancement. Moreover, researchers have been progressing toward discovering new drugs and therapeutic methods that target various stages of the flavivirus life cycle to minimize the above caused mortality and morbidity. The available diagnostics are based on serological, small molecule detection systems and point-of-care sensing devices. In this work, we have reviewed the advancements made toward understanding the pathogenesis, diagnostics, and therapeutics of the viral diseases caused by dengue and Zika.
Collapse
Affiliation(s)
- Brindha Jayachandran
- Chemistry
Division, School of Advanced Sciences, Vellore
Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai 600 127, Tamil
Nadu, India
| | - Kaushik Chanda
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
- (K.C.)
| | - Musuvathi Motilal Balamurali
- Chemistry
Division, School of Advanced Sciences, Vellore
Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai 600 127, Tamil
Nadu, India
- (M.M.B.)
| |
Collapse
|
14
|
Yuan G, Liu S, Ma H, Su S, Wen F, Tang X, Zhang Z, Zhao J, Lin L, Xiang X, Nie D, Tang G. Targeting Phosphatidylethanolamine with Fluorine-18 Labeled Small Molecule Probe for Apoptosis Imaging. Mol Imaging Biol 2021; 22:914-923. [PMID: 31828718 DOI: 10.1007/s11307-019-01460-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Externalization of phosphatidylethanolamine (PE) in dying cells makes the phospholipid an attractive target for apoptosis imaging. However, no ideal PE-targeted positron emission tomography (PET) radiotracer was developed. The goal of the study was to develop a novel PE-targeted radiopharmaceutical to imaging apoptosis. PROCEDURE In this study, we have radiolabeled PE-binding polypeptide duramycin with fluorine-18 for PET imaging of apoptosis. Al[18F]F-NOTA-PEG3-duramycin was synthesized via chelation reaction of NOTA-PEG3-duramycin with Al[18F]F. PE-binding capacity of Al[18F]F-NOTA-PEG3-duramycin was determined in a competitive radiometric PE-binding assay. The pharmacokinetic profile was evaluated in Kunming mice. The apoptosis imaging capacity of Al[18F]F-NOTA-PEG3-duramycin was evaluated using in vitro cell uptake assay with camptothecin-treated Jurkat cells, along with in vivo PET imaging using erlotinib-treated nude mice. RESULTS The total synthesis procedure lasted for 30 min, with a decay-uncorrected radiochemical yield of 21.3 ± 2.6 % (n = 10). Compared with the control cells, the binding of Al[18F]F-NOTA-PEG3-duramycin with camptothecin-induced apoptotic cells resulted in a tripling increase. A competitive radiometric PE-binding assay strongly confirmed the binding of Al[18F]F-NOTA-PEG3-duramycin to PE. The biodistribution study showed rapid blood clearance, prominent kidney retention, and low liver uptake. In the in vivo PET/CT imaging, Al[18F]F-NOTA-PEG3-duramycin demonstrated 2-fold increase in erlotinib-treated HCC827 tumors in nude mice. CONCLUSION Considering the facile preparation and improved biological properties, Al[18F]F-NOTA-PEG3-duramycin seems to be a promising PET tracer candidate for imaging apoptosis in the monitoring of cancer treatment.
Collapse
Affiliation(s)
- Gongjun Yuan
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shaoyu Liu
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Ma
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shu Su
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fuhua Wen
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaolan Tang
- Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China.,School of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhanwen Zhang
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Zhao
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Lin
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianhong Xiang
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dahong Nie
- Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China. .,Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Ganghua Tang
- Department of Nuclear Medicine and Medical Imaging, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Engineering Research center for Translational Application of Medical Radiopharmaceuticals, Sun Yat-sen University, Guangzhou, 510080, China. .,Nanfang PET Center and Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Su S, Xiang X, Lin L, Xiong Y, Ma H, Yuan G, Zhao J, Zhang Z, Liu S, Nie D, Tang G. Cell death PET/CT imaging of rat hepatic fibrosis with 18F-labeled small molecule tracer. Nucl Med Biol 2021; 98-99:76-83. [PMID: 34062322 DOI: 10.1016/j.nucmedbio.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/16/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the potential feasibility of Al[18F]F-1,4,7-triazacyclononane-1,4,7-triaceticacid (NOTA)-tripolyethylene glycol (PEG3)-Duramycin (Al[18F]F-NOTA-PEG3-Duramycin) positron emission tomography (PET) for imaging of rat hepatic fibrosis. PROCEDURES Hepatic fibrosis rat models were injected with thioacetamide (TAA), control rats received saline (n = 12 per group). Rats in the two groups underwent PET imaging using Al[18F]F-NOTA-PEG3-Duramycin and [18F]FDG at multiple time points (2, 4, 6, and 8 weeks after TAA or saline treatment). Between-group differences in the apoptosis rate, fibrotic activity, and liver uptake of Al[18F]F-NOTA-PEG3-Duramycin or [18F]FDG were assessed using Student's t-test. Imaging results were cross-validated using histopathology detection and Pearson's correlation test was used to assess the association relationships between radioactive uptake value and quantified histopathological data. RESULTS Compared with control group at multiple time points, each TAA group showed a higher radioactive liver uptake of Al[18F]F-NOTA-PEG3-Duramycin (each P < 0.05). Furthermore, the increase in the liver uptake of Al[18F]F-NOTA-PEG3-Duramycin was proportional to the progression of fibrosis (R2 = 0.8846, P < 0.001) and apoptosis rate (R2 = 0.9208, P < 0.001) in the TAA group. Meanwhile, there were also between-group differences in [18F]FDG uptake in each phase (P < 0.05), however, no relationship between [18F]FDG uptake and the fibrotic activity was observed. CONCLUSIONS Al[18F]F-NOTA-PEG3-Duramycin PET/CT could be applied to monitor the progression of liver fibrosis, whereas [18F]FDG PET/CT could not. Implications of this work for noninvasive diagnosis of liver fibrosis, assessment of fibrotic activity, and evaluation of antifibrotic therapy are expected.
Collapse
Affiliation(s)
- Shu Su
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China.
| | - Xianhong Xiang
- Department of Interventional Radiology, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China.
| | - Liping Lin
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Ying Xiong
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Hui Ma
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Gongjun Yuan
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Jing Zhao
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Zhanwen Zhang
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Shaoyu Liu
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Dahong Nie
- Department of Radiation Oncology, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China.
| | - Ganghua Tang
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Nanfang PET Center, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China.
| |
Collapse
|
16
|
Metabolic control of T FH cells and humoral immunity by phosphatidylethanolamine. Nature 2021; 595:724-729. [PMID: 34234346 PMCID: PMC8448202 DOI: 10.1038/s41586-021-03692-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/03/2021] [Indexed: 02/08/2023]
Abstract
T follicular helper (TFH) cells are crucial for B cell-mediated humoral immunity1. Although transcription factors such as BCL6 drive the differentiation of TFH cells2,3, it is unclear whether and how post-transcriptional and metabolic programs enforce TFH cell programming. Here we show that the cytidine diphosphate (CDP)-ethanolamine pathway co-ordinates the expression and localization of CXCR5 with the responses of TFH cells and humoral immunity. Using in vivo CRISPR-Cas9 screening and functional validation in mice, we identify ETNK1, PCYT2, and SELENOI-enzymes in the CDP-ethanolamine pathway for de novo synthesis of phosphatidylethanolamine (PE)-as selective post-transcriptional regulators of TFH cell differentiation that act by promoting the surface expression and functional effects of CXCR5. TFH cells exhibit unique lipid metabolic programs and PE is distributed to the outer layer of the plasma membrane, where it colocalizes with CXCR5. De novo synthesis of PE through the CDP-ethanolamine pathway co-ordinates these events to prevent the internalization and degradation of CXCR5. Genetic deletion of Pcyt2, but not of Pcyt1a (which mediates the CDP-choline pathway), in activated T cells impairs the differentiation of TFH cells, and this is associated with reduced humoral immune responses. Surface levels of PE and CXCR5 expression on B cells also depend on Pcyt2. Our results reveal that phospholipid metabolism orchestrates post-transcriptional mechanisms for TFH cell differentiation and humoral immunity, highlighting the metabolic control of context-dependent immune signalling and effector programs.
Collapse
|
17
|
Fu Y, Jaarsma AH, Kuipers OP. Antiviral activities and applications of ribosomally synthesized and post-translationally modified peptides (RiPPs). Cell Mol Life Sci 2021; 78:3921-3940. [PMID: 33532865 PMCID: PMC7853169 DOI: 10.1007/s00018-021-03759-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
The emergence and re-emergence of viral epidemics and the risks of antiviral drug resistance are a serious threat to global public health. New options to supplement or replace currently used drugs for antiviral therapy are urgently needed. The research in the field of ribosomally synthesized and post-translationally modified peptides (RiPPs) has been booming in the last few decades, in particular in view of their strong antimicrobial activities and high stability. The RiPPs with antiviral activity, especially those against enveloped viruses, are now also gaining more interest. RiPPs have a number of advantages over small molecule drugs in terms of specificity and affinity for targets, and over protein-based drugs in terms of cellular penetrability, stability and size. Moreover, the great engineering potential of RiPPs provides an efficient way to optimize them as potent antiviral drugs candidates. These intrinsic advantages underscore the good therapeutic prospects of RiPPs in viral treatment. With the aim to highlight the underrated antiviral potential of RiPPs and explore their development as antiviral drugs, we review the current literature describing the antiviral activities and mechanisms of action of RiPPs, discussing the ongoing efforts to improve their antiviral potential and demonstrate their suitability as antiviral therapeutics. We propose that antiviral RiPPs may overcome the limits of peptide-based antiviral therapy, providing an innovative option for the treatment of viral disease.
Collapse
Affiliation(s)
- Yuxin Fu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Ate H Jaarsma
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
18
|
Pandey SK, Paul A, Shteinfer-Kuzmine A, Zalk R, Bunz U, Shoshan-Barmatz V. SMAC/Diablo controls proliferation of cancer cells by regulating phosphatidylethanolamine synthesis. Mol Oncol 2021; 15:3037-3061. [PMID: 33794068 PMCID: PMC8564633 DOI: 10.1002/1878-0261.12959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/26/2021] [Accepted: 03/31/2021] [Indexed: 01/13/2023] Open
Abstract
SMAC/Diablo, a pro-apoptotic protein, yet it is overexpressed in several cancer types. We have described a noncanonical function for SMAC/Diablo as a regulator of lipid synthesis during cancer cell proliferation and development. Here, we explore the molecular mechanism through which SMAC/Diablo regulates phospholipid synthesis. We showed that SMAC/Diablo directly interacts with mitochondrial phosphatidylserine decarboxylase (PSD) and inhibits its catalytic activity during synthesis of phosphatidylethanolamine (PE) from phosphatidylserine (PS). Unlike other phospholipids (PLs), PE is synthesized not only in the endoplasmic reticulum but also in mitochondria. As a result, PSD activity and mitochondrial PE levels were increased in the mitochondria of SMAC/Diablo-deficient cancer cells, with the total amount of cellular PLs and phosphatidylcholine (PC) being lower as compared to SMAC-expressing cancer cells. Moreover, in the absence of SMAC/Diablo, PSD inhibited cancer cell proliferation by catalysing the overproduction of mitochondrial PE and depleting the cellular levels of PC, PE and PS. Additionally, we demonstrated that both SMAC/Diablo and PSD colocalization in the nucleus resulted in increased levels of nuclear PE, that acts as a signalling molecule in regulating several nuclear activities. By using a peptide array composed of 768-peptides derived from 11 SMAC-interacting proteins, we identified six nuclear proteins ARNT, BIRC2, MAML2, NR4A1, BIRC5 and HTRA2 Five of them also interacted with PSD through motifs that are not involved in SMAC binding. Synthetic peptides carrying the PSD-interacting motifs of these proteins could bind purified PSD and inhibit the PSD catalytic activity. When targeted specifically to the mitochondria or the nucleus, these synthetic peptides inhibited cancer cell proliferation. To our knowledge, these are the first reported inhibitors of PSD acting also as inhibitors of cancer cell proliferation. Altogether, we demonstrated that phospholipid metabolism and PE synthesis regulated by the SMAC-PSD interaction are essential for cancer cell proliferation and may be potentially targeted for treating cancer.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avijit Paul
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uwe Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Germany
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
19
|
Pipiya SO, Terekhov SS, Mokrushina YA, Knorre VD, Smirnov IV, Gabibov AG. Engineering Artificial Biodiversity of Lantibiotics to Expand Chemical Space of DNA-Encoded Antibiotics. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:1319-1334. [PMID: 33280576 DOI: 10.1134/s0006297920110048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery of antibiotics was one of the fundamental stages in the development of humanity, leading to a dramatic increase in the life expectancy of millions of people all over the world. The uncontrolled use of antibiotics resulted in the selection of resistant strains of bacteria, limiting the effectiveness of antimicrobial therapy nowadays. Antimicrobial peptides (AMPs) were considered promising candidates for next-generation antibiotics for a long time. However, the practical application of AMPs is restricted by their low therapeutic indices, impaired pharmacokinetics, and pharmacodynamics, which is predetermined by their peptide structure. Nevertheless, the DNA-encoded nature of AMPs enables creating broad repertoires of artificial biodiversity of antibiotics, making them versatile templates for the directed evolution of antibiotic activity. Lantibiotics are a unique class of AMPs with an expanded chemical space. A variety of post-translational modifications, mechanisms of action on bacterial membranes, and DNA-encoded nature make them a convenient molecular template for creating highly representative libraries of antimicrobial compounds. Isolation of new drug candidates from this synthetic biodiversity is extremely attractive but requires high-throughput screening of antibiotic activity. The combination of synthetic biology and ultrahigh-throughput microfluidics allows implementing the concept of directed evolution of lantibiotics for accelerated creation of new promising drug candidates.
Collapse
Affiliation(s)
- S O Pipiya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S S Terekhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yu A Mokrushina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - V D Knorre
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - I V Smirnov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A G Gabibov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
20
|
Tiwari SK, Dicks LMT, Popov IV, Karaseva A, Ermakov AM, Suvorov A, Tagg JR, Weeks R, Chikindas ML. Probiotics at War Against Viruses: What Is Missing From the Picture? Front Microbiol 2020; 11:1877. [PMID: 32973697 PMCID: PMC7468459 DOI: 10.3389/fmicb.2020.01877] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
Our world is now facing a multitude of novel infectious diseases. Bacterial infections are treated with antibiotics, albeit with increasing difficulty as many of the more common causes of infection have now developed broad spectrum antimicrobial resistance. However, there is now an even greater challenge from both old and new viruses capable of causing respiratory, enteric, and urogenital infections. Reports of viruses resistant to frontline therapeutic drugs are steadily increasing and there is an urgent need to develop novel antiviral agents. Although this all makes sense, it seems rather strange that relatively little attention has been given to the antiviral capabilities of probiotics. Over the years, beneficial strains of lactic acid bacteria (LAB) have been successfully used to treat gastrointestinal, oral, and vaginal infections, and some can also effect a reduction in serum cholesterol levels. Some probiotics prevent gastrointestinal dysbiosis and, by doing so, reduce the risk of developing secondary infections. Other probiotics exhibit anti-tumor and immunomodulating properties, and in some studies, antiviral activities have been reported for probiotic bacteria and/or their metabolites. Unfortunately, the mechanistic basis of the observed beneficial effects of probiotics in countering viral infections is sometimes unclear. Interestingly, in COVID-19 patients, a clear decrease has been observed in cell numbers of Lactobacillus and Bifidobacterium spp., both of which are common sources of intestinal probiotics. The present review, specifically motivated by the need to implement effective new counters to SARS-CoV-2, focusses attention on viruses capable of co-infecting humans and other animals and specifically explores the potential of probiotic bacteria and their metabolites to intervene with the process of virus infection. The goal is to help to provide a more informed background for the planning of future probiotic-based antiviral research.
Collapse
Affiliation(s)
- Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, India,*Correspondence: Santosh Kumar Tiwari,
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Igor V. Popov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alena Karaseva
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexey M. Ermakov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alexander Suvorov
- Institute of Experimental Medicine, Saint Petersburg, Russia,Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| | - Michael L. Chikindas
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| |
Collapse
|
21
|
Abstract
The objective of this research was to estimate whether a [99mTc]duramycin probe can be used for apoptosis imaging in patients with aortic aneurysm (AA). Vascular smooth muscle cell (SMC) apoptosis has an important influence on AA development. Thus, non-invasive imaging of SMC apoptosis may be able to evaluate AA progress and risk stratification. SMCs were treated with hydrogen peroxide (H2O2; 200 μΜ) or culture medium as a control. Apoptosis was measured using flow cytometry and [99mTc]duramycin to detect the binding efficiency to apoptotic SMCs. C57/BL6 mice were administered angiotensin-II and beta-aminopropionitrile (BAPN) subcutaneously to establish an AA model, or saline for controls. Aortic specimens underwent pathological evaluation and their aortic diameters were measured after 6 weeks. Micro-SPECT/CT scanning of [99mTc]duramycin and 18F-FDG PET detection were performed. SMCs treated with H2O2 showed more apoptosis compared with the control group (67.2 ± 3.8% vs. 16.1 ± 0.6%, P < 0.01). The experimental group showed a high rate of AA formation (70%) compared with no AA formation in the control group. The average aorta diameter was higher and [99mTc]duramycin uptake at the AA site was higher in the experimental group compared with the control group. Compared with the normal aorta in the control group, AA in experiment group had more severe medial degeneration, elastic fiber reduction and fracture, and collagen degeneration. TUNEL staining verified the higher apoptosis rate at the AA site in experiment group compared with the control group (63.9 ± 3.7% in ascending AA, 66.4 ± 4.0% in thoracic AA, vs. 3.5 ± 0.3% in normal aorta, P < 0.01). [99mTc]Duramycin may be an effective probe to evaluate apoptosis in AA.
Collapse
|
22
|
Mosayebnia M, Hajiramezanali M, Shahhosseini S. Radiolabeled Peptides for Molecular Imaging of Apoptosis. Curr Med Chem 2020; 27:7064-7089. [PMID: 32532184 DOI: 10.2174/0929867327666200612152655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/22/2022]
Abstract
Apoptosis is a regulated cell death induced by extrinsic and intrinsic stimulants. Tracking of apoptosis provides an opportunity for the assessment of cardiovascular and neurodegenerative diseases as well as monitoring of cancer therapy at early stages. There are some key mediators in apoptosis cascade, which could be considered as specific targets for delivering imaging or therapeutic agents. The targeted radioisotope-based imaging agents are able to sensitively detect the physiological signal pathways which make them suitable for apoptosis imaging at a single-cell level. Radiopeptides take advantage of both the high sensitivity of nuclear imaging modalities and favorable features of peptide scaffolds. The aim of this study is to review the characteristics of those radiopeptides targeting apoptosis with different mechanisms.
Collapse
Affiliation(s)
- Mona Mosayebnia
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Hajiramezanali
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Behesti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
24
|
Wang X, Gu Q, Breukink E. Non-lipid II targeting lantibiotics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183244. [PMID: 32126235 DOI: 10.1016/j.bbamem.2020.183244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoqi Wang
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, China
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
25
|
Liu C, Li Y, Qin X, Yang Z, Luo J, Zhang J, Gray B, Pak KY, Xu X, Cheng J, Zhang Y. Early prediction of tumor response after radiotherapy in combination with cetuximab in nasopharyngeal carcinoma using 99m Tc-duramycin imaging. Biomed Pharmacother 2020; 125:109947. [PMID: 32058215 DOI: 10.1016/j.biopha.2020.109947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/11/2020] [Accepted: 01/23/2020] [Indexed: 01/09/2023] Open
Abstract
PURPOSE 99mTc-duramycin imaging enables specific visualization of cell death qualitatively and quantitatively. This study aimed to investigate the potential of 99mTc-duramycin imaging in the early prediction of the curative effect of radiotherapy in combination with or without cetuximab in a nasopharyngeal carcinoma (NPC) model. METHODS Male BALB/c mice bearing NPC xenografts were randomized into four groups (six mice each group). Group 1 received radiotherapy (RT, 15 Gy/mouse) in combination with cetuximab (CTX, 2 mg/mouse), group 2 received RT (15 Gy/mouse), group 3 was treated using CTX (2 mg/mouse), and group 4, the control group, was treated using a vehicle. 99mTc-duramycin imaging was performed before treatment and 24 h after treatment to evaluate tumor response. Tumor uptake of 99mTc-duramycin was validated ex vivo using γ-counting. Treatment response was further validated by cleaved caspase-3 (CC3) and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL). Another four groups were treated parallelly under the same conditions to observe treatment response by tumor volume changes. RESULTS After 24 h treatment, 99mTc-duramycin uptake in the NPC tumor models were significantly higher in group 1 than in group 2 (P < 0.05), group 3 (P < 0.05), or group 4 (P < 0.05); the uptake also increased notably in comparison with baseline values (P < 0.05). Compared with group 4, group 2 and group 3 both showed significant 99mTc-duramycin uptake in the tumors (P < 0.05). Although the 99mTc-duramycin uptake of group 2 was moderately higher than group 3, there were no significant differences between these two groups (P >0.05). There was a strong positive correlation between tumor 99mTc-duramycin uptake and CC3 (r = 0.893, p < 0.0001) and TUNEL (r = 0.918, P < 0.0001). Tumor volume decreased remarkably in the RT in combination with CTX group on day 5, in the RT alone group on day 7, and was inhibited on day 8 in the CTX alone group, whereas the tumors grew continuously in the control group. CONCLUSIONS We demonstrated that RT in combination with CTX treatment significantly improved disease control in a NPC xenograft model compared with monotherapy with either. 99mTc-duramycin imaging might be able to reliably identify response to RT in combination with CTX as early as 24 h after therapy initiation in NPC xenograft models. This might help to isolate non-responding patients in a timely manner and avoid unnecessary side effects in the clinic in the future.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China; Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Yi Li
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China; Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Xiaojia Qin
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China; Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Ziyi Yang
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China; Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Jianmin Luo
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China; Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Jianping Zhang
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China; Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Brian Gray
- Molecular Targeting Technologies, Inc., West Chester, PA, 19380, USA
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, PA, 19380, USA
| | - Xiaoping Xu
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China; Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China.
| | - Jingyi Cheng
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China; Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China.
| | - Yingjian Zhang
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Biomedical Imaging, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China; Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
| |
Collapse
|
26
|
Nishimura S, Matsumori N. Chemical diversity and mode of action of natural products targeting lipids in the eukaryotic cell membrane. Nat Prod Rep 2020; 37:677-702. [PMID: 32022056 DOI: 10.1039/c9np00059c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: up to 2019Nature furnishes bioactive compounds (natural products) with complex chemical structures, yet with simple, sophisticated molecular mechanisms. When natural products exhibit their activities in cells or bodies, they first have to bind or react with a target molecule in/on the cell. The cell membrane is a major target for bioactive compounds. Recently, our understanding of the molecular mechanism of interactions between natural products and membrane lipids progressed with the aid of newly-developed analytical methods. New technology reconnects old compounds with membrane lipids, while new membrane-targeting molecules are being discovered through the screening for antimicrobial potential of natural products. This review article focuses on natural products that bind to eukaryotic membrane lipids, and includes clinically important molecules and key research tools. The chemical diversity of membrane-targeting natural products and the molecular basis of lipid recognition are described. The history of how their mechanism was unveiled, and how these natural products are used in research are also mentioned.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan.
| | | |
Collapse
|
27
|
Labyrinthopeptins Exert Broad-Spectrum Antiviral Activity through Lipid-Binding-Mediated Virolysis. J Virol 2020; 94:JVI.01471-19. [PMID: 31666384 DOI: 10.1128/jvi.01471-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
To counteract the serious health threat posed by known and novel viral pathogens, drugs that target a variety of viruses through a common mechanism have attracted recent attention due to their potential in treating (re)emerging infections, for which direct-acting antivirals are not available. We found that labyrinthopeptins A1 and A2, the prototype congeners of carbacyclic lanthipeptides, inhibit the proliferation of diverse enveloped viruses, including dengue virus, Zika virus, West Nile virus, hepatitis C virus, chikungunya virus, Kaposi's sarcoma-associated herpesvirus, cytomegalovirus, and herpes simplex virus, in the low micromolar to nanomolar range. Mechanistic studies on viral particles revealed that labyrinthopeptins induce a virolytic effect through binding to the viral membrane lipid phosphatidylethanolamine (PE). These effects are enhanced by a combined equimolar application of both labyrinthopeptins, and a clear synergism was observed across a concentration range corresponding to 10% to 90% inhibitory concentrations of the compounds. Time-resolved experiments with large unilamellar vesicles (LUVs) reveal that membrane lipid raft compositions (phosphatidylcholine [PC]/PE/cholesterol/sphingomyelin at 17:10:33:40) are particularly sensitive to labyrinthopeptins in comparison to PC/PE (90:10) LUVs, even though the overall PE amount remains constant. Labyrinthopeptins exhibited low cytotoxicity and had favorable pharmacokinetic properties in mice (half-life [t 1/2] = 10.0 h), which designates them promising antiviral compounds acting by an unusual viral lipid targeting mechanism.IMPORTANCE For many viral infections, current treatment options are insufficient. Because the development of each antiviral drug is time-consuming and expensive, the prospect of finding broad-spectrum antivirals that can fight multiple, diverse viruses-well-known viruses as well as (re)emerging species-has gained attention, especially for the treatment of viral coinfections. While most known broad-spectrum agents address processes in the host cell, we found that targeting lipids of the free virus outside the host cell with the natural products labyrinthopeptin A1 and A2 is a viable strategy to inhibit the proliferation of a broad range of viruses from different families, including chikungunya virus, dengue virus, Zika virus, Kaposi's sarcoma-associated herpesvirus, and cytomegalovirus. Labyrinthopeptins bind to viral phosphatidylethanolamine and induce virolysis without exerting cytotoxicity on host cells. This represents a novel and unusual mechanism to tackle medically relevant viral infections.
Collapse
|
28
|
Zhou J, Hu P, Si Z, Tan H, Qiu L, Zhang H, Fu Z, Mao W, Cheng D, Shi H. Treatment of Hepatocellular Carcinoma by Intratumoral Injection of 125I-AA98 mAb and Its Efficacy Assessments by Molecular Imaging. Front Bioeng Biotechnol 2019; 7:319. [PMID: 31799244 PMCID: PMC6868101 DOI: 10.3389/fbioe.2019.00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Objective: To investigate the therapeutic efficacy of intratumoral injection of 125I-AA98 mAb for hepatocellular carcinoma (HCC) and its therapy efficacy assessment by 99mTc-HYNIC-duramycin and 99mTc-HYNIC-3PRGD2 SPECT/CT imaging. Methods: HCC xenograft tumor mice models were injected intratumorally with a single dose of normal saline, 10 microcurie (μCi) 125I-AA98 mAb, free 125I, AA98 mAb, 80 μCi 125I-AA98 mAb, and 200 μCi 125I-AA98 mAb. 99mTc-HYNIC-duramycin and 99mTc-HYNIC-3PRGD2 micro-SPECT/CT imaging were performed on days 3 and 7, respectively. The T/M ratio for each imaging was compared with the corresponding immunohistochemical staining at each time point. The relative tumor inhibition rates were documented. Results: In terms of apoptosis, the 200 μCi group demonstrated the highest apoptotic index (11.8 ± 3.8%), and its T/M ratio achieved by 99mTc-HYNIC-duramycin imaging on day 3 was higher than that of the normal saline group, 80 μCi group, 10 μCi group and free 125I group on day 3, respectively (all P < 0.05). On day 3, there was a markedly positive correlation between T/M ratio from 99mTc-HYNIC-duramycin imaging and apoptotic index by TUNEL staining (r = 0.6981; P < 0.05). Moreover, the 200 μCi group showed the lowest T/M ratio on 99mTc-HYNIC-3PRGD2 imaging (1.0 ± 0.5) on day 7 (all P < 0.05) comparing to other groups. The T/M ratio on day 7 was not correlated with integrin ανβ3 staining (P > 0.05). The relative inhibitory rates of tumor on day 14 in the AA98 mAb, 10 μCi, 80 μCi, free 125I, and 200 μCi groups were 26.3, 55.3, 60.5, 66.3, and 69.5%, respectively. Conclusion:125I-AA98 mAb showed more effective apoptosis induced ability for CD146 high expression Hep G2 HCC cells and hold the potential for HCC treatment. Moreover, 99mTc-HYNIC-Duramycin (apoptosis-targeted) imaging and 99mTc-HYNIC-3PRGD2 (angiogenesis-targeted) imaging are reliable non-invasive methods to evaluate the efficacy of targeted treatment of HCC.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Nuclear Medicine, Xuhui District Central Hospital of Shanghai, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - He Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
29
|
Vestergaard M, Berglund NA, Hsu PC, Song C, Koldsø H, Schiøtt B, Sansom MSP. Structure and Dynamics of Cinnamycin-Lipid Complexes: Mechanisms of Selectivity for Phosphatidylethanolamine Lipids. ACS OMEGA 2019; 4:18889-18899. [PMID: 31737850 PMCID: PMC6854821 DOI: 10.1021/acsomega.9b02949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/11/2019] [Indexed: 05/31/2023]
Abstract
Cinnamycin is a lantibiotic peptide, which selectively binds to and permeabilizes membranes containing phosphatidylethanolamine (PE) lipids. As PE is a major component of many bacterial cell membranes, cinnamycin has considerable potential for destroying these. In this study, molecular dynamics simulations are used to elucidate the structure of a lipid-cinnamycin complex and the origin of selective lipid binding. The simulations reveal that cinnamycin selectively binds to PE by forming an extensive hydrogen-bonding network involving all three hydrogen atoms of the primary ammonium group of the PE head group. The substitution of a single hydrogen atom with a methyl group on the ammonium nitrogen destabilizes this hydrogen-bonding network. In addition to binding the primary ammonium group, cinnamycin also interacts with the phosphate group of the lipid through a previously uncharacterized phosphate-binding site formed by the backbone Phe10-Abu11-Phe12-Val13 moieties (Abu = 1-α-aminobutyric acid). In addition, hydroxylation of Asp15 at Cβ plays a role in selective binding of PE due to its tight interaction with the charged amine of the lipid head group. The simulations reveal that the position and orientation of the peptide in the membrane depend on the type of lipid to which it binds, suggesting a reason for why cinnamycin selectively permeabilizes PE-containing membranes.
Collapse
Affiliation(s)
- Mikkel Vestergaard
- Center
for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience
Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Nils Anton Berglund
- Center
for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience
Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Pin-Chia Hsu
- Center
for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience
Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Chen Song
- Department
of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, United Kingdom
| | - Heidi Koldsø
- Department
of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, United Kingdom
| | - Birgit Schiøtt
- Center
for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience
Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Mark S. P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, United Kingdom
| |
Collapse
|
30
|
Li J, Gray BD, Pak KY, Ng CK. Targeting phosphatidylethanolamine and phosphatidylserine for imaging apoptosis in cancer. Nucl Med Biol 2019; 78-79:23-30. [PMID: 31678784 DOI: 10.1016/j.nucmedbio.2019.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/03/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Both phosphatidylethanolamine (PE) and phosphatidylserine (PS) can be externalized to the outer cell membrane in apoptosis. Thus the objective was to determine whether PE-targeting 18F-duramycin and PS-targeting 18F-Zn-DPA could be used for imaging apoptosis. METHODS Duramycin and Zn-DPA were labeled with either 18F-Al or 18F-SFB. U937 cells were incubated with four different concentrations of camptothecin (CPT). For assessing the effect of incubation time on uptake, 37 MBq of radiotracer was added to cells incubated for 15, 30, 60, and 120 min at 37 °C. For blocking experiments, 150 μg duramycin and 40 μg Zn-DPA were added to cells for 15 min prior to the addition of either duramycin or Zn-DPA labeled with 18F. Apoptosis was measured by flow cytometry using an annexin-V/PI kit. Cells were co-stained with Hoechst, Cy5-duramycin, and PSVue480 (FITC-Zn-DPA) to localize fluorescent dye uptake in cells. RESULTS Apoptosis in cells increased proportionally with CTP as confirmed by both flow cytometry and fluorescent staining. Both FITC-Zn-DPA and FITC-duramycin localized mainly on the cell membrane during early apoptosis and then translocated to the inside during late apoptosis. Uptake of FITC-duramycin, however, was higher than that of FITC-Zn-DPA. Cellular uptake of four different radiotracers was also proportional to the degree of apoptosis, increasing slightly over time and reaching a plateau at about 1 h. The blocking experiments demonstrated that uptake in all the control groups was predominantly non-specific, whereas the specific uptake in all the treated groups was at least 50% for both 18F labeled duramycin and Zn-DPA. CONCLUSION Both PE-targeting 18F-duramycin and PS-targeting 18F-Zn-DPA could be considered as potential radiotracers for imaging cellular apoptosis. Advances in knowledge and implications for patient care: Cellular data support the further development of radiotracers targeting either PE or PS for imaging apoptosis, which can associate with clinical outcome for cancer patients.
Collapse
Affiliation(s)
- Junling Li
- University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Brian D Gray
- Molecular Targeting Technologies, Inc., West Chester, PA, United States of America
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, PA, United States of America
| | - Chin K Ng
- University of Louisville School of Medicine, Louisville, KY, United States of America.
| |
Collapse
|
31
|
Martínez-Vieyra V, Rodríguez-Varela M, García-Rubio D, De la Mora-Mojica B, Méndez-Méndez J, Durán-Álvarez C, Cerecedo D. Alterations to plasma membrane lipid contents affect the biophysical properties of erythrocytes from individuals with hypertension. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182996. [PMID: 31150634 DOI: 10.1016/j.bbamem.2019.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Genetic and environmental factors may contribute to high blood pressure, which is termed essential hypertension. Hypertension is a major independent risk factor for cardiovascular disease, stroke and renal failure; thus, elucidation of the etiopathology of hypertension merits further research. We recently reported that the platelets and neutrophils of patients with hypertension exhibit altered biophysical characteristics. In the present study, we assessed whether the major structural elements of erythrocyte plasma membranes are altered in individuals with hypertension. We compared the phospholipid (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingosine) and cholesterol contents of erythrocytes from individuals with hypertension (HTN) and healthy individuals (HI) using LC/MS-MS. HTN erythrocytes contained higher phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine contents and a lower cholesterol content than HI erythrocytes. Furthermore, atomic force microscopy revealed important morphological changes in HTN erythrocytes, which reflected the increased membrane fragility and fluidity and higher levels of oxidative stress observed in HTN erythrocytes using spectrophotofluorometry, flow cytometry and spectrometry. This study reveals that alterations to the lipid contents of erythrocyte plasma membranes occur in hypertension, and these alterations in lipid composition result in morphological and physiological abnormalities that modify the dynamic properties of erythrocytes and contribute to the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Vette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, Mexico
| | - Mario Rodríguez-Varela
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Diana García-Rubio
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, Mexico
| | | | | | - Carlos Durán-Álvarez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, Mexico.
| |
Collapse
|
32
|
A Comparison of [ 99mTc]Duramycin and [ 99mTc]Annexin V in SPECT/CT Imaging Atherosclerotic Plaques. Mol Imaging Biol 2019; 20:249-259. [PMID: 28785938 DOI: 10.1007/s11307-017-1111-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Apoptosis is a key factor in unstable plaques. The aim of this study is to evaluate the utility of visualizing atherosclerotic plaques with radiolabeled duramycin and Annexin V. PROCEDURES ApoE-/- mice were fed with a high-fat diet to develop atherosclerosis, C57 mice as a control. Using a routine conjugation protocol, highly pure [99mTc]duramycin and [99mTc]Annexin V were obtained, which were applied for in vitro cell assays of apoptosis and in vivo imaging of atherosclerotic plaques in the animal model. Oil Red O staining, TUNEL, hematoxylin-eosin (HE), and CD68 immunostaining were used to evaluate the deposition of lipids and presence of apoptotic macrophages in the lesions where focal intensity positively correlated with the uptake of both tracers. RESULTS [99mTc]duramycin and [99mTc]Annexin V with a high radiochemical purity (97.13 ± 1.52 and 94.94 ± 0.65 %, respectively) and a well stability at room temperature were used. Apoptotic cells binding activity to [99mTc]duramycin (Kd, 6.92 nM and Bmax, 56.04 mol/1019 cells) was significantly greater than [99mTc]Annexin V (Kd, 12.63 nM and Bmax, 31.55 mol/1019 cells). Compared with [99mTc]Annexin V, [99mTc]duramycin bound avidly to atherosclerotic lesions with a higher plaque-to-background ratio (P/B was 8.23 ± 0.91 and 5.45 ± 0.48 at 20 weeks, 15.02 ± 0.23 and 12.14 ± 0.22 at 30 weeks). No plaques were found in C57 control mice. Furthermore, Oil Red O staining showed lipid deposition areas were significantly increased in ApoE-/- mice at 20 and 30 weeks, and TUNEL and CD68 staining confirmed that the focal uptake of both tracers contained abundant apoptotic macrophages. CONCLUSIONS This stable, fast clearing, and highly specific [99mTc]duramycin, therefore, can be useful for the quantification of vulnerable atherosclerotic plaques.
Collapse
|
33
|
Haskali MB, Denoyer D, Roselt PD, Hicks RJ, Hutton CA. Radiosynthesis and preliminary in vivo evaluation of 18F-labelled glycosylated duramycin peptides for imaging of phosphatidylethanolamine during apoptosis. MEDCHEMCOMM 2019. [DOI: 10.1039/c9md00354a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[18F]-Labelled duramycin derivatives incorporating hydrophilic aminogalacturonic acid moieties were prepared as tracers for in vivo imaging of phosphatidylethanolamine during apoptosis.
Collapse
Affiliation(s)
- Mohammad B. Haskali
- School of Chemistry
- The University of Melbourne
- Australia
- Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
| | - Delphine Denoyer
- The Centre for Molecular Imaging and Translational Research Laboratory
- The Peter MacCallum Cancer Centre
- Melbourne
- Australia
| | - Peter D. Roselt
- The Centre for Molecular Imaging and Translational Research Laboratory
- The Peter MacCallum Cancer Centre
- Melbourne
- Australia
| | - Rodney J. Hicks
- The Centre for Molecular Imaging and Translational Research Laboratory
- The Peter MacCallum Cancer Centre
- Melbourne
- Australia
- The Sir Peter MacCallum Department of Oncology
| | - Craig A. Hutton
- School of Chemistry
- The University of Melbourne
- Australia
- Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
| |
Collapse
|
34
|
[99mTc]Tc-duramycin, a potential molecular probe for early prediction of tumor response after chemotherapy. Nucl Med Biol 2018; 66:18-25. [DOI: 10.1016/j.nucmedbio.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022]
|
35
|
Dicks LMT, Dreyer L, Smith C, van Staden AD. A Review: The Fate of Bacteriocins in the Human Gastro-Intestinal Tract: Do They Cross the Gut-Blood Barrier? Front Microbiol 2018; 9:2297. [PMID: 30323796 PMCID: PMC6173059 DOI: 10.3389/fmicb.2018.02297] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022] Open
Abstract
The intestinal barrier, consisting of the vascular endothelium, epithelial cell lining, and mucus layer, covers a surface of about 400 m2. The integrity of the gut wall is sustained by transcellular proteins forming tight junctions between the epithelial cells. Protected by three layers of mucin, the gut wall forms a non-permeable barrier, keeping digestive enzymes and microorganisms within the luminal space, separate from the blood stream. Microorganisms colonizing the gut may produce bacteriocins in an attempt to outcompete pathogens. Production of bacteriocins in a harsh and complex environment such as the gastro-intestinal tract (GIT) may be below minimal inhibitory concentration (MIC) levels. At such low levels, the stability of bacteriocins may be compromised. Despite this, most bacteria in the gut have the ability to produce bacteriocins, distributed throughout the GIT. With most antimicrobial studies being performed in vitro, we know little about the migration of bacteriocins across epithelial barriers. The behavior of bacteriocins in the GIT is studied ex vivo, using models, flow cells, or membranes resembling the gut wall. Furthermore, little is known about the effect bacteriocins have on the immune system. It is generally believed that the peptides will be destroyed by macrophages once they cross the gut wall. Studies done on the survival of neurotherapeutic peptides and their crossing of the brain-blood barrier, along with other studies on small peptides intravenously injected, may provide some answers. In this review, the stability of bacteriocins in the GIT, their effect on gut epithelial cells, and their ability to cross epithelial cells are discussed. These are important questions to address in the light of recent papers advocating the use of bacteriocins as possible alternatives to, or used in combination with, antibiotics.
Collapse
Affiliation(s)
- Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Leané Dreyer
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anton D. van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
36
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
37
|
Smith TE, Pond CD, Pierce E, Harmer ZP, Kwan J, Zachariah MM, Harper MK, Wyche TP, Matainaho TK, Bugni TS, Barrows LR, Ireland CM, Schmidt EW. Accessing chemical diversity from the uncultivated symbionts of small marine animals. Nat Chem Biol 2018; 14:179-185. [PMID: 29291350 PMCID: PMC5771842 DOI: 10.1038/nchembio.2537] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022]
Abstract
Chemistry drives many biological interactions between the microbiota and host animals, yet it is often challenging to identify the chemicals involved. This poses a problem, as such small molecules are excellent sources of potential pharmaceuticals, pretested by nature for animal compatibility. We discovered anti-HIV compounds from small, marine tunicates from the Eastern Fields of Papua New Guinea. Tunicates are a reservoir for novel bioactive chemicals, yet their small size often impedes identification or even detection of the chemicals within. We solved this problem by combining chemistry, metagenomics, and synthetic biology to directly identify and synthesize the natural products. We show that these anti-HIV compounds, the divamides, are a novel family of lanthipeptides produced by symbiotic bacteria living in the tunicate. Neighboring animal colonies contain structurally related divamides that differ starkly in their biological properties, suggesting a role for biosynthetic plasticity in a native context where biological interactions take place.
Collapse
Affiliation(s)
- Thomas E Smith
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Christopher D Pond
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Elizabeth Pierce
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Zachary P Harmer
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Jason Kwan
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Malcolm M Zachariah
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Thomas P Wyche
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Teatulohi K Matainaho
- Discipline of Pharmacology, School of Medicine and Health Sciences, University of Papua New Guinea, National Capital District 111, Papua New Guinea
| | - Tim S Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Louis R Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Chris M Ireland
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
38
|
Palmieri L, Elvas F, Vangestel C, Pak K, Gray B, Stroobants S, Staelens S, wyffels L. [ 99m Tc]duramycin for cell death imaging: Impact of kit formulation, purification and species difference. Nucl Med Biol 2018; 56:1-9. [DOI: 10.1016/j.nucmedbio.2017.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023]
|
39
|
Phosphatidylethanolamine targeting for cell death imaging in early treatment response evaluation and disease diagnosis. Apoptosis 2017. [DOI: 10.1007/s10495-017-1384-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Neves AA, Xie B, Fawcett S, Alam IS, Witney TH, de Backer MM, Summers J, Hughes W, McGuire S, Soloviev D, Miller J, Howat WJ, Hu DE, Rodrigues TB, Lewis DY, Brindle KM. Rapid Imaging of Tumor Cell Death In Vivo Using the C2A Domain of Synaptotagmin-I. J Nucl Med 2017; 58:881-887. [PMID: 28209913 DOI: 10.2967/jnumed.116.183004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Cell death is an important target for imaging the early response of tumors to treatment. We describe here the validation of a phosphatidylserine-binding agent for detecting tumor cell death in vivo based on the C2A domain of synaptotagmin-I. Methods: The capability of near-infrared fluorophore-labeled and 99mTc- and 111In-labeled derivatives of C2Am for imaging tumor cell death, using planar near-infrared fluorescence imaging and SPECT, respectively, was evaluated in implanted and genetically engineered mouse models of lymphoma and in a human colorectal xenograft. Results: The fluorophore-labeled C2Am derivative showed predominantly renal clearance and high specificity and sensitivity for detecting low levels of tumor cell death (2%-5%). There was a significant correlation (R > 0.9, P < 0.05) between fluorescently labeled C2Am binding and histologic markers of cell death, including cleaved caspase-3, whereas there was no such correlation with a site-directed mutant of C2Am (iC2Am) that does not bind phosphatidylserine. 99mTc-C2Am and 111In-C2Am also showed favorable biodistribution profiles, with predominantly renal clearance and low nonspecific retention in the liver and spleen at 24 h after probe administration. 99mTc-C2Am and 111In-C2Am generated tumor-to-muscle ratios in drug-treated tumors of 4.3× and 2.2×, respectively, at 2 h and 7.3× and 4.1×, respectively, at 24 h after administration. Conclusion: Given the favorable biodistribution profile of 99mTc- and 111In-labeled C2Am, and their ability to produce rapid and cell death-specific image contrast, these agents have potential for clinical translation.
Collapse
Affiliation(s)
- André A Neves
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Bangwen Xie
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Sarah Fawcett
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Israt S Alam
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Timothy H Witney
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Maaike M de Backer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Julia Summers
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - William Hughes
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Sarah McGuire
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Dmitry Soloviev
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Jodi Miller
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - William J Howat
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - De-En Hu
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Tiago B Rodrigues
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - David Y Lewis
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
| | - Kevin M Brindle
- Cancer Research United Kingdom Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom; and
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
42
|
Larson MC, Karafin MS, Hillery CA, Hogg N. Phosphatidylethanolamine is progressively exposed in RBCs during storage. Transfus Med 2017; 27:136-141. [PMID: 28134466 DOI: 10.1111/tme.12382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/15/2016] [Accepted: 11/26/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND It is well established that as a blood unit ages, fewer of the unit's red blood cells (RBCs) remain in circulation post-transfusion. The mechanism for clearance is not well defined. Phosphatidylethanolamine (PE) is a phospholipid that is primarily found on the inner leaflet of healthy cells, and is an important ligand for phagocytosis of dead cells when exposed. OBJECTIVES The objective of the present study was to measure the change in PE exposure in donor RBCs over increasing storage ages using the novel PE-specific probe, duramycin. METHODS Five adsol (AS-1) preserved RBC units were sampled weekly for 6 weeks and were labelled with duramycin. The percentage of PE exposed on red cells in each sample was determined using flow cytometry. Surface phosphatidylserine (PS) was evaluated for comparison. RESULTS We found that RBCs in AS-preserved donor units increasingly exposed PE, from less than 1% in freshly processed RBCs, to nearly 20% at 42 days of storage and correlated with increased relative vesiculation or microparticle concentration and release of cell-free haemoglobin. By comparison, only 5% of cells exposed PS at 42 days. CONCLUSION We conclude that exposure of PE in the RBC outer membrane was higher than that of PS during 42 days of storage and correlated significantly with increased vesiculation and release of haemoglobin.
Collapse
Affiliation(s)
- M C Larson
- Medical Imaging Department, University of Arizona, Tucson, Arizona, USA
| | - M S Karafin
- Blood Research Institute, Blood Center of Wisconsin, Wisconsin, USA.,Pathology Department, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - C A Hillery
- Pediatric Hematology Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - N Hogg
- Biophysics Department, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
43
|
Tan LTH, Chan KG, Pusparajah P, Lee WL, Chuah LH, Khan TM, Lee LH, Goh BH. Targeting Membrane Lipid a Potential Cancer Cure? Front Pharmacol 2017; 8:12. [PMID: 28167913 PMCID: PMC5253362 DOI: 10.3389/fphar.2017.00012] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer mortality and morbidity is projected to increase significantly over the next few decades. Current chemotherapeutic strategies have significant limitations, and there is great interest in seeking novel therapies which are capable of specifically targeting cancer cells. Given that fundamental differences exist between the cellular membranes of healthy cells and tumor cells, novel therapies based on targeting membrane lipids in cancer cells is a promising approach that deserves attention in the field of anticancer drug development. Phosphatidylethanolamine (PE), a lipid membrane component which exists only in the inner leaflet of cell membrane under normal circumstances, has increased surface representation on the outer membrane of tumor cells with disrupted membrane asymmetry. PE thus represents a potential chemotherapeutic target as the higher exposure of PE on the membrane surface of cancer cells. This feature as well as a high degree of expression of PE on endothelial cells in tumor vasculature, makes PE an attractive molecular target for future cancer interventions. There have already been several small molecules and membrane-active peptides identified which bind specifically to the PE molecules on the cancer cell membrane, subsequently inducing membrane disruption leading to cell lysis. This approach opens up a new front in the battle against cancer, and is of particular interest as it may be a strategy that may be prove effective against tumors that respond poorly to current chemotherapeutic agents. We aim to highlight the evidence suggesting that PE is a strong candidate to be explored as a potential molecular target for membrane targeted novel anticancer therapy.
Collapse
Affiliation(s)
- Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia Bandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia Selangor, Malaysia
| | - Lay-Hong Chuah
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia Bandar Sunway, Malaysia
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Department of Pharmacy, Abasyn University PeshawarPeshawar, Pakistan
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
44
|
Insights into the Biosynthesis of Duramycin. Appl Environ Microbiol 2017; 83:AEM.02698-16. [PMID: 27864176 DOI: 10.1128/aem.02698-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/10/2016] [Indexed: 12/25/2022] Open
Abstract
Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides that are characterized by the thioether cross-linked bisamino acids lanthionine (Lan) and methyllanthionine (MeLan). Duramycin contains 19 amino acids, including one Lan and two MeLans, an unusual lysinoalanine (Lal) bridge formed from the ε-amino group of lysine 19 and a serine residue at position 6, and an erythro-3-hydroxy-l-aspartic acid at position 15. These modifications are important for the interactions of duramycin with its biological target, phosphatidylethanolamine (PE). Based on the binding affinity and specificity for PE, duramycin has been investigated as a potential therapeutic, as a molecular probe to investigate the role and localization of PE in biological systems, and to block viral entry into mammalian cells. In this study, we identified the duramycin biosynthetic gene cluster by genome sequencing of Streptomyces cinnamoneus ATCC 12686 and investigated the dur biosynthetic machinery by heterologous expression in Escherichia coli In addition, the analog duramycin C, containing six amino acid changes compared to duramycin, was successfully generated in E. coli The substrate recognition motif of DurX, an α-ketoglutarate/iron(II)-dependent hydroxylase that carries out the hydroxylation of aspartate 15 of the precursor peptide DurA, was also investigated using mutagenesis of the DurA peptide. Both in vivo and in vitro results demonstrated that Gly16 is important for DurX activity. IMPORTANCE Duramycin is a natural product produced by certain bacteria that binds to phosphatidylethanolamine (PE). Because PE is involved in many cellular processes, duramycin is an antibiotic that kills bacteria, but it has also been used as a molecular probe to detect PE and monitor its localization in mammalian cells and even whole organisms, and it was recently shown to display broad-spectrum inhibition of viral entry into host cells. In addition, the molecule has been evaluated as treatment for cystic fibrosis. We report here the genes that are involved in duramycin biosynthesis, and we produced duramycin by expressing those genes in Escherichia coli We show that duramycin analogs can also be produced. The ability to access duramycin and analogs by production in E. coli opens opportunities to improve duramycin as an antibiotic, PE probe, antiviral, or cystic fibrosis therapeutic.
Collapse
|
45
|
Kim J, Yin T, Shinozaki K, Lampe JW, Becker LB. Potential of lysophosphatidylinositol as a prognostic indicator of cardiac arrest using a rat model. Biomarkers 2016; 22:755-763. [DOI: 10.1080/1354750x.2016.1265002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Junhwan Kim
- Laboratory for Critical Care Physiology, Department of Emergency Medicine, Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Department of Emergency Medicine, Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Koichiro Shinozaki
- Laboratory for Critical Care Physiology, Department of Emergency Medicine, Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Joshua W. Lampe
- Laboratory for Critical Care Physiology, Department of Emergency Medicine, Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Department of Emergency Medicine, Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| |
Collapse
|
46
|
Probing phosphoethanolamine-containing lipids in membranes with duramycin/cinnamycin and aegerolysin proteins. Biochimie 2016; 130:81-90. [DOI: 10.1016/j.biochi.2016.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023]
|
47
|
Broughton LJ, Giuntini F, Savoie H, Bryden F, Boyle RW, Maraveyas A, Madden LA. Duramycin-porphyrin conjugates for targeting of tumour cells using photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:374-84. [DOI: 10.1016/j.jphotobiol.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/27/2022]
|
48
|
Abstract
Duramycin, through binding with phosphatidylethanolamine (PE), has shown potential to be an effective antitumour agent. However, its mode of action in relation to tumour cells is not fully understood. PE expression on the surface of a panel of cancer cell lines was analysed using duramycin and subsequent antibody labelling, and then analysed by flow cytometry. Cell viability was also assessed by flow cytometry using annexin V and propidium iodide. Calcium ion (Ca) release by tumour cells in response to duramycin was determined by spectrofluorometry following incubation with Fluo-3, AM. Confocal microscopy was performed on the cancer cell line AsPC-1 to assess real-time cell response to duramycin treatment. Duramycin could detect cell surface PE expression on all 15 cancer cell lines screened, which was shown to be duramycin concentration dependent. However, higher concentrations induced necrotic cell death. Duramycin induced calcium ion (Ca) release from the cancer cell lines also in a concentration-dependent and time-dependent manner. Confocal microscopy showed an influx of propidium iodide into the cells over time and induced morphological changes. Duramycin induces Ca release from cancer cell lines in a time-dependent and concentration-dependent manner.
Collapse
|
49
|
Isolation and structure determination of a new lantibiotic cinnamycin B from Actinomadura atramentaria based on genome mining. J Ind Microbiol Biotechnol 2016; 43:1159-65. [PMID: 27255974 DOI: 10.1007/s10295-016-1788-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/21/2016] [Indexed: 01/26/2023]
Abstract
New lantibiotic cinnamycin B was isolated from the extract of Actinomadura atramentaria NBRC 14695(T), based on genome mining and chemical investigation. The partial structure of cinnamycin B was established by 2D NMR experiments, which indicated that cinnamycin B had same methyl lanthionine bridging pattern with cinnamycin. The reduction with NaBH4-NiCl2 afforded the reduced cinnamycin B, and MS/MS experiment indicated the presence of hydroxy asparatic acid in the molecule. Cinnamycin B showed an antibacterial activity against Streptomyces antibioticus with dosage of 5 μg (0.5μL, 10 mg/mL solution) at spot-on-lawn testing method. The gene cluster of cinnamycin B on the genome of A. atramentaria was identified and discussed in comparison with that of cinnamycin.
Collapse
|
50
|
Liu Z, Larsen BT, Lerman LO, Gray BD, Barber C, Hedayat AF, Zhao M, Furenlid LR, Pak KY, Woolfenden JM. Detection of atherosclerotic plaques in ApoE-deficient mice using (99m)Tc-duramycin. Nucl Med Biol 2016; 43:496-505. [PMID: 27236285 DOI: 10.1016/j.nucmedbio.2016.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/07/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022]
Abstract
UNLABELLED Apoptosis of macrophages and smooth muscle cells is linked to atherosclerotic plaque destabilization. The apoptotic cascade leads to exposure of phosphatidylethanolamine (PE) on the outer leaflet of the cell membrane, thereby making apoptosis detectable using probes targeting PE. The objective of this study was to exploit capabilities of a PE-specific imaging probe, (99m)Tc-duramycin, in localizing atherosclerotic plaque and assessing plaque evolution in apolipoprotein-E knockout (ApoE(-/-)) mice. METHODS Atherosclerosis was induced in ApoE(-/-) mice by feeding an atherogenic diet. (99m)Tc-duramycin images were acquired using a small-animal SPECT imager. Six ApoE(-/-) mice at 20weeks of age (Group I) were imaged and then sacrificed for ex vivo analyses. Six additional ApoE(-/-) mice (Group II) were imaged at 20 and 40weeks of age before sacrifice. Six ApoE wild-type (ApoE(+/+)) mice (Group III) were imaged at 40weeks as controls. Five additional ApoE(-/-) mice (40weeks of age) (Group IV) were imaged with a (99m)Tc-labeled inactive peptide, (99m)Tc-LinDUR, to assess (99m)Tc-duramycin targeting specificity. RESULTS Focal (99m)Tc-duramycin uptake in the ascending aorta and aortic arch was detected at 20 and 40weeks in the ApoE(-/-) mice but not in ApoE(+/+) mice. (99m)Tc-duramycin uptake in the aortic lesions increased 2.2-fold on quantitative imaging in the ApoE(-/-) mice between 20 and 40weeks. Autoradiographic and histological data indicated significantly increased (99m)Tc-duramycin uptake in the ascending aorta and aortic arch associated with advanced plaques. Quantitative autoradiography showed that the ratio of activity in the aortic arch to descending thoracic aorta, which had no plaques or radioactive uptake, was 2.1 times higher at 40weeks than at 20weeks (6.62±0.89 vs. 3.18±0.29, P<0.01). There was barely detectable focal uptake of (99m)Tc-duramycin in the aortic arch of ApoE(+/+) mice. No detectable (99m)Tc-LinDUR uptake was observed in the aortas of ApoE(-/-) mice. CONCLUSIONS PE-targeting properties of (99m)Tc-duramycin in the atherosclerotic mouse aortas were noninvasively characterized. (99m)Tc-duramycin is promising in localizing advanced atherosclerotic plaques.
Collapse
Affiliation(s)
- Zhonglin Liu
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA.
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Brian D Gray
- Molecular Targeting Technologies, Inc, West Chester, PA, USA
| | - Christy Barber
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Ahmad F Hedayat
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ming Zhao
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lars R Furenlid
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc, West Chester, PA, USA
| | | |
Collapse
|