1
|
Zhang M, Ouyang J, Fu L, Xu C, Ge Y, Sun S, Li X, Lai S, Ke H, Yuan B, Yang K, Yu H, Gao L, Wang Y. Hydrophobicity Determines the Bacterial Killing Rate of α-Helical Antimicrobial Peptides and Influences the Bacterial Resistance Development. J Med Chem 2022; 65:14701-14720. [DOI: 10.1021/acs.jmedchem.2c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Minghui Zhang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu215123, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu215123, China
| | - Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Cheng Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou215006Jiangsu, China
| | - Yuke Ge
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou215006Jiangsu, China
| | - Shuqing Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou215006Jiangsu, China
| | - Xiangyuan Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Shian Lai
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto610-0394, Japan
| | - Hengte Ke
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu215123, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong523808, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou215006Jiangsu, China
| | - Haining Yu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning116024, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu215123, China
| |
Collapse
|
2
|
He S, Stone TA, Deber CM. Uncoupling Amphipathicity and Hydrophobicity: Role of Charge Clustering in Membrane Interactions of Cationic Antimicrobial Peptides. Biochemistry 2021; 60:2586-2592. [PMID: 34423969 DOI: 10.1021/acs.biochem.1c00367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides with a combination of high positive charge and high hydrophobicity have high antimicrobial activity, as epitomized by peptide venoms, which are designed by nature as disruptors of host membranes yet also display significant efficacy against pathogens. To investigate this phenomenon systematically, here we focus on ponericin W1, a peptide venom isolated from Pachycondyla goeldii ants (WLGSALKIGAKLLPSVVGLFKKKKQ) to examine whether Lys positioning can be broadly applied to optimize the functional range of existing natural sequences. We prepared sets of ponericin W1 analogues, where Lys residues were either distributed in an amphipathic manner throughout the sequence (PonAmp), clustered at the N-terminus (PonN), or clustered at the C-terminus (PonC), along with their counterparts of reduced hydrophobicity through 2-4 Leu-to-Ala replacements. We found that wild-type ponericin W1 and all three variants displayed toxicity against human erythrocytes, but hemolysis was eliminated by the replacement of two or more Leu residues by Ala residues. As well, peptides containing up to 3 Leu-to-Ala replacements retained antimicrobial activity against E. coli bacteria. Biophysical analyses of peptide-membrane interaction patterns by circular dichroism spectroscopy revealed a novel mode of cluster-dependent peptide positioning vis-à-vis the water-membrane interface, where PonAmp and PonC peptides displayed full or partial helical structures, while PonN peptides were unstructured, likely due, in part, to dynamic interchange between aqueous and membrane surface environments. The overall findings suggest that the lower membrane penetration of N-terminal charge-clustered constructs coupled with moderate sequence hydrophobicity may be advantageous for conferring enhanced target selectivity for bacterial versus mammalian membranes.
Collapse
Affiliation(s)
- Shelley He
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tracy A Stone
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles M Deber
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
3
|
Prasad P, Singh R, Kamaraju S, Sritharan V, Gupta S. ε-Polylysine Nanoconjugates: Value-Added Antimicrobials for Drug-Resistant Bacteria. ACS APPLIED BIO MATERIALS 2020; 3:6688-6696. [DOI: 10.1021/acsabm.0c00569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Puja Prasad
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rohini Singh
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Saipriya Kamaraju
- Molecular Diagnostics and Biomarkers Lab, Gleneagles Global Hospitals, Lakdi ka pul, Hyderabad 500004, India
| | - Venkataraman Sritharan
- Molecular Diagnostics and Biomarkers Lab, Gleneagles Global Hospitals, Lakdi ka pul, Hyderabad 500004, India
| | - Shalini Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
4
|
Ramirez D, Berry L, Domalaon R, Brizuela M, Schweizer F. Dilipid Ultrashort Tetrabasic Peptidomimetics Potentiate Novobiocin and Rifampicin Against Multidrug-Resistant Gram-Negative Bacteria. ACS Infect Dis 2020; 6:1413-1426. [PMID: 32357292 DOI: 10.1021/acsinfecdis.0c00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of new antibacterial agents and therapeutic approaches is of high importance to address the global problem of antibiotic resistance. Although antimicrobial peptides are known to synergize with certain antibiotics, their clinical application is limited by their systemic toxicity, protease instability, and high production cost. To overcome these problems, nine dilipid ultrashort tetrabasic peptidomimetics (dUSTBPs) were prepared consisting of three basic amino acids separated by a molecular scaffold, bis(3-aminopropyl)glycine, and were ligated to two fatty acids. Several nonhemolytic dUSTBPs were shown to enhance the activity of several antibiotics against pathogenic Gram-negative bacteria. More importantly, dUSTBP 8, consisting of three l-arginine units and a dilipid of 8 carbons long, potentiated novobiocin and rifampicin consistently against multidrug-resistant (MDR) clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacteriaceae. Preliminary studies suggested that dUSTBPs were likely to potentiate antibiotics through outer membrane permeabilization and/or disruption of active efflux and that dUSTBP 8 exhibited enhanced resistance to trypsin in comparison to the previously described di-C9-KKKK-NH2 antibiotic potentiator. The antibacterial activity of rifampicin and novobiocin was enhanced by dUSTBP 8 comparable to other known outer membrane permeabilizing potentiators including the gold standard polymyxin B nonapeptide. Our results indicate that ultrashort tetrabasic peptidomimetics are potent adjuvants that repurpose novobiocin and rifampicin as potent agents against priority MDR Gram-negative pathogens.
Collapse
Affiliation(s)
- Danyel Ramirez
- Department of Chemistry, Faculty of Science, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Liam Berry
- Department of Chemistry, Faculty of Science, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ronald Domalaon
- Department of Chemistry, Faculty of Science, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Marc Brizuela
- Department of Chemistry, Faculty of Science, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Frank Schweizer
- Department of Chemistry, Faculty of Science, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba R3T 1R9, Canada
| |
Collapse
|
5
|
Gunasekaran P, Kim EY, Lee J, Ryu EK, Shin SY, Bang JK. Synthesis of Fmoc-Triazine Amino Acids and Its Application in the Synthesis of Short Antibacterial Peptidomimetics. Int J Mol Sci 2020; 21:ijms21103602. [PMID: 32443730 PMCID: PMC7279249 DOI: 10.3390/ijms21103602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
To combat the escalating rise of antibacterial resistance, the development of antimicrobial peptides (AMPs) with a unique mode of action is considered an attractive strategy. However, proteolytic degradation of AMPs remains the greatest challenge in their transformation into therapeutics. Herein, we synthesized Fmoc-triazine amino acids that differ from each other by anchoring either cationic or hydrophobic residues. These unnatural amino acids were adopted for solid-phase peptide synthesis (SPPS) to synthesize a series of amphipathic antimicrobial peptidomimetics. From the antimicrobial screening, we found that the trimer, BJK-4 is the most potent short antimicrobial peptidomimetic without showing hemolytic activity and it displayed enhanced proteolytic stability. Moreover, the mechanism of action to kill bacteria was found to be an intracellular targeting.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
| | - Eun Young Kim
- Department of Medical Science, Graduate School, Chosun University, Gwangju 61452, Korea; (E.Y.K.); (S.Y.S.)
| | - Jian Lee
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Korea
| | - Song Yub Shin
- Department of Medical Science, Graduate School, Chosun University, Gwangju 61452, Korea; (E.Y.K.); (S.Y.S.)
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-43-240-5023
| |
Collapse
|
6
|
Antibacterial AZT derivative regulates metastasis of breast cancer cells. Eur J Med Chem 2020; 193:112233. [PMID: 32199136 DOI: 10.1016/j.ejmech.2020.112233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Antimicrobial peptides (AMP) with anticancer activity have drawn remarkable attention in modern treatments. However, long peptide length and protease instability are the most addressing factors, which hampers their further development as therapeutic agents. In view of this, herein, we designed and synthesized a series of AZT-based cationic small molecule incorporating a variety of hydrophobic groups and cationic charges, including amine and guanidine groups to mimic the amphipathic structure of AMPs. These compounds were evaluated for their antibacterial activity against Gram-positive and Gram-negative bacteria. Through an extensive structure activity relationship study (SAR), we identified ADG-2e as the most potent antibacterial agent, which exhibited remarkable potency against drug resistant bacterial strains such as MRSA and MDRPA. Further, ADG-2e was examined for their anti-metastatic ability by investigating the cancer cell migration and invasiveness through scratch wound-healing assay and transwell invasive assay, respectively. In addition, time-lapse cell tracking analysis also performed for analyzing the cell movement pattern. Treatment of ADG-2e against metastatic breast cancer cells (MDA-MB-231) suppressed tumor cell migration by multi-directional lamellipodium formation, indicating their anti-metastatic potential. Thus, our cationic AZT based small molecules may evolve as an appealing class of antibacterial agents with anti-metastasis potential.
Collapse
|
7
|
Gunasekaran P, Fan M, Kim EY, Shin JH, Lee JE, Son EJ, Kim J, Hwang E, Yim MS, Kim EH, Choi YJ, Lee YH, Chung YH, Kim HN, Ryu EK, Shin SY, Kim EK, Bang JK. Amphiphilic Triazine Polymer Derivatives as Antibacterial And Anti-atopic Agents in Mice Model. Sci Rep 2019; 9:15161. [PMID: 31641232 PMCID: PMC6805867 DOI: 10.1038/s41598-019-51561-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
Considering the emergence of bacterial resistance and low proteolytic stability of antimicrobial peptides (AMPs), herein we developed a series of ultra-short triazine based amphipathic polymers (TZP) that are connected with ethylene diamine linkers instead of protease sensitive amide bond. The most potent oligomers, TZP3 and TZP5 not only displayed potent antibacterial action on various drug-resistant pathogens but also exhibited a strong synergic antibacterial activity in combination with chloramphenicol against multidrug-resistant Pseudomonas aeruginosa (MDRPA). Since most of atopic dermatitis (AD) infections are caused by bacterial colonization, we evaluated the potency of TZP3 and TZP5 on AD in vitro and in vivo. In vitro AD analysis of these two polymers showed significant inhibition against the release of β-hexosaminidase and tumor necrosis factor (TNF-α) from RBL-2H3 cells. In AD-like skin lesions in BALB/c mice model, these two polymers displayed significant potency in suppressing dermal and epidermal thickness, mast cell infiltration and pro-inflammatory cytokines expression. Moreover, these polymers exhibited remarkable efficacy over the allergies caused by the imbalance of Th1/Th2 by regulating total IgE and IgG2a. Finally, the impact of treatment effects of these polymers was examined through analyzing the weights and sizes of spleen and lymph node of AD-induced mice.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Meiqi Fan
- Division of Food Bioscience, Konkuk University, Chungju, 27478, Republic of Korea
| | - Eun Young Kim
- Department of Medical Science, Graduate School, and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jun Ho Shin
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Ji Eun Lee
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea.,Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Eun Ju Son
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Jaehi Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Eunha Hwang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Min Su Yim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea.,Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Eun-Hee Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Young-Jin Choi
- Division of Food Bioscience, Konkuk University, Chungju, 27478, Republic of Korea
| | - Young-Ho Lee
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea.,Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Young-Ho Chung
- Drug & Disease Target Research Team, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Hak Nam Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea.,Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Song Yub Shin
- Department of Medical Science, Graduate School, and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Eun-Kyung Kim
- Division of Food Bioscience, Konkuk University, Chungju, 27478, Republic of Korea.
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea. .,Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
8
|
Barreto-Santamaría A, Patarroyo ME, Curtidor H. Designing and optimizing new antimicrobial peptides: all targets are not the same. Crit Rev Clin Lab Sci 2019; 56:351-373. [DOI: 10.1080/10408363.2019.1631249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Adriana Barreto-Santamaría
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad Nacional de Colombia - Bogotá, Faculty of Medicine, Bogotá D.C., Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| |
Collapse
|
9
|
The Continuing Threat of Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2019; 8:antibiotics8020052. [PMID: 31052511 PMCID: PMC6627156 DOI: 10.3390/antibiotics8020052] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus has been an exceptionally successful pathogen, which is still relevant in modern age-medicine due to its adaptability and tenacity. This bacterium may be a causative agent in a plethora of infections, owing to its abundance (in the environment and in the normal flora) and the variety of virulence factors that it possesses. Methicillin-resistant S. aureus (MRSA) strains—first described in 1961—are characterized by an altered penicillin-binding protein (PBP2a/c) and resistance to all penicillins, cephalosporins, and carbapenems, which makes the β-lactam armamentarium clinically ineffective. The acquisition of additional resistance determinants further complicates their eradication; therefore, MRSA can be considered as the first representative of multidrug-resistant bacteria. Based on 230 references, the aim of this review is to recap the history, the emergence, and clinical features of various MRSA infections (hospital-, community-, and livestock-associated), and to summarize the current advances regarding MRSA screening, typing, and therapeutic options (including lipoglycopeptides, oxazolidinones, anti-MRSA cephalosporins, novel pleuromutilin-, tetracycline- and quinolone-derivatives, daptomycin, fusidic acid, in addition to drug candidates in the development phase), both for an audience of clinical microbiologists and infectious disease specialists.
Collapse
|
10
|
Gunasekaran P, Rajasekaran G, Han EH, Chung YH, Choi YJ, Yang YJ, Lee JE, Kim HN, Lee K, Kim JS, Lee HJ, Choi EJ, Kim EK, Shin SY, Bang JK. Cationic Amphipathic Triazines with Potent Anti-bacterial, Anti-inflammatory and Anti-atopic Dermatitis Properties. Sci Rep 2019; 9:1292. [PMID: 30718691 PMCID: PMC6361992 DOI: 10.1038/s41598-018-37785-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/12/2018] [Indexed: 12/26/2022] Open
Abstract
The emergence of multi-drug resistant bacteria forces the therapeutic world into a position, where the development of new and alternative kind of antibiotics is highly important. Herein, we report the development of triazine-based amphiphilic small molecular antibacterial agents as mimics of lysine- and arginine-based cationic peptide antibiotics (CPAs). These compounds were screened against a panel of both Gram-positive and Gram-negative bacterial strains. Further, anti-inflammatory evaluation of these compounds led to the identification of four efficient compounds, DG-5, DG-6, DL-5, and DL-6. These compounds displayed significant potency against drug-resistant bacteria, including methicillin-resistant S. aureus (MRSA), multidrug-resistant P. aeruginosa (MDRPA), and vancomycin-resistant E. faecium (VREF). Mechanistic studies, including cytoplasmic membrane depolarization, confocal imaging and flow cytometry suggest that DG-5, DG-6, and DL-5 kill bacteria by targeting bacterial membrane, while DL-6 follows intracellular targeting mechanism. We also demonstrate that these molecules have therapeutic potential by showing the efficiency of DG-5 in preventing the lung inflammation of lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. More interestingly, DL-6 exhibited impressive potency on atopic dermatitis (AD)-like skin lesions in BALB/c mice model by suppressing pro-inflammatory cytokines. Collectively, these results suggest that they can serve a new class of antimicrobial, anti-inflammatory and anti-atopic agents with promising therapeutic potential.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Ganesan Rajasekaran
- Department of Cellular and Molecular Medicine, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Young-Ho Chung
- Drug & Disease Target Research Team, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Young-Jin Choi
- Division of Food Bioscience, Konkuk University, Chungju, 27478, Republic of Korea
| | - Yu Jin Yang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Ji Eun Lee
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
- Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Hak Nam Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Kiram Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungcheongbuk-do, 28116, Republic of Korea
| | - Jin-Seok Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungcheongbuk-do, 28116, Republic of Korea
| | - Hyun-Jun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Chungcheongbuk-do, 28116, Republic of Korea
| | - Eun-Ju Choi
- Department of Physical Education, Daegu Catholic University, Gyeongsan, 38430, Republic of Korea
| | - Eun-Kyung Kim
- Division of Food Bioscience, Konkuk University, Chungju, 27478, Republic of Korea.
| | - Song Yub Shin
- Department of Cellular and Molecular Medicine, Chosun University, Gwangju, 501-759, Republic of Korea.
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea.
- Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
11
|
Domalaon R, Brizuela M, Eisner B, Findlay B, Zhanel GG, Schweizer F. Dilipid ultrashort cationic lipopeptides as adjuvants for chloramphenicol and other conventional antibiotics against Gram-negative bacteria. Amino Acids 2018; 51:383-393. [PMID: 30392097 DOI: 10.1007/s00726-018-2673-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/25/2018] [Indexed: 02/02/2023]
Abstract
The necessity to develop therapeutic agents and strategies to abate the spread of antibiotic-resistant pathogens is prominent. Antimicrobial peptides (AMPs) provide scaffolds and inspiration for antibiotic development. As an AMP of shorter scaffold, eight dilipid ultrashort cationic lipopeptides (dUSCLs) were prepared consisting of only four amino acids and varying dilipids. Lipids were acylated at the peptide N-terminus and the ε-amine side chain of the N-terminal L-lysine. Compounds that possess aliphatic dilipids of ≥ 11 carbons-long showed significant hemolysis and therefore limited therapeutic application. Several non-hemolytic dUSCLs were identified to enhance the activity of chloramphenicol and other conventional antibiotics against Gram-negative bacteria. Compounds 2 and 6 have a short peptide sequence of KKKK and KKGK, respectively, and are both acylated with an aliphatic dilipid of nine carbons-long potentiated chloramphenicol against MDR clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacteriaceae. Both dUSCLs showed comparable adjuvant potency in combination with chloramphenicol. However, dUSCL 2 synergized with a wider span of antibiotic classes against P. aeruginosa relative to dUSCL 6 that included rifampicin, trimethoprim, minocycline, fosfomycin, piperacillin, ciprofloxacin, levofloxacin, moxifloxacin, linezolid and vancomycin. Our data revealed that dUSCLs can indirectly disrupt active efflux of chloramphenicol in P. aeruginosa. This along with their membrane-permeabilizing properties may explain the dUSCLs synergistic combination with conventional antibiotics against Gram-negative bacteria.
Collapse
Affiliation(s)
- Ronald Domalaon
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Marc Brizuela
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Benjamin Eisner
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Brandon Findlay
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - George G Zhanel
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada. .,Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
12
|
Hibbitts A, O'Leary C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E321. [PMID: 29473883 PMCID: PMC5849018 DOI: 10.3390/ma11020321] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
In a recent report, the World Health Organisation (WHO) classified antibiotic resistance as one of the greatest threats to global health, food security, and development. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, with persistent and resilient strains detectable in up to 90% of S. aureus infections. Unfortunately, there is a lack of novel antibiotics reaching the clinic to address the significant morbidity and mortality that MRSA is responsible for. Recently, nanomedicine strategies have emerged as a promising therapy to combat the rise of MRSA. However, these approaches have been wide-ranging in design, with few attempts to compare studies across scientific and clinical disciplines. This review seeks to reconcile this discrepancy in the literature, with specific focus on the mechanisms of MRSA infection and how they can be exploited by bioactive molecules that are delivered by nanomedicines, in addition to utilisation of the nanomaterials themselves as antibacterial agents. Finally, we discuss targeting MRSA biofilms using nano-patterning technologies and comment on future opportunities and challenges for MRSA treatment using nanomedicine.
Collapse
Affiliation(s)
- Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
| | - Cian O'Leary
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
13
|
Chen M, Fan DM, Li TF, Yan BW, Gao YS, Zhao JX, Zhang H. Synergistic bactericidal effects of basic amino acids and microwave treatment on Escherichia coli. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Molchanova N, Hansen PR, Franzyk H. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs. Molecules 2017; 22:E1430. [PMID: 28850098 PMCID: PMC6151827 DOI: 10.3390/molecules22091430] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 01/19/2023] Open
Abstract
The rapid emergence of multidrug-resistant pathogens has evolved into a global health problem as current treatment options are failing for infections caused by pan-resistant bacteria. Hence, novel antibiotics are in high demand, and for this reason antimicrobial peptides (AMPs) have attracted considerable interest, since they often show broad-spectrum activity, fast killing and high cell selectivity. However, the therapeutic potential of natural AMPs is limited by their short plasma half-life. Antimicrobial peptidomimetics mimic the structure and biological activity of AMPs, but display extended stability in the presence of biological matrices. In the present review, focus is on the developments reported in the last decade with respect to their design, synthesis, antimicrobial activity, cytotoxic side effects as well as their potential applications as anti-infective agents. Specifically, only peptidomimetics with a modular structure of residues connected via amide linkages will be discussed. These comprise the classes of α-peptoids (N-alkylated glycine oligomers), β-peptoids (N-alkylated β-alanine oligomers), β³-peptides, α/β³-peptides, α-peptide/β-peptoid hybrids, α/γ N-acylated N-aminoethylpeptides (AApeptides), and oligoacyllysines (OAKs). Such peptidomimetics are of particular interest due to their potent antimicrobial activity, versatile design, and convenient optimization via assembly by standard solid-phase procedures.
Collapse
Affiliation(s)
- Natalia Molchanova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
15
|
Ahn M, Gunasekaran P, Rajasekaran G, Kim EY, Lee SJ, Bang G, Cho K, Hyun JK, Lee HJ, Jeon YH, Kim NH, Ryu EK, Shin SY, Bang JK. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity. Eur J Med Chem 2016; 125:551-564. [PMID: 27718471 DOI: 10.1016/j.ejmech.2016.09.071] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/18/2022]
Abstract
In this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin. Besides its higher selectivity (therapeutic index) toward bacterial cells than LL-37, Py11 showed highly increased proteolytic stability against trypsin digestion and maintained its antimicrobial activity in the presence of physiological salts. Interestingly, Py11 exhibited higher anti-biofilm activity against MDRPA compared to LL-37. The results from fluorescence spectroscopy and transmission electron microscopy (TEM) suggested that Py11 kills bacterial cells possibly by integrity disruption damaging the cell membrane, leading to the cytosol leakage and eventual cell lysis. Furthermore, Py11 displayed significant anti-inflammatory (endotoxin-neutralizing) activity by inhibiting LPS-induced production of nitric oxide (NO) and TNF-α. Collectively, our results suggest that Py11 may serve as a model compound for the design of antimicrobial and antisepsis agents.
Collapse
Affiliation(s)
- Mija Ahn
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
| | - Pethaiah Gunasekaran
- Molecular Embryology Laboratory, Department of Animal Sciences, Chungbuk National University, Chung-Buk, 361-763, Republic of Korea
| | - Ganesan Rajasekaran
- Department of Medical Science, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Eun Young Kim
- Department of Medical Science, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Soo-Jae Lee
- College of Pharmacy, Chungbuk National University, Chungbuk, 361-763, Republic of Korea
| | - Geul Bang
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
| | - Kun Cho
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
| | - Jae-Kyung Hyun
- Division of Electron Microscopic Research, Korea Basic Science Institute, 113 Gwahakro, Daejeon, 305-333, Republic of Korea
| | - Hyun-Ju Lee
- Division of Electron Microscopic Research, Korea Basic Science Institute, 113 Gwahakro, Daejeon, 305-333, Republic of Korea; Department of Chemistry, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, 2511 Sejong-Ro, Sejong, 30019, Republic of Korea
| | - Nam-Hyung Kim
- Molecular Embryology Laboratory, Department of Animal Sciences, Chungbuk National University, Chung-Buk, 361-763, Republic of Korea
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea; Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Song Yub Shin
- Department of Medical Science, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 501-759, Republic of Korea.
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea; Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
16
|
Ramesh S, Govender T, Kruger HG, de la Torre BG, Albericio F. Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents. J Pept Sci 2016; 22:438-51. [DOI: 10.1002/psc.2894] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Suhas Ramesh
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Beatriz G. de la Torre
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Fernando Albericio
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
- School of Chemistry and Physics; University of KwaZulu-Natal; Durban 4001 South Africa
- CIBER-BBN, Networking Centre on Bioengineering; Biomaterials and Nanomedicine; Barcelona Science Park 08028 Barcelona Spain
- Department of Chemistry, College of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Saudi Arabia
- Department of Organic Chemistry; University of Barcelona; 08028 Barcelona Spain
| |
Collapse
|
17
|
Peptides and Peptidomimetics for Antimicrobial Drug Design. Pharmaceuticals (Basel) 2015; 8:366-415. [PMID: 26184232 PMCID: PMC4588174 DOI: 10.3390/ph8030366] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics.
Collapse
|